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ABSTRACT

New goodness-of-fit measures which are significant improvements on existing mea- Changes to this sentence and
the next OK?

sures are described. They use the intuitive geometrical concept of the area enclosed
by the curve of a fitted distribution and the profile of the empirical cumulative distri-
bution function. A transformation of this profile simplifies the geometry and provides
three new goodness-of-fit tests. The integrity of this transformation is justified by
topological arguments. The new tests provide a quantitative justification for qualita-
tive judgements on goodness-of-fit, are independent of population size and provide a
workable way to objectively choose a best fit distribution from a group of candidate
distributions.

Keywords: goodness-of-fit; transformed normal; cumulative distribution; significance level;
topology.

1 INTRODUCTION AND MOTIVATION

Established goodness-of-fit (GoF) methods, such as the Anderson–Darling (AD) and Minor unmarked changes to
this paper have been made
according to US English
idiom and spelling, journal
style, etc. In addition,
marginal queries have been
added where major changes
have been made or the
meaning is unclear. Please
check all text carefully
throughout.

Kolmogorov–Smirnoff (KS) tests, are the default tests when assessing goodness-
of-fit in the context of operational risk. Indeed, using these tests is recommended as
part of the Basel regulatory scheme (Basel Committee on Banking Supervision 2011).
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2 P. Mitic

However, they have severe limitations, even when applied to the fat-tailed distributions
for which they were intended. An account of these shortcomings is given in Section 2.

As an example, consider the empirical and fitted distributions shown in Figure 1
on the facing page. The empirical cumulative distribution function (CDF) is shown
by the dotted profile, and a fitted lognormal distribution is shown by the solid line. Change OK?

Assessing GoF using the AD, KS or Cramér–von Mises (CvM) tests resulted in zero
p-values in all cases. In these cases no fit to the data could be found. Although it is
easy to isolate regions in which the fit is less good (for example, the part of the profile
that represents low-value losses with high cumulative probability), the overall fit is Change OK? “a small number

of”?

not totally unsatisfactory.
The profiles shown in Figure 1 on the facing page are quite typical of those encoun-

tered in operational risk, and the proposed new GoF tests are specifically geared
to profiles of this type. The new tests are intended to rectify the shortcomings of
established GoF tests listed in Section 2. The requirements of the new tests are Changes to sentence OK?

(1) to be independent of the number of points in the empirical data,

(2) to reflect intuitive qualitative views of goodness-of-fit based on comparing fitted
and empirical CDFs,

(3) to discriminate effectively between the common distributions used in modeling
operational risk severity,

(4) if possible, to be deterministic.

The proposed tests in this paper also have a geometric interpretation that is intuitive,
and is directly related to the test formulations. A transformation of the geometry
makes the tests equally easy to interpret, and makes calculations much easier.

1.1 Structure of the paper

This introductory section has given a brief overview of the motivation for this paper. Minor changes to this
paragraph OK? No mention
of appendixes – OK?Section 2 gives an account of the shortcomings of “traditional” GoF tests in the context

of the distributions found in operational risk and reviews alternative GoF tests that
are applicable in particular contexts. Geometric aspects of the GoF test proposed in
this paper are covered in Section 3, as is the geometric transformation that forms a
basis for the method. The topological properties of the transformation are described
in Section 4. These are used to derive an expression for the p-value of one of the new
tests. Details of the new tests are given in Section 5. Section 6 assesses the significance
of the current work, and gives some suggestions for future extensions.

Journal of Operational Risk www.risk.net/journal
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FIGURE 1 Example GoF test with zero p-values.
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2 SHORTCOMINGS OF TRADITIONAL TESTS FOR DISTRIBUTIONS
USED IN OPERATIONAL RISK

The KS, AD and CvM tests are the GoF tests most commonly used for testing
goodness-of-fit in the context of operational risk. Problems in using them are described
in this section. These methods are a subset of the more general class of empirical dis-
tribution functions (EDFs), which generally provide more powerful tests than the
“default” �2 test, (ie, they are less likely to reject a null hypothesis when the null
hypothesis is true). Good accounts of the KS, AD and CvM tests within the EDF
context are given in Stephens (1972, 1974).

Cramér (1928) and von Mises (1928) proposed their GoF tests nearly a century
ago. They compare an empirical CDF F.x/ with n observations, and a proposed CDF
F �.x/, in conjunction with a weight function w.x/, using the statistic

All mathematical notation has
been converted to LATEX or
been rekeyed. Please check
all symbols and equations
have been typeset correctly
throughout your paper and
mark any for amendment.

W 2 D n

Z 1

�1
.F.x/ � F �.x//2w.x/ dx; where w.x/ D 1:

This expression illustrates the problem of comparing vertical distances, F.x/�F �.x/,
for the typical distributions encountered in operational risk data. The problem arises Changes to sentence OK?

because these distributions often have a large number of low-value losses. The empiri-
cal CDF for such losses is nearly vertical, so the vertical distances to the corresponding
empirical points are large. Once many such distances are squared and summed, the
result is likely to exceed a critical value.

www.risk.net/journal Journal of Operational Risk



4 P. Mitic

The same problem persists with the AD test, for which w.x/ D x�1.1�x/�1. The
original formulation for the AD test may be found in Anderson and Darling (1952). Words added – OK?

This weight function has the effect of emphasizing points in the distribution tail, but
this emphasis is often outweighed by the large number of points in the distribution
body. The quadratic AD test described by Chernobai et al (2005) and implemented
in the R package truncgof, is an improvement, but is still affected adversely by an
excess of points.

The KS test (Massey 1951) also uses the vertical distance from the empirical to the
proposed distributions with the statistic supx.F.x/ � F �.x//. The KS test tends to
be more sensitive near the center of the distribution than at the tails, so, although it
is frequently used in operational risk calculations, it can fail to adequately reflect tail Changes to sentence OK?

dependency.
The CvM, AD and KS tests all have the advantage that they are distribution free,

since any trial distribution is discretized. The tests proposed in this paper retain this
property through a distribution transformation.

The CvM, AD and KS tests can also exhibit one of two undesirable tendencies. Changes to sentence OK?

Either they reject the null hypothesis for all distributions other than lognormal (for
example, thetruncgof package for the R application) or they accept null hypothesis
for all distributions or none.

All three tests are subject to the problem of rejecting the null hypothesis if the data
sets used are large. The problem is discussed by Lin et al (2013). Their argument is
summarized in the following statements.

(a) Having stated a null hypothesis with respect to a population parameter b, any
deviation from b, however small, has a significant effect on a test statistic.

(b) Under the null hypothesis, the limiting p-value as the sample size tends to
infinity is the probability that the absolute difference, jˇ � Ǒj, where Ǒ is an
estimator of ˇ, is arbitrarily small.

(c) If the population parameter is exactly equal to the value of the population
parameter set by the null hypothesis with an infinite number of decimal places,
the p-value will approach 1. Otherwise it will approach 0. In other words, the
estimator Ǒ has all its mass on the population parameter.

(d) In reality, the measured population parameter b is typically not a round figure, “an integer”?

so a large sample will yield a p-value that is near to 0.

The problem highlighted by Lin et al is particularly acute for much of the data that
we use. Population sizes are often greater than 1000, and can exceed 500 000.

Use of the �2 test tends to be avoided in the context of distribution fitting for
operational risk because it does not weight the distribution tail and therefore does not
find favor when there is so much stress on the importance of the tail.

Journal of Operational Risk www.risk.net/journal



Improved goodness-of-fit measures 5

The discussion by Lemeshko et al (2007) is interesting, in that they recommend
transforming losses x1; x2; : : : ; xn using xi ! F.xi /, where F.�/ is the CDF of the
fitted curve. They then test GoF using a KS statistic D D sup06u61.

p
njF.u/ � uj/.

The value of D can then be compared with a critical value. This transformation is
essentially the transformation proposed in this paper to simplify domain geometry.
However, the factor

p
n ensures that the calculated values of D have very little chance

of being less than a critical value for large n. Conover (1999) gives 1:224=
p

n as an
approximation for the 5% one-tail critical KS value for n > 35. (The corresponding
5% two-tail value is 1:358=

p
n.) For large n these critical values are very small

(typically between 0.001 and 0.1), but the calculated values of D are large (typically
between 1 and 90).

2.1 Examples of the failure of established GoF tests

This section cites typical examples of the failure of established GoF tests (AD, KS
and CvM) to differentiate between candidate distributions.

Guégan and Hassani have repeatedly reported that KS p-values are inadequate. In Changes to sentence OK?

Guégan and Hassani (2014) they calculated p-values in the context of fitting time
series models. Very few KS p-values were nonzero. In most cases, only one distri-
bution per model had a nonzero p-value, and many of those were less than 0.05.
In three cases, according to the KS tests, no distributions were adequate, and Gué-
gan and Hassani comment that they have observed this in previous analyses. One of
these is Guégan and Hassani (2012), in which they use a peak-over-threshold method Changes to sentence OK?

to thicken the right tail of their loss distributions in order to achieve an acceptable
goodness-of-fit for GPD fits. Another is Guégan et al (2011), in which they attempt
to fit lognormal, exponential, Weibull, Gumbel and Fréchet distributions. It proved
impossible to distinguish between the fits for any of them, since all p-values were
zero.

The same problem is reiterated in Lehérissé and Renaudin (2013). They use AD,
KS and CvM tests in the context of quantile distance estimations. These tests provide
inconsistent results for the same data set. In particular, there are examples where
all the proposed models are rejected by all the GoF tests. Lehérissé and Renaudin
comment that the GoF tests they used do not capture tail dependence.

Gourier et al (2009) also report that their AD test did not capture the heavy-
tailedness of their data. In many cases, all p-values were zero. They comment that
statistical tools to analyze rare and extreme events were lacking, and suggest that
alternative distributions are required. They also note that, by construction, the AD
test yields infinite values when the theoretical distribution has a finite endpoint that
is below that of the empirical distribution, which is a very unsatisfactory situation.

www.risk.net/journal Journal of Operational Risk



6 P. Mitic

2.2 Review of dedicated GoF tests

This section gives a brief description of some dedicated GoF measures that are appli-
cable in certain circumstances only. In general they cannot be used successfully for
operational risk purposes, and reasons for this are given.

Goldmann et al (2015) suggest GoF measures that are applicable to right-censored
data. Censoring in this way is an immediate problem in the current context, because
the data sets we use always contain large outliers that cannot be ignored. Indeed, the
GoF tests proposed here are specifically geared to account for extremely large data.
Nonetheless, Goldmann et al report some success when fitting lognormal, Weibull and
Gamma distributions. Their process is to form the order statistics for a random sample
of the losses, transform them using a random sample of order statistics drawn from
a U.0; 1/ distribution, thereby generating values that have an approximate normal
distribution, compute a standard error for each transformed sample and then use the
CvM and AD tests to assess the GoF. It is hard to see how their method would work
with our data, as the largest population size they use is 100. Should Table 1 be cited here

for comparison of data
populations in this sentenceThe transformation xi ! F.xi /, where F.�/ is the CDF of a fitted curve, is taken

further by Quesenberry (1986), who discusses the conditional probability integral
transform (CPIT) class of transforms. These transformations also map losses fxi > 0g
to the interval .0; 1/, but are much more complex than the transformation considered
in this paper and do not have any immediate geometric appeal. Quesenberry attempts
to fit normal and exponential distributions, and there are no results for long- or fat-
tailed distributions. He also uses relatively small populations, and assesses GoF using
the CvM and AD tests. It is therefore doubtful that CPIT would be a useful technique
for operational risk. In addition, he cites several other cases of mapping to .0; 1/, all
aimed at particular distributions.

Doray and Huard (2001) propose a novel GoF test which has similarities to the tests
proposed here. Their test is applicable to a different context: frequency modeling.
They consider the Poisson, negative binomial and binomial distributions. The first
two are often used to model frequency in operational risk. Null hypotheses based on
them are nearly always rejected, due to very high empirical frequencies, expressed as
losses per year, with data spanning insufficient years. The first similarity to our tests Changes to this sentence and

the next OK?

is that they search for outliers, and reject the null hypothesis if a sufficient number of
outliers are found. The second is that they use a distance estimator; Doray and Huard
show that a quadratic distance between data and a target Poisson distribution has a
�2 distribution. Population sizes were again 100 or less: too low for our data. They
considered frequencies between 1 and 10, which would also be inappropriate for our
data, where frequencies range from 50 to 20000 (per year).

Rizzo (2009) has developed a GoF test specifically for Pareto distributions, using a
statistic based on the expected value of kXi � Xkb , where the Xi are losses, X is an

Journal of Operational Risk www.risk.net/journal



Improved goodness-of-fit measures 7

ordinate on a Pareto CDF, b is a stability index that ensures that Xb has finite variance,
and k � k is the Euclidean norm. As with previous examples, the populations used for
testing are small. Therefore, even applied to a Pareto distribution, this method would
be hard to apply to our data.

Goegebeur and Giullou (2010) developed a GoF test for Weibull and generalized
Pareto distributions (GPDs) by extending the concept of a Q–Q plot. They describe
two test statistics. Both contain ratios of terms resembling the Weibull quantile func-
tion. They derive very simple asymptotic normal approximations for these statistics.
Unfortunately, they only test using simulated data, although they use a satisfactory Changes to sentence OK?

sample size of 5000.
Lastly, we mention some GoF studies on extreme value distributions. Stephens

(1977) modifies existing EDF statistics, and applies his tests to small samples only.
Similarly, the study by Fard and Holmquist (2013) uses EDF statistics and sample sizes
of 20 or 30. It does, however, make use of order statistics, which is of potential use in
our context because losses are ordered in the empirical CDF. Kinnison (1989) bypasses
the EDF set by using the correlation coefficient as a GoF statistic. He simulates data
for a target distribution, and calculates the product moment correlation coefficient for
the simulated data and the empirical data. That procedure is repeated many times in
order to simulate a distribution for the test statistic. This is an interesting idea that
might be usefully applied to other distributions. However, the correlation coefficient
is also problematic in that if the sample size is large, the null hypothesis is more likely Changes to sentence OK?

to be rejected.

3 TRANSFORMED-NORMAL (TN) TESTS

We consider an alternative suite of GoF tests based on the perpendicular distance of
points in an empirical CDF from a fitted distribution. Their purpose is to satisfy the
requirements set out in Section 1 in a more satisfactory way than “traditional” GoF
tests. Three variants of this test will be discussed. The first is based on an enclosed area, Word added – OK?

and will be referred to as the TN-A test. The second employs a bootstrap technique
for the CDF of the fitted distribution, and will be referred to as the TN-B test. The
third uses sampling, and will be referred to as the TN-S test. Their formulation is
based on two principal innovations, which will be described in Sections 3.2 and 3.3.

Section 3.1 describes the geometry of the region in two-dimensional space sur-
rounding empirical losses and the CDF of the fitted distribution. Subsequent sections
describe how to transform that region into a unified region that is independent of the Change OK?

fitted distribution, and in which calculations based on geometry are much simpler.

www.risk.net/journal Journal of Operational Risk



8 P. Mitic

FIGURE 2 Normals to the fitted CDF curve.
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y

(a)

(b)

(c)

(a) High-value losses. (b) Losses at the fitted CDF “angle”. (c) Low-value losses.

3.1 The geometric basis of the TN tests

Consider the empirical distribution for loss data, comprising a list of n losses initially
in no particular order. Then order the losses in increasing order of size.

Definition 3.1 (Empirical cumulative loss distribution) Denote the n ordered
losses by xi (i D 1; : : : ; n). These can be considered a single observation of n

independent and identically distributed (iid) random variables L1; L2; : : : ; Ln. To
each ordered loss xi , assign a probability yi D .i � 0:5/=n. The set � D fxi ; yig
then defines the empirical cumulative loss distribution (referred to in this paper as the
empirical CDF).

One or more candidate distributions (typically lognormal, Burr, Weibull, etc) are
fitted to this empirical distribution, and the task is then to decide which, if any, is a
“best” fit. Denote a fitted curve (it need not be an optimal fit) by �. For every point
.xi ; yi / in the empirical distribution �, there exists a unique normal to � through that
point. These normals form the basis of the alternative GoF tests. Figure 2 illustrates
three cases, typical for the empirical distributions encountered in operational risk.
For low-value losses the normals are approximately horizontal. For high-value losses
they are approximately vertical. In between (the “angle” of the distribution), there is
a transition from horizontal to vertical, which can be rapid. Change OK?

Journal of Operational Risk www.risk.net/journal



Improved goodness-of-fit measures 9

3.2 A GoF statistic based on normals to the fitted CDF curve

The first innovation for the methods proposed in this paper is that the goodness-of-fit
is measured as a geometrically optimal quantity, namely the shortest distance of each
point to a curve. This eliminates the errors that result from measuring (either directly
or implicitly) the vertical or horizontal distances from a point to a curve, which are
hugely exaggerated in the case of extreme-valued distributions. As a first step, the
following statistic, S1, is proposed as a GoF measure:

S1 D
nX

iD1

jdi j; (3.1)

where n is the number of empirical losses and di is the Euclidean perpendicular
distance from a point .xi ; yi / to the curve. This quantity is calculable, but finding a
measure of the significance of the result is harder. This task is considered later in the
paper. For now, we concentrate on a simplification that leads to a simpler statistic, for
which the significance is much easier to calculate.

3.2.1 Comments on the geometry of the empirical CDF

In practice, the construction of the empirical CDF ensures that the points comprising
it do not appear as a “random” scatter on either side of the fitted CDF. The general
pattern is one of groups of points all on one side or the other of the fitted CDF. The
empirical CDF crosses the fitted CDF infrequently.

This property is important because it provides a degree of stability for the calcula-
tions that follow. The distances di in (3.1) do not vary rapidly between positive and
negative, and in most cases do not vary much from one calculation to the next. The Word added – OK?

profile of the empirical CDF often appears quite smooth, which encourages accuracy.

3.3 A GoF statistic based on transformed geometry

Instead of dealing directly with the statistic S1, the geometry of the problem can be
simplified greatly by transforming the empirical losses and the fitted curve to a more
convenient domain. The domain of the geometry described above, incorporating the
empirical CDF and the curve fitted to the points within it, will be referred to as the Change OK?

loss space.

Definition 3.2 (Loss space) The loss space is the region � D f.x; y/ W x >

0I 0 < y < 1g. Given any point .xi ; yi / in loss space, where xi > 0 and 0 < yi < 1

for all i D 1; : : : ; n, with xiC1 > xi for all i D 1; : : : ; n � 1, consider the
transformation T , defined by Change to ReC OK

according to style or do you

mean R
C (see also query in

Appendix A)?
T W fReC ˝ .0; 1/g ! .0; 1/2; T .x; y/ ! .F.x/; y/; (3.2)

www.risk.net/journal Journal of Operational Risk
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FIGURE 3 Loss space mapped to probability space.
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where F.�/ is the CDF of the fitted curve.

Under this transformation, the probability measure in loss space is unchanged and
the loss measure transforms to a uniform distribution on .0; 1/. For convenience, we
will refer to the transformed region as probability space.

Definition 3.3 (Probability space) Probability space is the image of loss space
under the transformation T defined in (3.2), namely the region f.X; Y / W 0 < X <

1I 0 < Y < 1g.

In order to distinguish points in loss space and probability space, lowercase symbols
will be used for elements in loss space and uppercase symbols will be used for elements
in probability space. Hence, an alternative way to express the transformation in (3.2)
is to write

X D F.x/; Y D y;

.x; y/ 2 loss space;

.X; Y / 2 probability space:

9>=
>; (3.3)

Proposition 3.4 The fitted CDF transforms to the 45ı line in probability space.
Under T , X D F.x/. Therefore, X D y, since, by the definition of a CDF,

F.x/ D y. Hence, X D Y .

Furthermore, this result applies for all CDF functions F . The transformation is
shown in Figure 3.

Points not on the empirical CDF in loss space are not, with possibly a few excep-
tions, on the fitted CDF. They map to points .X; Y / in probability space that are not
on the 45ı line.

Journal of Operational Risk www.risk.net/journal
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FIGURE 4 Normals in probability space.
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The transformation from loss space to probability space is the second innovation
in this paper, for two reasons: it provides a simple geometrical basis for a new GoF Changes to sentence OK?

test, and the geometry of probability space is distribution independent, so a single
treatment covers all distributions.

3.4 The geometry of the transformed normal GoF tests

The intuition behind the TN GoF tests is simple. Points in probability space that are
“near” to the 45ı line represent a “good” fit, and points in probability space that are Scare quotes necessary here

and later? Please mark any
that may be deleted.“far” from the 45ı line represent a “poor” fit. Furthermore, if each adjacent pair of

transformed points in probability space is joined by a straight line, the union of all
such straight line segments can be used to define an area. A small area indicates a
good fit and a large area indicates a poor fit.

Consider a sequence of n losses .Xi ; Yi / in probability space, originating from
a corresponding sequence of n losses .xi ; yi / in loss space (where the xi are in
increasing order of size and the yi correspond to the ordered xi ) by the transformation
of (3.2) and (3.3). A selection is shown in Figure 4, which also shows the transformed
fitted CDF (the 45ı line, Y D X ). Three adjacent typical normals are shown, one
associated with a loss below the line Y D X and the other two associated with losses
above that line. Let .X 0

i ; Y 0
i / be the point of intersection of the normal from a point

.Xi ; Yi / to the line Y D X . Clearly, X 0
i D Y 0

i since .X 0
i ; Y 0

i / is on the line Y D X .

www.risk.net/journal Journal of Operational Risk



12 P. Mitic

The Euclidean distance from .Xi ; Yi / to .X 0
i ; Y 0

i / is Hi , and, writing Y 0
i in place of

X 0
i , the Euclidean distance from .Y 0

i ; Y 0
i / to .Y 0

iC1; Y 0
iC1/ is Wi .

It is easy to show that

Y 0
i D Xi C Yi

2
; i D 1; : : : ; n; (3.4)

and that the distance from .Xi ; Yi / to .X 0
i ; Y 0

i / is

Hi D jXi � Yi j
2

; i D 1; : : : ; n: (3.5)

Furthermore, the Euclidean distance from any point .Y 0
i ; Y 0

i / to the adjacent point
.Y 0

iC1; Y 0
iC1/ on the 45ı line is

Wi D p
2.Y 0

iC1 � Y 0
i /; i D 1; : : : ; n: (3.6)

The distances Hi are the absolute normal deviations from the 45ı line. The maxi-
mum possible value of any Hi is 1=

p
2, which is the distance from the center of the

domain .0; 1/2 to a vertex .0; 1/ or .1; 0/.

3.5 The transformed normal area

In loss space, a sequence of straight line segments can be defined by joining all
pairs of adjacent points f.xi ; yi /; .xiC1; yiC1/g. This sequence, with linear normal
boundaries defined by the maximum and minimum losses, and with the fitted CDF
curve, defines a region that has a well-defined area. The smaller the area, the better
the fit. The same intuition applies in probability space: the smaller the transformed
area, the better the fit. This area transforms under T (defined in (3.2) and (3.3)) to
a well-defined area in probability space. The enclosed area, EA.X ; F /, is the sum Bold font necessary here and

in similar expressions below?
Journal style is to use bold
face for vector quantities.

of the area enclosed by joining points above the 45ı line and the area enclosed by
joining points below the 45ı line.

Thus, in probability space, the boundaries of this area are the 45ı line, the sequence
of straight line segments joining adjacent points f.Xi ; Yi /; .XiC1; YiC1/g, and perpen-
diculars to the 45ı line corresponding to the minimum and maximum (transformed)
losses. Figure 5 on the facing page shows the areas in L- and probability space. Does L denote “loss space”

here and should be defined at
first mention according to
journal style, or do you mean
Lebesgue Lp space?

The area enclosed between the n transformed losses and the 45ı line in probability
space forms the basis of the TN-A and TN-B tests, as described in Section 5. The
TN-S test uses the heights Hi . The area enclosed is measured by a simple application
of the trapezium rule.

Consider the trapezium defined by the points .Xi ; Yi /, .XiC1; YiC1/, .Y 0
iC1; Y 0

iC1/

and .Y 0
i ; Y 0

i /. Its area Ai is given by Words added – OK?

Journal of Operational Risk www.risk.net/journal
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FIGURE 5 Areas in L- and probability space.

Loss space Probability space

Y

Xx

y

T

y = F(x )

Ai D Wi

Hi C HiC1

2
; i D 1; : : : ; n � 1: (3.7)

Summing all such areas, the total area AŒn� enclosed between the line segment
pairs f.Xi ; Yi /; .XiC1; YiC1/g, i D 1; : : : ; n, and the line Y D X is

AŒn� D
n�1X
iD1

Ai D
n�1X
iD1

Wi

Hi C HiC1

2
: (3.8)

Calculating AŒn� is easy in the geometry of probability space. In loss space, find-
ing the equivalent enclosed area would necessitate calculating the length of normals
to the fitted CDF at each point of the empirical CDF, which is a much longer pro-
cess. The flow diagram in Figure 6 on the next page gives a step-by-step process for
deriving AŒn�.

In practice, it is easier to visualize and to analyze if all quantities Hi are mapped “whether”? Otherwise what
do you mean by “it”?

to the upper region defined by Y > X . This avoids dealing with cases where two
adjacent Hi occur on opposite sides of the diagonal line Y D X . The area of the
upper region defined by Y D X is, trivially, 0.5, and is referred to as the transformed
area (TA).

3.5.1 Difficulties with calculations in loss space

The concept of the enclosed area is the same in both loss space and probability space.
Calculating it is, however, harder in loss space, which is why it is done in probability
space. In order to do the calculation in loss space, normals to the fitted CDF through

www.risk.net/journal Journal of Operational Risk
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FIGURE 6 Calculation of enclosed area, AŒn�.

n losses in
any order

Inputs Candidate distribution

CDF, F (x )

Derive xi, the losses in 
increasing order of size

Calculate probabilities,
yi = (i – 0.5)/n

Transform:
Yi = yi and Xi = F (x ) 

Calculate
Yi' = (Xi  + Yi)/2

Calculate
Hi = |Xi  + Yi|/2

Calculate
Wi = (Yi'  – Yi)√2

Calculate
Ai =Wi = (Hi +1 + Hi)/2

Calculate
A[n] = ∑|Ai|

Test significance of A[n]
using TN-A, TN-B, TN-S

Loss space

Probability space (3.3)

 (3.4)

 (3.5)

 (3.6)

 (3.7)

(3.8) (absolute value maps
all Ai to above the 45º line)

each point .xi ; yi / must be calculated. The standard way of doing this is to calculate
the gradient of tangents to the CDF. This is an extensive calculation if the population
size is large. Also, calculating the enclosed area in loss space is more awkward, and
would probably have to be done by using straight line approximations to regions
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FIGURE 7 Example of a good fit.
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FIGURE 8 Example of a bad fit.
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delimited by the normal. In probability space, the gradients of normals to the 45ı line
are always �1 and the regions delimited by those normals are always trapeziums.

3.6 Examples of the transformed normal and the transformed
normal area

This section contains some examples of loss distributions that have been transformed
using (3.2). They show both loss space and probability space (Figure 7, Figure 8 Are vector graphic files

available for these figures?

and Figure 9 on the next page) and illustrate the enclosed areas, EA.X ; F /, in both
spaces. The main feature to note is that, in probability space, if the EA is large, there
is evidence for rejecting the null hypothesis, and if it is small, there is no evidence for
rejecting the null hypothesis.
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FIGURE 9 Example of a borderline fit.
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TABLE 1 Population sizes of data sets in this analysis.

Data
set Size Comments

B1 142 Contains a comprehensive range of low- and high-value losses
B2 675 418 Distribution mainly comprises low-value losses
B3 454 570 Distribution mainly comprises low-value losses
B4 5 192 Contains a comprehensive range of low and high losses
B5 1 958 Contains few very high-value losses
B6 1 521 Contains few very high-value losses
B7 52 918 Mainly low-value losses
B8 28 322 Mainly low-value losses but with some significant tail losses

3.6.1 Data used

The transformation from loss space to probability space was tested on eight repre-

sentative data sets covering a range of large and small losses. The population sizes

range from about 150 to more than 600 000. In every case, the data used is not filtered

and no thresholds have been applied. All losses are strictly positive. The data sets are

labelled B1, B2, …, B8. Collectively, they are referred to as the B# data. The actual

population sizes are given in Table 1. Journal style is to place tables
and figures where they are
first mentioned in text,
particularly if they appear in
appendixes with no
supporting text. Minor
changes to comments for
consistency – OK?

In each case, the value of the transformed area, TA, is given. These are consistent

with intuitive views of the enclosed areas: low TA values represent “good” fits, and

high TA values represent “bad” fits.
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3.6.2 Examples

In the examples that follow, and in subsequent parts of the paper, the following
abbreviations for distribution names are used.

� LN: lognormal.

� WB: Weibull.

� GPD: generalized Pareto distribution.

� LNMix: mixture of two lognormal distributions.

� LL: log logistic.

Example 3.5 (Data set B4) This appears to be a good fit to a lognormal distribu-
tion. Population size D 5192. TA D 0:0549 (see Figure 7 on page 15).

Example 3.6 (Data set B4) This appears to be a bad fit to a GPD. The fitted dis-
tribution is too severe for small losses that represent a high cumulative probability.
Population size D 5192. TA D 0:2866 (see Figure 8 on page 15).

Example 3.7 (Data set B6) This appears to be a borderline fit to a Gamma dis-
tribution. The fit looks reasonable in loss space, but not so in probability space. Changes to sentence OK?

Population size D 1521. TA D 0:128 (see Figure 9 on the facing page).

3.7 Independence of the enclosed area of the number of losses

The principal aim of the current analysis is to formulate a GoF test that does not depend
on the number of losses analyzed, n. In this section we show that the calculated area
AŒn� ((3.8)) satisfies this aim, provided that n is large enough.We first give a theoretical Changes to sentence OK?

basis for this claim of independence, and then show a practical example.

Proposition 3.8 AŒn� is independent of n for sufficiently large n.

The proof of this proposition is given in Appendix C.
As an illustration, Table 2 on the next page shows the result of fitting a lognormal

distribution to random samples of increasing size, generated from a lognormal.8; 2/

distribution. Each random sample has added random noise, in order to better simulate a
genuine empirical distribution. The results are consistent within the limits of stochastic
variation. When n < 50, AŒn� � 0:05. At this level the fit process is less reliable, and
we would consider augmenting the data with data from other sources.
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TABLE 2 Variation of AŒn� with n.

Sample size, n AŒn�

50 0.0359
100 0.0281

1 000 0.0327
10 000 0.0337

100 000 0.0354
1 000 000 0.0351

4 TOPOLOGY OF LOSS SPACE AND PROBABILITY SPACE

Although AŒn� (in (3.8)) can be calculated easily, the significance of the value obtained
is not immediately clear. Topology provides a toolkit for determining how a p-value
(or equivalent, such as a critical value) may be derived using AŒn�. Therefore, in
this section we provide a theoretical basis for assessing the significance of the area
calculation by considering the topologies of loss space and probability space.

The broadest overview of the argument developed in this section is that a measure
of “closeness” in loss space corresponds to a measure of “closeness” in probability
space via a continuous mapping. The result is a distribution function for the enclosed
area, from which a p-value can be derived.

It is helpful to consider the steps in the argument for deriving the p-value at three
levels:

(a) the argument can be presented as a broad overview of the process with few
technicalities;

(b) topological concepts can be added;

(c) detailed proofs can be given.

Section 5 contains details of GoF tests based on the geometry of probability space.

4.1 p-value derivation: a broad overview

The steps in the argument are as follows.

(1) The CDF of the fitted curve can be completely covered by ellipses, which are
chosen because their properties are particularly suited to the geometry of loss
space. This cover defines a region surrounding the CDF, which we refer to as
a “band”.
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(2) T (equation (3.2)) maps the band in loss space to a simpler band in probability
space, such that the boundaries of the band in loss space map to lines parallel
to the 45ı line in probability space.

(3) Derive an expression for AŒn�, and deduce that the p-value is the width of the
band in probability space, measured perpendicular to the 45ı line.

4.2 p-value derivation: the topological view

The details of steps 1 and 2 in the previous section are given in Appendix D. The Do you mean “Section 3” or
“Section 4.1”?

band in loss space is shown in Figure D.2 on page 44, and the way it maps to a
corresponding band in probability space is shown in Figure D.5 on page 47. There are
three main results of the discussion in Appendix D. Each refers to a corresponding
band in probability space, which

(i) is interpreted as a region such that the fitted CDF is a good fit for points within
it,

(ii) resembles a parallelogram so closely that it can be approximated by a parallel-
ogram without significant error for all subsequent calculations, and is termed
an “almost-parallelogram” (see Section D.2.1 for a formal definition),

(iii) comprises shapes that resemble ellipses, and are called “almost-ellipses” (see
Section D.2.1 for a formal definition),

(iv) is parameterized by a height 2r , shown in Figure D.5 on page 47.

Step 3 above is discussed in Section 5; in that section, the expression for AŒn� is
derived, is shown to be independent of n and is expressed in terms of a p-value
(see (5.3)).

5 GOODNESS-OF-FIT TESTS BASED ON THE TRANSFORMED
NORMAL

Step 3
Heading hierarchy OK?
Should this be numbered and
“The TN-A test” become
Section 5.1.1? There are no
subitems 3.1 onwards in the
list in Section 4.1 or in
Appendix D. Please clarify
heading hierarchy and lists
being referred to throughout
this section.

Step 3, the basis of which is discussed in Appendix D, is covered in this section, which
contains details of the three proposed GoF tests. Two are based on the EA, defined in
(3.7). The third is based on the heights that form the area calculation, defined in (3.5)
and illustrated in Figure 4 on page 11.
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FIGURE 10 End correction applied to an almost-parallelogram.
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5.1 The TN-A test

The TN-A test depends on the area (“A” denotes area) of an acceptable almost- Change OK?

parallelogram in probability space. This test has a very simple intuitive interpretation,
which is to compare a measured area, defined ultimately by the data, with a fixed ref-
erence area. The goodness-of-fit is determined by the deviation of the measured area
from zero. A small deviation indicates a good fit, and a large deviation indicates a
poor fit.

Step 3.1

The almost-parallelogram in Figure D.5 on page 47 is shown in a near symmetric “nearly”?

state, in which it nearly touches both the lines Y D 0 and Y D 1. In practice this
will rarely be the case. If the open set centered on the maximum loss touches the line
Y D 1, the open ball centered on the minimum loss may not touch the line Y D 0, “cannot”?

and vice versa. There is an “end correction”, z, shown in Figure 10. The distance z is
the vertical distance from the midpoint on a vertical face of an almost-parallelogram Changes to sentence OK?

to a horizontal boundary of probability space. Figure 10 shows the case when an open
set surrounding the minimum loss does not touch the boundary. There is an equivalent
case for the maximum loss. In practice z is very small.

Figure D.5 on page 47 shows an almost-parallelogram with height 2r . If it is
positioned with the end correction shown in Figure C.1 on page 40, so that the almost-
ellipse in Figure C.1 forms the lower end of the almost-parallelogram, then the area
of the almost-parallelogram, AP.r/, is

AP.r/ D 2r.1 � r � z/: (5.1)
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FIGURE 11 Determination of p-value.
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(a) Loss space. (b) Probability space.

The result for the area of the almost-parallelogram is the same if the correction z

is near the maximum loss.
This result is significant because it does not depend on the number of losses in the

calculation.

Step 3.2

Area AP.r/ will facilitate calculation of a critical value for the TN-A test. We now
interpret the p-value of the test as the dimension of the almost-parallelogram that is
perpendicular to the 45ı line. This is the length p, as in Figure 11: the distance of
transformed points from the 45ı line in probability space.

Clearly, p D r=
p

2.
In terms of p, the area in (5.1) is

AP.p/ D 2
p

2p.1 � p
2p � z/: (5.2)

In practice the approximation for small z,

AP.p/ D 2
p

2p.1 � p
2p/; (5.3)

is perfectly adequate.
The TN-A test proceeds as follows. (See also Figure 12 on the next page for a

step-by-step guide for using this test.)
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FIGURE 12 Application of the TN-A test.

Calculate A[n]
Formulate hypotheses for

enclosed area:
H0: EA = 0; H1: EA > 0

Calculate critical value for
significance level c:

Ac = 2 √2 (c/100)(1 – c√2/100)

(5.3) with p = c/100

A[n] > 0?
No

Yes

Accept H0
(distribution fits)

Accept H1
(distribution does not fit)

Algorithm 5.1 (TN-A)

(1) The test statistic is the enclosed area EA.X ; F / of (3.8).

(2) The null and alternative hypotheses are, respectively,

(H0) EA.X ; F / D 0;

(H1) EA.X ; F / > 0 (treating the enclosed area as an absolute value in a
one-tailed test).

(3) For a significance level c (%), calculate the critical value AP.c=100/ using
(5.3).

(4) Calculate the actual enclosed area A0 using (3.8).

(5) If A0 < AP.c=100/, accept H0; otherwise reject H0.

For example, at 5% significance the critical value is AP.0:05/ � 0:1314, and we
accept the null hypothesis at 5% significance if any calculated area is less than this
value.

At 5% significance, the following results were obtained using the B# data. They
are consistent with an intuitive qualitative view of a “good” fit, and provide a range
of GoF results per distribution, so that there is a choice in every case. The “winning”
distribution has the lowest TN-A value.
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5.2 The TN-B test

The TN-B test attempts to elucidate the distribution of the EA by a bootstrap method
(“B” denotes bootstrap). Starting from a fixed set of losses and a fixed set of distribu-
tions fitted to those losses, there are no experimental results that could indicate what
the distribution of the EA could be. We therefore use a modified bootstrap method,
originally developed by Efron and discussed in Efron and Tibshirani (1986). The
method used in this analysis generates a range of “feasible curves” to which the data Changes to this sentence and

the next OK?

can be fitted. The method proposed here reverses the traditional way in which boot-
strap methods are applied, which is to resample data. Here we resample fitted curves,
generated in a precise way.

The algorithm for generating feasible curves is as follows. The starting point is the
CDF of a distribution for which a fit is sought. Denote this CDF by F.x; �/, where
� is a vector of parameters determined by the fitting process.

Algorithm 5.2 (TN-B1)

(1) Decide on the number, R, of feasible curves.

(2) For each component � of � , generate a set of R alternative values of � within
the range .0; 2�/. These values, together with the “base” value � D .�R/=R,
are then given by the set

S� D �

�
0;

2

R
;

4

R
; : : : ;

R � 2

R
;

R

R
;

R C 2

R
;

R C 4

R
; : : : ;

2R

R

�
:

(3) To generate a single resample for component � of � , draw a random sample of
size 1 C R, with replacement, from S� . Repeat for all � in � .

Having generated samples, the bootstrap process proceeds by calculating the EA
for each bootstrap sample. The algorithm is as follows.

Algorithm 5.3 (TN-B2)

(1) Calculate the “base area” Abase using the original parameters � .

(2) For each resample k (as generated above), calculate the enclosed area EAk
Clarify sentence?

using (3.8).

(3) Calculate the mean enclosed area.

(4) Calculate the test statistic, Dk , the absolute difference between each enclosed
area EAk and the mean enclosed area, EAm.

(5) Calculate the p-value using the method below.
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FIGURE 13 Application of the TN-B test.

No

Yes

Suggested R = 250

For each bootstrap
resample, k, k = 1,...,(1 + R),
calculate enclosed area EAk

    

 

   
    

Calculated A[n] derived
from fitting a

distribution with 
parameters Φ, taking 

values φ 

Set R, the number
of feasible curves

For each distribution
parameter, with value φ,

generate the set
Sφ = φ(2i/R), i = 0,...R

These are the bootstrap
‘‘resamples’’Draw 1 + R random

samples, with 
replacement, each of
size 1 + R from Sφ for

each parameter

Calculate the mean of
the enclosed areas

EAm

Calculate the
differences

Dk = |EAk + EAm|

Dk is the test statistic

Formulate hypotheses
H0: Φ = φ
H1: Φ ≠ φ

p-value: (5.4). #(·) is
the number of instances
where Dk ≥ A[n]

Calculate
p = {1 + #(Dk ≥ A[n])}/{2 + R}

p > 0.05?
Accept H1

(distribution does not fit)

Accept H0
(distribution fits)

Davison and Hinkley (1995) describe a method of calculating the p-value of a
bootstrap test by counting all trials with a result greater than a “base” result, and
expressing the count as a proportion of the sample size. We apply this method, calcu-
lating 1 C R enclosed areas and counting the number that are greater than the “base

Journal of Operational Risk www.risk.net/journal



Improved goodness-of-fit measures 25

area”. The “1C” in the numerator and denominator ensure that the p-value is always
nonzero.

With the definition Dk D jEAk � EAmj,

p-value D 1 C #fDk > Abaseg
1 C .1 C R/

: (5.4)

This is an estimate of the probability that an observed area exceeds the base area,
given that the null hypothesis is true, ie, pobs D Pr.Ak > Abase j H0/. Figure 13 on
the facing page gives a step-by-step guide for applying the combination of algorithms Changes to sentence OK?

TN-B1 and TN-B2.
Several by-products are available from the TN-B process. The first is the variance

of the p-values. Davison and Hinkley show that the variance of the p-value can be
calculated as follows:

var.p-value/ D var

�
1 C #fDk > Abaseg

1 C .1 C R/

�

D 1

.R C 1/
.R C 1/pobs.1 � pobs/

D pobs.1 � pobs/

R C 1
:

So if pobs D 0:05, we require R > 1900 to get a 10% relative error. In practice, a
much lower figure, R D 250, appears to be satisfactory.

The second by-product is an estimate of a c% confidence interval for mean EA. This
can be done by calculating c=2% upper and lower limits of the empirical distribution.
Using a 5% two-tailed significance level, this confidence interval tends to be wide.

Lastly, a histogram of EAk shows that the distribution of areas is usually non-
Gaussian. A few examples (for data B1) are shown in Figure 14 on the next page.

Note that, since the TN-B test produces a p-value rather than a standard error, the
null hypothesis will be rejected if the p-value is less than the required critical value.

The results from the B# test data are shown in Table 4 on page 27. Referred to before Table 3 –
OK?

Comparing the results of the TN-A and TN-B tests in Table 3 on page 27 and
Table 4 on page 27, respectively, it is clear that they agree very closely. However, the Changes to this sentence and

the next OK?

TN-B test does contain subjective elements, eg, the number of feasible curves and the
range used to select their parameters, that could affect the result. In particular, varying
the fitted parameters between 0 and 100% of their fitted values worked well for all
distributions apart from the GPD. For the GPD, variation up to 400% was necessary
in order to not reject the null hypothesis in all cases. Words added – OK?

As a potential extension of the TN-B test, a sample size less than the population
size could be used. This is discussed by Bickel and Freedman (1981). The sampling
distribution used, as determined by the central limit theorem, is subject to problems
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FIGURE 14 Non-Gaussian area distributions.
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of determining a sample size that does not result in a rejection of the null hypothesis
for all distributions due to a multiplicative factor

p
sample size in the standard error.

Therefore, we did not pursue this strategy.
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TABLE 3 Results for TN-A test.

Risk
category LN WB LL Gamma Burr GPD LNMix

B1 0.0403 0.0615 0.039 0.0788 0.0474 0.2468 0.0255
B2 0.0492 0.054 0.0265 0.1535 0.0815 0.2095 0.0306
B3 0.0629 0.0881 0.053 0.1743 0.076 0.0544 0.0557
B4 0.0549 0.0755 0.142 0.1161 0.0696 0.2866 0.0184
B5 0.0537 0.0637 0.1476 0.1087 0.0744 0.21 0.0292
B6 0.0605 0.0648 0.1437 0.1279 0.0812 0.2306 0.05
B7 0.03 0.0517 0.0254 0.0505 0.0515 0.0631 0.0302
B8 0.028 0.0453 0.1816 0.0524 0.0351 0.0339 0.0144

Normal text means accept H0. Italic text means narrowly accept H0. Bold text means reject H0.

TABLE 4 p-values for the TN-B test.

Risk
category LN WB LL Gamma Burr GPD LNMix

B1 0.13 0.11 0.25 0.17 0.22 0.004 0.41
B2 0.46 0.37 0.46 0.024 0.33 0.004 0.32
B3 0.42 0.2 0.23 0.018 0.31 0.13 0.29
B4 0.25 0.075 0.004 0.08 0.25 0.004 0.34
B5 0.31 0.16 0.004 0.14 0.3 0.004 0.32
B6 0.28 0.17 0.004 0.1 0.25 0.004 0.3
B7 0.24 0.24 0.4 0.23 0.37 0.18 0.33
B8 0.2 0.15 0.004 0.25 0.27 0.24 0.29

Normal text means accept H0. Italic text means narrowly accept H0. Bold text means reject H0.

5.2.1 An alternative bootstrap distribution

We have also examined an alternative bootstrap strategy whereby, instead of gener-
ating “feasible” curves from the distribution for which a fit is sought, a lognormal Change OK?

distribution is used. If the empirical losses are xi (i D 1; : : : ; n), we first calculate the
statistics m D mean.log.xi // and s D SD.log.xi //. We then use a lognormal.m; s2/

distribution to generate feasible curves by varying m and s using Algorithm 5.2. The
results are similar to those in Table 4.

5.3 The TN-S test

The TN-S test uses sampling (“S” denotes sample) to generate a Gaussian distribution,
from which an easy significance test follows immediately. This test is a variant of the
TN-A GoF test in which the same principles are used but without an area calculation.
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FIGURE 15 Typical sampling distribution.
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Instead, sampling provides a distribution which is approximately normal if a large
number of samples are taken. Goodness-of-fit can then be assessed from the sampling
distribution.

This analysis starts from n losses xi .i D 1; : : : ; n/ with corresponding probabilities
yi .i D 1; : : : ; n/ in loss space, transformed under T to probability space using
the fitted CDF F.�/. The transformed points are Xi and Yi (where Yi D yi and
Xi D F.xi /), as described in Section 3.4.

From the set fXi ; Yi I i D 1; : : : ; ng, the lengths of perpendiculars, Hi (3.5), from
each fXi ; Yig to the 45ı line in probability space can be derived.

We regard the losses xi as observations of iid random variables. The result of
transforming these losses to probability space is also a set of observations of iid
random variables. A further transformation, the calculation of the Hi , generates a
further set of observations of iid random variables. Once the Hi are used to calculate
an area, the independence property no longer applies as the Hi must then be ordered.
The iid property (or lack of it) is of prime importance in this context, and we refer
to the discussion of it in the context of the central limit theorem given by Hogg et al
(2013).

The sampling test then proceeds by drawing samples of size N (N 6 n) from the
parent population of Hi (before the Hi are ordered) and calculating the mean of each
sample. The central limit theorem then provides the distribution of means of samples
of size N :

NX � normal

�
�;

�2

N

�
;
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where � and �2 are the mean and variance, respectively, of the parent population of Hi .
An example of a typical sampling distribution (data B8, lognormal mix, sample size D
100% of population size, n D 28 322) is shown in Figure 15 on the facing page.

For a random sample of values fx1; x2; : : : ; xN g from a normal probability distribu-
tion with population mean m and population variance �2, the probability distribution
of the sample mean is normal.�; �2=N /. The measured mean, m, of samples of size
N is therefore an approximation for �. The population variance can be estimated
using s2 D .

P
.xi � m/2/=.N � 1/, and s2=N is an approximation for the sample

variance. Thus, the population variance can also be estimated using �2 � Ns2.
The significance test is then a simple test using the normal distribution. Under

the null hypothesis, � D 0, and against the alternative hypothesis � ¤ 0, at c%
significance (where ˚�1.�/ is the inverse normal density function):

� accept the null hypothesis ifˇ̌̌
ˇm � �

s
p

N

ˇ̌̌
ˇ < ˚�1

�
c

2

�
I

� reject the null hypothesis if ˇ̌̌
ˇm � �

s
p

N

ˇ̌̌
ˇ > ˚�1

�
c

2

�
:

A number of practicalities arise when using this test.

(1) In order to achieve consistency of results, about 10 000 samples have to be
taken. A histogram of the means of samples then consistently resembles a
normal distribution.

(2) The sample size N is a significant factor in the workability of this test. Condi-
tioning by fitting a lognormal distribution, which should be a sufficiently good
fit for all loss data sets considered, it was found that two ranges of N were
useful. The first is to use all the Hi . The second is to use 0:2n < N < 0:3n.
In practice N D 0:25n gave reasonable results in an acceptable running time.
Using all the Hi took an excessive time to complete the calculations for large
data sets (> 400 000). Also, using all the Hi is insufficiently discriminating:
very few distributions result in rejections of the null hypothesis.

A step-by-step guide to using this test is in shown in Figure 16 on the next page.
Table 5 on page 31 shows results of the sampling significance test, based on a Change OK?

sample size of 25% of the population. The figures given are the standard errors based
on the normal distribution. The null hypothesis is accepted if the standard error is
less than 1.96, based on two-tailed 95% significance. It provides a good degree of
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FIGURE 16 Application of the TN-S test.

Calculate
Hi = |Xi + Yi|/2, i = 1,...n

(3.5): n heights are
calculated as in
Figure 6

Draw samples, with
replacement, of size N,

from the Hi

N ~ n/4. Use about
10 000 such samples

Calculate the mean, m,
and the variance, s2, of

the samples

Formulate hypotheses for
the population mean, μ

H0: μ = 0; H1: μ ≠ 0

Calculate the
standard error
z = |m/(s√N)|

Estimate of the population
mean and variance, μ ~ m 
and σ2 ~ Ns2,

Calculate the two-tail
critical value on the normal(0,1)

curve for the confidence level c%:
zc = Φ–1(c/2)

Example: c = 95%, zc = 1.96

z  < zc? Accept H1
(distribution does not fit)

Accept H0
(distribution fits)

No

Yes

differentiation between the distributions tested, and it is in broad agreement with

previous results obtained (see Table 3 on page 27 and Table 4 on page 27). It is clear

that the TN-S test is more discriminatory than either of the TN-A and TN-B tests. It Changes to sentence OK?

also has two negative aspects. The first is that it rejects the null hypothesis in all cases
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TABLE 5 Results for the TN-S test.

Risk
category LN WB LL Gamma Burr GPD LNMix

B1 1.37 2.21 1.2 1.41 1.41 14 1.89
B2 1.32 1.47 1.29 2.52 3.3 12.52 1.42
B3 1.47 1.79 1.53 2.71 2.74 2.84 1.49
B4 1.33 2.46 4.98 1.78 2.17 2.85 1.84
B5 1.34 1.6 4.99 1.84 2.67 24.3 1.56
B6 1.42 1.57 5.08 2.16 2.92 14.8 1.62
B7 1.78 1.83 1.53 1.45 1.83 5.81 1.79
B8 1.82 1.72 9.81 1.35 1.36 3.39 1.34

Standard error test results: sample size 25% of total population. Normal text means accept H0. Bold text means
reject H0.

when fitting a GPD, despite some qualitatively good GPD fits. The second is that the
test effectively has to be calibrated using a test lognormal distribution.

5.4 Comparison with established GoF tests

In this section we present results corresponding to the preceding TN tests for the KS
and AD tests. The AD results were obtained using the R package ADGofTest. The
KS results were obtained using the native function ks.test in R. They are given in
Table 6 on the next page and Table 7 on the next page. Zero entries indicate that the
p-values obtained are less than 10�6.

Compared with the results in Table 3 on page 27, Table 4 on page 27 and Table 5, the
AD and KS p-values are strikingly different.Table 6 on the next page andTable 7 on the
next page show that the null hypothesis can be accepted in one case only: a lognormal
mixture distribution using B1 data. This data set has 143 losses. All others are at least
ten times as large. There is some differentiation for this data set among the distributions
considered, but even then the null hypothesis is rejected for most distributions. For
the large data sets both the KS and AD tests are totally ineffective. These results are
a good illustration of the “large sample D small p-value” phenomenon described in
Lin et al (2013). They also confirm observations noted in Section 2.1. Words added – OK?

5.5 Comments on the p-values returned by the TN tests

The argument of Lin et al (2013) in Section 2 presents a paradox with respect to
the TN tests. They argue that p-values necessarily ought to be near to zero for large
populations, but they are not for the TN tests. The paradox is resolved as follows.

The empirical CDFs for data sets used are relatively uniform, in the sense that the
deviation from any point .xi ; yi / to a neighboring point .xiC1; yiC1/ or .xi�1; yi�1/
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TABLE 6 AD p-values.

Risk
category LN WB LL Gamma Burr GPD LNMix

B1 0.0321 0.00052 0.0453 0.00009 0.0054 0 0.1467
B2 0 0 0 0 0 0 0
B3 0 0 0 0 0 0 0
B4 0 0 0 0 0 0 0
B5 0 0 0 0 0 0 0
B6 0 0 0 0 0 0 0
B7 0 0 0 0 0 0 0
B8 0 0 0 0 0 0 0

TABLE 7 KS p-values.

Risk
category LN WB LL Gamma Burr GPD LNMix

B1 0.0298 0.00001 0.0421 0.0007 0 0 0.0734
B2 0 0 0 0 0 0 0
B3 0 0 0 0 0 0 0
B4 0 0 0 0 0 0 0
B5 0 0 0 0 0 0 0
B6 0 0 0 0 0 0 0
B7 0 0 0 0 0 0 0
B8 0 0 0 0 0 0 0

in loss space is small. The deviation could be measured by the Euclidean norm of
Section 4, for example. Variance of these deviations is constrained by construction of
the empirical CDF. In particular, ordering the points .xi ; yi / ensures that they change
by small increments. Indeed, the increments become smaller with an increasing num-
ber of points. The TN tests depend on an area calculation or components thereof, and
the accuracy of the estimation of the enclosed area also increases with an increasing
number of points for the same reason.

Trefethen and Weideman (2014) demonstrate that the trapezium rule applied to an OK? Is it the rule or the
function that converges here?

analytic function on the real line or a subset of the real line converges geometrically.
If the points .xi ; yi / are modeled by an analytic function on .0;

p
2/, for example, a

cubic spline, we conclude that the enclosed area defined by n points .xi ; yi / converges
to a limit A. (See also the discussion in Section 3.7.) Since the limiting value of the Change OK or do you mean

Section 3.7 of Trefethen and
Weideman (2014)?estimator of p-value, Ǒ, is determined by limiting area, Ǒ does not tend to either 0 or

1, as discussed in Section 2.
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FIGURE 17 Power test against a Weibull distribution with constant scale and variable
shape.
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FIGURE 18 Power test against a Weibull distribution with constant shape and variable
scale.
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5.6 Power of the TN tests

This section gives a brief indication of the power of the TN tests. Since all the TN
tests use the same enclosed area calculation, it is sufficient to consider only the TN-A
test.

The power of a statistical test is the probability of rejecting a null hypothesis H0

when it is false. Loosely, this definition amounts to “making a correct decision”, and Changes to sentence OK?

a high probability is expected.
It is not possible to give a complete analysis of the power of a TN test because
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the possibilities of varying fitted distributions and parameters of those distributions
are too numerous. Therefore, we give two examples that serve as brief indicators of
power.

A distribution that we have often used as a starting point for modeling is
lognormal.8; 2/. Consider the power of the TN-A test with respect to a random sample
generated from this distribution by computing the TN-A statistic for a range of fitted
Weibull distributions. The following steps explain the method used.

(1) Let Z be a random variable used to model data.

(2) Propose a null hypothesis H0: Z � lognormal.8; 2/.

(3) Propose an alternative hypothesis H1: Z � Weibull.k; l/ where k is a shape
parameter and l is a scale parameter.

(4) The rejection region for the TN-A statistic is ftn-a W tn-a > 0:1314g.

(5) The power is estimated as follows:

(a) generate a lognormal.8; 2/ random sample;

(b) repeat the next step 100 times, recording whether or not the test statistic
falls within the critical region;

(c) for each pair .k; l/, apply the transformation T of (3.2) to the sample,
using a Weibull.k; l/ distribution;

(d) return the proportion of trials where the test statistic falls within the critical
region.

The results are shown in Figure 17 on the preceding page and Figure 18 on the
preceding page. Figure 17 shows the result of varying the shape parameter, keeping
the scale parameter constant at 50 000. The Weibull distribution is very sensitive
to the shape parameter, and the volatility in the measured proportion is clear. The
power exceeds a nominal value of 0.8 for all but a reasonably narrow range of shape
parameter (approximately k 2 .0:13; 0:27/).

If the shape parameter is held constant (at 0.8) and the scale parameter is varied, the
resulting power function, shown in Figure 18 on the preceding page, is smoother, as
the Weibull distribution is less sensitive to variation in the scale parameter. Using the
nominal power D 0:8 figure, a wider range for the scale parameter leads to acceptance
of the alternative hypothesis.

The two Weibull examples show that, in the cases considered, the TN-A test accepts
the false null hypothesis for a limited but possibly wide parameter range. This is to be
expected, as a Weibull fit is qualitatively acceptable. The test appears to be immune
from the two significant problems of population size: if too many observations are Changes to sentence OK?
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FIGURE 19 Distinct body and tail fit.
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used, trivial effects can register as significant; if too few observations are used, the
hypothesis test may not be able to detect a meaningful effect, even if there is one.

5.7 Q–Q/P–P plots: similarities and differences

A Q–Q plot is usually used as a qualitative tool to compare quantiles of two distribu-
tions. Commonly, the first distribution comprises empirical data, and the second is a
distribution that has been fitted to the data. Similarly, a P–P plot is a scaled version of
a Q–Q plot such that the quantiles are mapped to Œ0; 1�. The empirical component of
these plots corresponds to what is plotted on the y-axis in loss space and the Y -axis
in probability space. The difference is that there is no Q–Q or P–P equivalent of the
transformation T of (3.2). In Q–Q or P–P plots, equal distributions correspond to the
45ı line, and deviations from this line indicate skewness and tail heaviness. Change OK?

Such deviations could be quantified by calculating the area enclosed by the ordinates Change OK?

of the Q–Q or P–P plot and the 45ı line. However, the advantage of the TN process is
that losses are mapped to a standardized image that is independent of any distribution
fitted to the data. Therefore, all distributions are standardized such that a single TN
test is applicable for all of them.

5.8 Distinct body and tail fit

The profile of the transformed losses provides an opportunity to examine informally
the goodness-of-fit of the distribution body and tail separately. The profile often
intersects the 45ı line once only, thereby partitioning the distribution into a body
and a tail, but without regard to the position of the partition. Nevertheless, it is often
possible to identify a region of poor fit and a region of good fit. Identifying regions
of poor and good fit can be quantified by formulating a formal definition of “tail” and
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“body”, and calculating the enclosed area for both regions. Indeed, more than two
regions can be defined and analyzed in the same way.

Figure 19 on the preceding page shows an example of probability space using data
B4, and fitting a Gamma distribution. Overall this fit passes the TN-A test since the
calculated area 0.1161 is less than the 5% critical value 0.1314. However, the fit for
the extreme tail (approximately the top 5% of losses) is much better than the body fit
since the transformed loss profile is relatively near to the 45ı line.

6 DISCUSSION AND SUMMARY

The aims set out in Section 2 of this paper have been largely met in formulating the “original list of requirements
in Section 1”? Otherwise
please clarify where these
aims are explicitly stated.

TN tests.
The TN tests are independent of the number of points in the empirical data, pro-

vided that there are sufficient points (at least fifty). This is the most significant result Changes to sentence OK?

presented in this paper. As discussed in Section 5, a large number of empirical data
points can be an advantage because it produces a more accurate estimation for the “estimate of”? Other changes

to sentence OK?

enclosed area.
This independence property is probably the most important aspect of the TN tests, New paragraph here OK?

and solves two associated problems in quantifying operational risk. The first concerns
the modeling threshold. One “solution” to the problem of the failure of the AD and
KS tests is to introduce a lower threshold, so that only losses above the threshold are Change OK?

modeled. As the threshold increases, the number of points modeled decreases, and
the AD and KS tests have more chance of accepting the null hypothesis. However,
increasing a threshold in order to force an acceptable GoF result is open to severe
criticism. The threshold should be set objectively in advance. The TN tests require no
remedial action to achieve acceptable results. The second associated problem is what
to do if no distributions appear to fit. Using AD and KS, common practice is to use a
default distribution, often lognormal. This is not necessary for the TN tests.

For large population sizes, the AD and KS tests are far too sensitive to reflect fits
that are qualitatively appealing. In most cases the TN tests satisfy the criterion “if a
fit looks good, the test should say so”. This is clearly a subjective measure, but its is
important in the context of rejection of all distributions by the AD and KS tests. In all
cases, and in particular for borderline cases, the TN tests provide a workable objective
measure for deciding whether or not to reject a null hypothesis. It is noteworthy that
the TN tests are successful for both low- and high-value losses.

The TN tests successfully discriminate between the common fat- and long-
tailed distributions. In all cases, at least two distributions allow the null hypoth-
esis to be accepted. This allows a credible competition between distributions.
No cases are such that the null hypothesis is rejected or accepted in all cases. Fur- “There are no tests where the

null hypothesis is either
rejected or accepted in all
cases”? Otherwise please
clarify sentence.
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thermore, there is no contradiction between TN GoF results for extreme distributions
and less extreme distributions. One type or the other is a good fit, not both.

The requirement for a deterministic GoF test is partly met. The TN-A test is deter-
ministic. The TN-B and TN-S tests use stochastic elements, so are not. However,
the results for TN-A and TN-B agree closely, which gives some confidence in the Change OK?

stochastic methods used. The TN-S test is subject to conditioning on the sample size,
which is less desirable. It is also more stringent than TN-A or TN-B.

An added bonus to the original list of requirements in Section 1 is that the TN-A Changes to sentence OK?

test allows a direct comparison of candidate distributions. The distribution with the
lowest TN-A value wins, because the TN-A value is a direct measure of enclosed
area, and the smaller the enclosed area, the better the fit. This assumes, of course, that
the TN-A value is less than a critical value. The TN-A test can therefore be used to
positively select a winning distribution, and, indeed, to place candidate distributions
in order of goodness-of-fit. This is in marked contrast to using AD or KS tests, where
the p-value should only be used to reject a distribution.

6.1 Further work

We suggest the following as extensions of the ideas in this paper.

(1) Curve fitting using a minimum enclosed area criterion; an efficient algorithm
to parse the parameter space would be needed.

(2) Weighting tail losses more than body losses in order to accentuate the influence
that tail losses have on subsequent capital calculations.

(3) The use of order statistics as seems appropriate for further analysis. A natural Word added OK? Otherwise
I’m not sure how this
sentence is an extension of
the ideas.

ordering is imposed on losses, treated as observations from a fixed distribution,
by construction of an empirical CDF.

(4) Application of the methods suggested in this paper to distributions that are not
usually used as operational risk severity distributions (eg, Gaussian).

APPENDIX A

This appendix gives standard definitions for the Euclidean metric, a metric space and
an open ball, taken from Sutherland (1975).

Definition A.1 (Euclidean metric in R
2) For two points z1 D .x1; y1/ 2 R

2 and Change to notation for the set
of real numbers here and
elsewhere – OK?z2 D .x2; y2/ 2 R

2, the Euclidean metric d.z1; z2/ is defined as

d.z1; z2/ D
p

.x1 � x2/2 C .y1 � y2/2

and is often denoted by d.z1; z2/ D kz1; z2k.
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Definition A.2 (Metric space) The metric d.x; y/, x; y 2 R
2, satisfies the

following conditions, showing that fR2; dg is a metric space:

d.x; y/ > 0;

d.x; y/ D 0 () x D y;

d.x; y/ D d.x; y/;

d.x; y/ D d.x; z/ C d.z; y/:

Definition A.3 (Open ball) Given any point z 2 R
2 and a real number r > 0, an

open ball is the set Br.z/ D fz0 2 R
2 W d.z0; z/ < rg.

Definition A.4 (Open set in a metric space) A subset U of the metric space
fR2; dg is open in fR2; dg if, given any u 2 U , there exists ".u/� > 0 such that I have assumed the full stop

denoted a “place holder” in
the following expression and
typeset it as a centered dot
accordingly. OK? Or is it a
typo and should be deleted?

B".u/.u/ � U . So an open set in a metric space means that you can always draw a
ball around any point in the set.

APPENDIX B

This appendix contains details of the transformation of particular points of an open
ellipse in loss space centered on .x; y/, with semi-axes r and s. Three particular cases
are notable. These are the transformations of points in an open ellipse in loss space
that

(1) represent extremities of cumulative probability,

(2) represent extremities of loss,

(3) are a maximal distance from the base point .x; y/. “the”?

Extremities of cumulative probability in an open ellipse are represented by the two
points that are on the intersection of the boundary of the open ellipse and a vertical
line through the center. This vertical line transforms to a vertical line of the same
length in probability space. It measures constant loss with extremities of cumulative
probability.

The mappings of the extreme points for this case are

.x; y C r/ ! .F.x/; y C r/;

.x; y � r/ ! .F.x/; y � r/:

Extremities of loss in an open ellipse are represented by the two points that are on
the intersection of the boundary of the open ellipse and a horizontal line through the
center. This horizontal line transforms to a horizontal line of much smaller length
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in probability space. It measures constant cumulative probability with extremities of
loss.

The mappings of the extreme points for this case are

.x C s; y/ ! .F.x C s/; y/;

.x � s; y/ ! .F.x � s/; y/:

The third case necessitates a calculation of the points on the boundary of the open set
that are on a normal to the fitted CDF. In order to do this, denote the gradient of the
fitted curve at the point .x; y/ by m. The gradient of the normal to the fitted CDF at
the same point is then �1=m. The two extreme points are given by the solution .u; v/

of the following equations: Word added – OK?

�
u � x

s

�
C

�
v � y

r

�
D 1; v D

��1

m

�
u C

�
y C x

m

�
:

APPENDIX C

The coordinates and variables used in this appendix are defined in Section 3.4.

Proof of Proposition 3:8 First, define an axis, z, aligned along the 45ı line,
and another axis, w, perpendicular to it. The z- and w-axes are 45ı counterclockwise
rotations of the X - and Y -axes. z then ranges from 0 to

p
2, and the heights Hi of (3.5)

are aligned along the positive w-axis. Then rename points .Xi ; Yi / .i D 1; : : : ; n/, in
probability space to .zi ; wi / .i D 1; : : : ; n/.

Next, approximate two measures, AŒn� and AŒm�, where m > n, of the enclosed
area by the integral of a function f .z/ between two limits z D a and z D b (0 <

a; b <
p

2). The coordinate systems and f .z/ are shown in Figure C.1 on the next
page. The requirement on f .z/ is that is must be at least twice differentiable in the
range .a; b/.

The absolute truncation errors when applying the trapezium rule for AŒn� and AŒm�

are then given by (see Burden and Faires 2000)

ˇ̌̌
ˇAŒn� �

Z b

a

f .z/ dz

ˇ̌̌
ˇ D .b � a/3

12n2
f 00.	n/; 	n 2 Œa; b�;

ˇ̌̌
ˇAŒm� �

Z b

a

f .z/ dz

ˇ̌̌
ˇ D .b � a/3

12m2
f 00.	m/; 	m 2 Œa; b�:

9>>>=
>>>;

(C.1)
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FIGURE C.1 Trapezium rule estimation in the .z; w/-plane.
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w = f (z)

A[n]

Hence,

jAŒn� � AŒm�j 6
ˇ̌̌
ˇAŒn� �

Z b

a

f .z/ dz

ˇ̌̌
ˇ C

ˇ̌̌
ˇAŒm� �

Z b

a

f .z/ dz

ˇ̌̌
ˇ

<
.b � a/3

12

�
f 00.	n/

n2
C f 00.	m/

m2

�

D kn

n2
C km

m2
; (C.2)

where

kn D .b � a/3

12
f 00.	n/ and km D .b � a/3

12
f 00.	m/:

Given a small real number � > 0, there exists an integer N > 0 such that

"

2
<

kn

n2
8n > N and

"

2
<

km

m2
8m > N:

Therefore,
jAŒn� � AŒm�j <

"

2
C "

2
D "; min.n; m/ > N: (C.3)

Therefore, the sequence fAŒn�g is a real-valued Cauchy sequence that is convergent. Change OK?

So, for sufficiently large n, the trapezium approximation does not depend on n. �

APPENDIX D

In this appendix, the topological derivation of the formulas for p-values (for the TN-A
test) is advanced.
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D.1 p-value derivation: topological view

The process in this section expands on the points in Section 4.1, and introduces the
necessary topological concepts.

(1) CDF cover.

(a) Define elliptic open sets in R
2.

(b) Define a metric space in R
2 based on these open sets and an appropriate

metric.

(c) Define a topological space in R
2 based on the metric space.

(d) Define a restriction of the topological space to loss space.

(e) Demonstrate that there is an open cover of the CDF, parameterized by the
length, r , of the semi-axis of an ellipse that is parallel to the y-axis. This
open cover constitutes the “band” surrounding the CDF.

(2) Mapping.

(a) Map the open cover of the CDF using transformation T to probability
space.

(b) Deduce that mapped open cover in probability space is a topological
space, since T is continuous.

(c) Deduce that open sets in the probability space topology resemble ellipses,
but are not actually ellipses.

(d) Derive the boundaries for the result of mapping a band surrounding the
CDF in loss space.

(e) Describe the image of the mapped band in probability space.

(3) p-value.

(a) Determine an expression for AŒn� in terms of r .

(b) Deduce that the p-value is the width of the band in probability space,
measured perpendicular to the 45ı line.

D.2 p-value derivation: detailed topological view

This section contains details of the steps outlined in Section D.1.
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D.2.1 The topology of loss space

The definitions and proofs in this and subsequent sections can be found in any intro-
ductory text on topology. We refer to Sutherland (1975) as a recommended text, and
reiterate some definitions therein to fit with the notation used in this paper. In this Change OK?

present analysis we prefer not to use Sutherland’s definition of an open ball because
it fits less well with the scale of loss space, in which the y-axis is confined to .0; 1/,
but the x-axis ranges from 0 to 1. For reference, Sutherland’s definitions for an open
ball, the Euclidean metric and construction of a metric space using them are given in
Appendix A. The details of the steps appear below. Changes to sentence OK?

The CDF cover in loss space

Step 1.a/. Given a point .x; y/ in R
2, and two real constants a and b, an open set B

is the region

B.x; y; a; b/ D
�

.u; v/ W
�

u � x

a

�2

C
�

v � y

b

�2

< 1

�
:

Such sets will be referred to as “open ellipses”.

Step 1.b/. The metric d.p; q/ D kp�qk, where k�k denotes the Euclidean norm, will
be applied to such open ellipses, with the proviso that both p and q are points in the Bold (vector) notation OK in

this section? Please mark any
p and q that should be p

and q.
same open ellipse. With a collection S of open ellipses as defined in the previous step,
the combination fS; dg satisfies the conditions of a metric space (see Appendix A).

Step 1.c/. Now let = be the collection of open ellipses of the metric space fS; dg.
Then fS; =g is a topological space. This is a very general result: any metric space
gives rise to a topological space. A loose interpretation of fS; =g is that open ellipses,
as defined above, can be used to cover the plane R

2.

Step 1.d/. We now consider open ellipses in fS; =g that cover the fitted CDF in loss
space. This cover will map to an open cover of the 45ı line in probability space. Let
fS; = j �g be the restriction of S to loss space �. Then fS; = j �g is also a topological
space. At this stage it is useful to demonstrate that S is not empty by considering the
minimum and maximum empirical losses.

Suppose there are n empirical losses. The minimum loss, xmin, is strictly positive
and is assigned the minimum probability 1=2n when constructing the empirical CDF.
An open ellipse can be drawn with the point .xmin; 1=2n/ at its center, as in part (a) of
Figure D.1 on the facing page. This ellipse is the largest possible without breaching
the boundary of loss space, and a smaller one would be a sufficient cover.

The maximum loss, xmax, is assigned the maximum probability 1 � .1=2n/. Since

1 � 1

2n
>

1

2n
as n > 1;

Journal of Operational Risk www.risk.net/journal



Improved goodness-of-fit measures 43

FIGURE D.1 Open ellipse surrounding the minimum and maximum losses.
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x
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– 

(1
/2
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(a) Open ellipse covering the minimum loss. (b) Open ellipse covering the maximum loss.

an open ellipse of exactly the same size can surround the point .xmax; 1�1=2n/ when
constructing the empirical CDF, as part (b) of Figure D.1.

Step 1.e/. The empirical CDF can be covered by taking the open ellipse in Figure D.1
and sliding it along the CDF from one end to the other. This cover constitutes the
“band” that covers the CDF. All points in the band can be covered by at least one open
ellipse, so the band has no holes. The band has two boundaries that are translations of
the empirical CDF. They are the lines y D F.x/Cr and y D F.x/�r , where r is the
length of the vertical semi-axis of an open ellipse through a point .x; y/ on the CDF.
In order to make the mapping to probability space tractable, the other two boundaries
are taken to be a vertical line through the minimal-loss point, .xmin; 1=2n/, and a
vertical line through the maximal-loss point, .xmax; 1 � .1=2n//. The band comprises
all points within the boundary, and no points on the boundary. The noninclusion of the
two points .xmin; 1=2n/ and .xmax; 1 � .1=2n// has no impact on the transformation
to probability space. An alternative way to think about its construction is to consider
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FIGURE D.2 Band covering the empirical CDF.

(x,xx

x

y

r

Loss space,
band height 2r

y =y F (x ) + r

y =y F (x ) – r

y =y F (x )

r

moving a straight line segment of length 2r , centered on the CDF, along the CDF
between the minimum and maximum losses. The band is illustrated in Figure D.2.

Definition D.1 (Height of the band) Referring to Figure D.2, the band is param-
eterized by the CDF, y D F.x/, and by r . We define the height of the band
as 2r .

Transformation of the CDF cover to probability space

Step 2.a/. Apply transformation T to all points in a band of height 2r (ie, the open
cover of the CDF), and also to the boundary of the band. The following steps show
details of the map of an open ellipse and a band with parameter r .

Step 2.b/. Transformation T is continuous and so is its inverse T �1. Therefore, T is
a homeomorphism and the image of loss space under T , T .�/, is a topological space.
As such, the image of loss space under T comprises a collection of sets, which are
open in T .�/.

The geometric interpretation of the foregoing analysis is that overlapping open
sets in loss space define a band with height 2r enclosing a CDF curve, where r <
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FIGURE D.3 Open sets in loss space and probability space.
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min.xmin; 1=2n/. This region maps under T to a region in probability space, and we
will show that this shape resembles a parallelogram.

Step 2.c/. Open ellipses in loss space transform to open sets in probability space that
resemble ellipses. An open set in probability space is not symmetric about a vertical
axis through its center. One-half is stretched parallel to the X -axis. When graphed to
scale, they appear very thin and tall.

Take any point .x; y/ on the CDF of the fitted curve in loss space. An open ellipse
with semi-axes r and s centered on this point is the locus

fu; vg W u D x C s cos.
/I v D y C r sin.
/I 0 6 
 6 2�:

Under the transformation T , .u; v/ maps to .X; Y /, where

X D F.u/ D F.x C s cos.
//;

Y D v D y C r sin.
/:

Eliminating 
 , �
F �1.X/ � x

s

�
C

�
Y � y

r

�
D 1;

which is ellipse-like in probability space with axes aligned with the coordinate axes.
We name these ellipse-like regions “almost-ellipses”.

This mapping is shown in Figure D.3. The dimensions of the almost-ellipse in
Figure D.3 are greatly exaggerated. The minor axis, F.x C s/ � F.x � s/, is much Change OK?

smaller than the major axis, 2r .
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FIGURE D.4 Example of an almost-ellipse.
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As an example, consider the point .7515; 0:8/, which is a typical point on the CDF
fitted to B6 data. The circle of radius 0.1 centered on this point defines the boundary
of an open set S in loss space. Under the transformation T , S maps to an open set S 0
in probability space. S 0 is an almost-ellipse centered on .0:8; 0:8/ with semi-major
axis of length 0.1 and a very much smaller semi-minor axis of approximate length
3:49 � 10�7. This almost-ellipse and its center point are shown in Figure D.4, with
the 45ı line, which appears horizontal with the scales indicated.

Appendix B contains details of the transformation of particular points on an open
ellipse in loss space.

Step 2.d/. The most significant result of the mapping of a band with parameter r is
the transformation of the boundaries y D F.x/ C r and y D F.x/ � r .

These boundaries are defined by considering the points .x; y C r/ and .x; y � r/:

T ..x; y C r// 7! .F.x/; y C r/ D .F.x/; F.x/ C r/

and

T ..x; y � r// 7! .F.x/; y � r/ D .F.x/; F.x/ � r/:

These mapped boundaries are lines parallel to the 45ı line in probability space. Their
equations are Y D X C r and Y D X � r .

The other two portions of the boundary in loss space map to two vertical
lines in probability space, one through .F.xmin/; F .xmin// and the other through
.F.xmax/; F .xmax//.

Step 2.e/. Figure D.5 on the facing page shows the form of the mapped band in
probability space.
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FIGURE D.5 Transformation of the CDF envelope in loss space.
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Referring to Figure D.5, as the center of an open ellipse in loss space moves along
the fitted curve y D F.x/, the image of that open ellipse under T is an almost-ellipse,
the center of which traces a path on the 45ı line in probability space. The traced image
is essentially a parallelogram. It has two sides parallel to the 45ı line, and the other
two are very slightly curved, deviating minimally from the vertical. We call this shape
an “almost-parallelogram”, and treat it as an actual parallelogram in calculations.

The almost-parallelogram defines a region within which the fitted CDF can be Changes to sentence OK?

interpreted as a good fit for all points. Transformed points outside this region represent
a poorer fit, and the GoF is measured using the area of the almost-parallelogram,
derived from a band of height 2r in loss space, mapped to a region with height 2r , as
in Figure D.5.

Recall that 2r represents a band height such that an open cover of the fitted curve
lies entirely within the loss space. If a wider band with parameter r 0 > r in loss
space is mapped to probability space, all open ellipses that cover the fitted CDF must
lie entirely within probability space. From the discussion in Step 1(d), the minimum
value of r for the cover of the CDF to lie entirely within loss space is min.xmin; 1=2n/

(where n is the number of empirical losses). If r exceeds this minimum value, the
image of the band is a shortened almost-parallelogram, as shown in Figure D.6 on
the next page.

This restriction represents the case where we try to account for losses that fit less
well. As r increases, the parallelogram-like shape of the image is retained, and its
area can still be calculated. This area can then be used as a GoF measure.
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FIGURE D.6 Map of a wide band.
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D.3 Summary of results from Appendix D

There are two principal results. “three”?

(i) The mapped band in probability space containing the diagonal 45ı line
represents a good fit for points within it.

(ii) The band in probability space can be approximated by a parallelogram.

(iii) The band in probability space is parameterized by a “height” 2r , shown in
Figure D.5 on the preceding page.

APPENDIX E

This appendix gives a practical guide to using the TN tests.
The first step is to calculate the value of the enclosed area test statistic AŒn� (3.8),

using the steps in flow diagram Figure 6 on page 14. After that, the significance of
the result can be assessed using all or some of the tests TN-A, TN-B and TN-S. They
are summarized in flow diagrams for F-A, F-B and F-S, respectively (see Figure 12 All diagrams have been

rekeyed. Please check
carefully, particularly
cross-references to equations
and figures.

on page 22, Figure 13 on page 24 and Figure 16 on page 30).

E.1 F-A: application of the TN-A test

Use the process in Figure 6 on page 14 to calculate AŒn� (see Figure 12 on page 22).

E.2 F-B: application of the TN-B test

The inputs are the calculated AŒn� using the process in Figure 6 on page 14, and the
parameters of the fitted distribution (see Figure 13 on page 24).
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E.3 F-S: application of the TN-S test

This test used the calculated heights Hi from the process in Figure 6 on page 14, and
calls this process repeatedly using amended distribution parameter values to calculate Changes to sentence OK?

amended values of AŒn� (see Figure 16 on page 30).
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