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Abstract. Poor performance of artificial neural nets when applied to
credit-related classification problems is investigated and contrasted with
logistic regression classification. We propose that artificial neural nets
are less successful because of the inherent structure of credit data rather
than any particular aspect of the neural net structure. Three metrics are
developed to rationalise the result with such data. The metrics exploit
the distributional properties of the data to rationalise neural net results.
They are used in conjunction with a variant of an established concentra-
tion measure that differentiates between class characteristics. The results
are contrasted with those obtained using random data, and are compared
with results obtained using logistic regression. We find, in general agree-
ment with previous studies, that logistic regressions out-perform neural
nets in the majority of cases. An approximate decision criterion is de-
veloped in order to explain adverse results.
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1 Introduction

Successful applications of artificial neural net (hereinafter ANN) methods, and
also of other AI methods, are numerous, and particular successes are often re-
ported in the press. A notable recent success in the field of cancer diagnosis is
[1]. AT methods have been less successful for credit risk: some credit risk datasets
are the 'wrong shape’ (the term will be formalised in Section 5). This view is
prompted by the following observations:

1. Insensitivity to ANN configuration or tuning
2. Low correlations of single explanatory variables with class
3. Insensitivity to data transformations (e.g. reducing to principal components)

* The opinions, ideas and approaches expressed or presented are those of the author
and do not necessarily reflect Santanders position. The values presented are just
illustrations and do not represent Santander data.
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4. Insensitivity to attempts to redress the imbalance (e.g. SMOTE, gradient
boosting, under-sampling or over-sampling)

Our underlying assumption is that distributional properties of the credit data
inhibit prediction of a correct classification. The 'wrong shape’ phenomenon is
illustrated in Figure 1 which shows two contrasting marginal distributions from
two of the data sets considered in this study (see Section 4.1). Data set LCAB
with class credit not approved on the left shows a loose scatter with no discernable
trend or ’shape’. Data set AUS with class credit approved on the right shows a
concentrated scatter with a trend and a triangular ’shape’. The former type is
more typical of credit-related data.

LCAB credit not approved - AUS credit approved
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Fig. 1. Marginal Distribution Examples showing contrasting data concentrations

1.1 Economic consequences of credit default

Credit default is very costly for the lender and is a social burden for the borrower
and for society. A broad estimate of the amounts involved can be made from UK
Regulator figures (https://www.fca.org.uk/data/mortgage-lending-statistics/
commentary-june-2019). The outstanding value of all residential mortgage loans
at Q1 2019 was £1451bn, of which 0.99% was in arrears. The 2018 capital dis-
closures from https://www.santander.co.uk/uk/about-santander-uk/
investor-relations/santander-uk-group-holdings-plc show that approximately 88%
(which is typical) of arrears can be recovered. Therefore the worst case net loss
to lenders in the first 3 months of 2019 was 1451 x 0.99 x (1 —0.88) = £1.724bn,
a very substantial sum!

1.2 Nomenclature and Implementation

In this paper the variable values to be predicted are referred to as classes. Typ-
ically in the context of credit risk, class determination is a binary decision.
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The two classes are usually expressed as categorical variables: 'approved’ (al-
ternatively ’pass’ or 'good’), and 'not approved’ (alternatively ’fail’ or ’bad’).
Explanatory variables are referred to as features. In credit-related data they
usually include items such as income, age, address, mean account balance, prior
credit history etc. There can be many hundreds of them. The term tuple will be
used to refer to a single instance of a set of features. Each tuple is associated
with a single class. The acronyms are are: LR for Logistic Regression and AUC
for Area under Curve.

The metric calculations were done using the R statistical language, and Tensor-
Flow was used for neural net calculations. All computations were done using a
16GB RAM i7 Windows processor.

2 Review of Neural Net Applications in Credit Risk

Louzada [2] has an extensive review of the success rate of credit-related appli-
cations prior to 2016, using the German and Australian data sets (Section 4.1).
The mean success rates of all 30 cases considered were: German: 77.7% and Aus-
tralian: 88.1%. Those figures are consistently good compared to some we have
encountered, but are not comparable to the worst result for the Yala’s [1] medical
application: 96.2%. More generally, Atiya’s pre-2001 review [3] is similar: 81.4%
and 85.50% success for two models. Bredart’s bankruptcy [4] prediction result
is marginally lower: 75.7%.

The results reported by West [5] indicate a general failure of ANN methods
to improve on results obtained using regressions for the German and Australian
data. We used the same data, as well as our own, in Section 4.1 (Section 4.1).
We concur with the conclusion that LRs often perform better than Al-based
methods: 11.8% greater error rate for ANNs. Lessmann [6] gives a lower margin
of about 3.2%, using 8 data sets.

There are some better results post-2016. Kvamme et al. [7] reports high
accuracy (given as optimal AUC 0.915) using credit data from the Danmarks
Nationalbank with a convolutional ANN. Addo et al [8], used corporate loan
data, and report AUC = 0.975 for their best deep learning model, and 0.841 for
their worst. These results are surprisingly good, and we suspect that either the
data set used contains some behavioural indicator of default, or that loans in
the dataset are only for ’select’ customers who have a high probability of non-
default. The LC and LCAB data 4.1 have some behavioural indicators (such as
amount owing on default, added later), and they are omitted in our analysis.
More recently, Munkhdalai et al. citeMunkhdalai2019 reports more relative LR
successes: 5.2% better error rate than an ANN using a two-stage filter feature se-
lection algorithm, and 7.5% better using a random forest-based feature selection
algorithm.

Yampolskiy [10] gives a similar general explanations of Al failure which is
particular applicable in the context of credit risk. If a new or unusual situation is
encountered in an Al learning process, it will be interpreted, wrongly, as a ’fail’
within the context of that process. We suspect that, in the context of assessing
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credit-worthiness, those new or unusual situations are future events that can only
be anticipated with some degree of probability (such as illness, loss of income,
mental incapacity).

3 The Concentration Metric Framework

We propose a framwork to measure data concentration, which we think is respon-
sible for the 'wrong shape’ phenomenon for credit data. The proposed framework
comprises three metrics, each used within a concentration component where the
values of the metrics for each class are combined. The idea of a ’framework’ is
one of extensibility: further metrics can be incorporated in a simple way (see the
end of Section 3.1).

3.1 Inter-class Concentration measure

The illustrations in Figure 1 show one instance of a high class concentration
and another of low concentration. In order to quantify them, we develop inter-
class concentration metrics. Data are partitioned by class, and a concentration
metric is calculated for each. They are combined using a variant of an established
concentration measure, the Herfindahl-Hirschman Index (HHI - see for example
[11]). The HHI is usually used in economic analysis to measure concentration
of production in terms of, for example, percentage of market share or of total
sales. We define the index in terms of a metric M; for class i, associated with a
weight w; (the weight was not part of the original HHI formulation). Let M be
the sum of the M; for n classes: M = Z;L:l M;. Then the HHI for metric M is

given by Hy in Equation 1.

R n Mz > 2
Hy = w; | — 1
M ; i ( Vi (1)
In the context of ANN classification problems, we use three different inter-
pretations of the metric M;: M¢, the Copula metric Mg, the Hypersphere metric,
and My the k-Neighbours metric. The first measures data correlation. The sec-
ond measures data dispersion and the third measures clustering. For all metrics
the weights used (Equation 1) are the proportions of the number of tuples in
each class in a training set. The metrics are combined to form the geometric
mean concentration measure H in Equation 2, which is a general expression for
for m metrics. The term framework in this paper is used to refer to the applica-
bility of the ’concentration measure 4+ metrics’ approach to any required value
of m. The geometric mean is used because multiplying the metrics exaggerates
the differentiation that each introduces.

H:(ﬁH)éz €(0,1) (2)

. WA AL
In the case of three metrics, Equation 2 reduces to H = (HcHsHy)®
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3.2 The Copula Metric, M¢

A copula is a mechanism for modelling the correlation structure of multivariate
data, and thereby generating random samples of any desired distribution. An
initial fit to some appropriate distribution is required. Of the common FEllip-
tic copulas we choose the multivariate ¢-copula, as it can capture the effect of
extreme values better than the multivariate normal equivalent is able to (see
[12] and [13]). Extreme values are often observed in financial return data. It
is not necessary to use Archimedean copulas, Clayton, Gumbel or Frank, that
emphasise extremes even more.

The calculation of the Copula metric proceeds by first using a Fit function
to fit, using maximum likelihood, normal distributions to each of n features data
{z;}, giving a set of normal parameter pairs {y;, o;}. Then we define a t-copula
Ci(c,v), with v = 3 degrees of freedom using the covariance matrix ¢ of all
the data, and generate a random sample of m ~ 100000 U[0,1]-distributed ran-
dom variables U; from it using the R copula package random number generator,
denoted here as r(C;). The inverse normal distribution function F~! is then
applied to the parameter pairs and the values derived from the copula, resulting
in a matrix of normal distributions {N;}. The row sums of that matrix are then
summed to derive the required metric, Mc (Equation 3).

{pi, o0} = {Fit(z;)}

{U; =r(C(v,c),m}

{N; = F~' (Ui, pi, 04)}
Mc = X(N;(*,n)) (3)

3.3 The Hypersphere Metric, Mg

The Hypersphere metric measures the deviation of each tuple that lies within
a prescribed hypersphere centred on the centroid of all tuples. For a set of n
tuples t;,i = 1..n, denote their centroid by #, and let the covariance matrix of
the set of tuples be c¢. Then the deviation for tuple ¢; is calculated from the
Mahanalobis distance, D; of ¢; from . The hypersphere refers to the subset of
D; that is within 95% of the maximum of the D;, and is denoted by Dg%). The

required metric is the sum of the elements of D§95) (Equation 4).

D) = (y/(t e (1 D)
D) = (D, : D; < 0.95 max(D;)}
Ms = Einlez(QS) )

In practice it makes very little difference if the 95% hypersphere is replaced
by, for example, a 90% or a 99% hypersphere.
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3.4 The k-Neighbours Metric, M

The k-Neighbours metric uses a core k-Nearest Neighbours calculation. Empir-
ically, we have found that maximal differentiation between classes is achieved
by considering the more distant neighbours. Therefore we use the farthest 20%
neighbours, not the nearest. The calculation proceeds, for each class, by calcu-
lating the Euclidean distances D; of all the tuples ¢;,7 = 1..n in each class to
the centroid, £, of that class. The set of distances in excess of the 80" quan-
tile, Qso(D;) is extracted and summed. We have found that with large datasets,
calculating the Mahanalobis distance in place of the Euclidean distance is not
always possible due to singularity problems with some covariance matrices. The

details are in Equation 5
{Di} ={V2(t: - 1)’}
D; g0 ={Di: D; > qso(D;)}
My = 2(D; 50) (5)

3.5 Theoetical Metric minimum value

The metric formulations in Equations 1 and 2 admit a theoretical minimum
result when using random data with a binary decision. The value of each metric
with weights w; should be w;($)? + (1 — w;)(3)? = % (from Equation 1 with
H, = H,) since random data should yield no useful predictive information. Then,
for m metrics, Equation 2 gives the theoretical minimum concentration measure
ﬁmm, independent of m in Equation 6

4 Results

The ANN configuration used was: 2 hidden layers with sufficient neurons (always
< 100) in each to optimise AUC; typically 100 epochs; ReLU activation in the
hidden layers, Sigmoid in the input layer, Softmax in the output layer; categorical
cross entropy loss, 66.67% of data used for training.

4.1 Data

Details of the data used in this study are in Table 1. L-Club is the Lending Club
(https://www.lendingclub.com/info/download-data.action). UCI is the Univer-
sity of California Irvine Machine Learning database [14]. SBA is the U.S. Small
Business Administration. [15]. BVD is Bureau Van Dijk, the Belfirst database
(https://www.bvdinfo.com). RAN-P is a randomly generated predictive dataset
with two classes, and two highly correlated features. It represents a near minimal
concentration with a high predictive element. RAN-NP is similar but is designed
to have no predictive element. In all cases, all features are normalised to range
[0,1], and there are no missing entries. Where relevant, categorical variables have
been replaced by numeric.
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Table 1. Data sources

Data Source Notes

INT Internal |Retail short-term loans

LC L-Club All credit grades: LoanStats3b

LCAB L-Club Best credit grades A and B only: LoanStats3b
GERMAN UCI Statlog German Credit Data

CARD UCI Default of credit card clients [16]

AUS UCI Statlog Australian Credit Approval

JpP UCI Japanese Credit Screening

IND UCI Qualitative Bankruptcy India

POL5 UCI Polish Companies Bankruptcy (5-year) [17]
POL1 UCI Polish Companies Bankruptcy (1-year) [17]
SBA SBA ’SBA Case’ dataset

BVD BVD filtered on W. Eur. + Manufacturing Financials
RAN-P Random |Randomly generated predictive

RAN-NP Random |Randomly generated non-predictive

4.2 Metric and Concentration results

Table 2 shows the values obtained for the three concentration metrics and the
concentration measure (Equations 3, 4, 5 and 2 respectively). The error rates
(Err columns) are given as proportions, rather than as percentages. It is notice-

Table 2. Distributional Indicators: metrics, H and ANN results, in H order.

Name He Hg Hy H ANN ANN LR Err |LR
Err AUC AUC

RAN-NP 10.289 0.917 0.885 0.617 0.083 0.540 0.083 0.560
POL1 0.250 0.923 0.911 0.595 0.032 0.590 0.219 0.630
POL5 0.251 0.862 0.877 0.575 0.033 0.62 0.122 0.705
LCAB 0.246 0.769 0.765 0.526 0.330 0.618 0.108 0.635

LC 0.244 0.778 0.606 0.486 0.345 0.679 0.160 0.682
SBA 0.256 0.724 0.521 0.459 0.551 0.680 0.370 0.775
CARD 0.241 0.685 0.470 0.427 0.181 0.775 0.728 0.720
BVD 0.250 0.464 0.426 0.367 0.533 0.870 0.063 0.995
IND 0.374 0.343 0.271 0.326 0.428 0.885 0.012 0.985
GER 0.259 0.350 0.373 0.323 0.245 0.770 0.299 0.820
INT 0.243 0.299 0.349 0.294 0.341 0.815 0.280 0.760
JP 0.253 0.309 0.259 0.273 0.140 0.930 0.252 0.945
AUS 0.249 0.304 0.260 0.270 0.168 0.930 0.342 0.930

RAN-P  ]0.250 0.262 0.252 0.255 0.305 0.928 0.496 0.680
RAN 0.250 0.250 0.250 0.250 0.501 0.507 0.501 0.506
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able from the results in Table 2 that a low H value is associated with datasets
which work well with ANN processing. Conversely, a high H value indicates that
ANN processing may not be successful in class determination. LC, LCAB, POL1
and POL5 are the worst cases. The H values are more aligned with the AUC val-
ues. Figure 2 shows the H-AUC scatter with a linear trend line (AUC ~ 1.2— H,
R? = 0.88), and the H-Error Rate scatter for comparison. We note that error rate
variation with H is more volatile than the variation with AUC. Ordinates for the
randomly-generated datasets RAN-P and RAN-NP are shown separately. RAN-
P represents a borderline wrong/right shape boundary and RAN-NP represents
a 'worst case’ with a minimal predictive element. A further result, not in Table 2
is for randomly generated features with randomly allocated classes (50% in each
class). Consistent with Equation 6, we obtained Ho=Hg=Hy=H = 0.25,
with AUC and % success values for ANN and LR all marginally greater than
0.5. Therefore, even ’badly-shaped’ datasets are not random!
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Fig. 2. AUC- and Error rate-Concentration trends.

4.3 Significance Tests

Table 3 shows the results of significance tests for the correlation coefficients for
the covariates used to calculate of the two fitted lines in Figure 2 (random data
is excluded). The table shows the values of the sum of measured correlation
coefficients, r, the calculated t-values and their corresponding p-values. For a
theoretical correlation coefficient p, with Null hypothesis is p = 0 and Alter-
native hypothesis p # 0, the 95% critical t-value is t. = 2.228. The result for
the covariate pair {ANNAUC/H} falls just short of the 95% critical value (at
significance level 5.9%).
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Table 3. Paired H t-test

Covariates T t D
ANN AUC-H -0.559  |2.13 0.059
ANN Error-H -0.347  |1.17 0.134

A Sign test on the difference of the ANN and LR AUC results (columns
ANN AUC and ANN AUC in Table 2) gives a probability that LR will produce
a higher AUC than the ANN AUC of 0.0537 (9 cases out of 12): again, just
short of a 5% significance level.

5 Discussion

The empirical results in Table 2 give an indication of how the concentration
measure H can be used to explain any poor results obtained in a ANN analysis.
Given the result for RAN-P in particular, a decision boundary, Hp set at 0.3 is
a useful guide. Therefore, a calculated a value of H, H > Hp implies that ANN-
treatment might be unsuccessful or marginally successful (the data are 'wrong’-
shaped). Few datasets are successful: {JP and AUS}, and INT is borderline.
Dataset RAN-P has been configured specifically to produce a good separation
of features so that class can be determined with a high degree of success.

Some characteristics of ’badly-shaped’ datasets can be isolated from the met-
ric calculations. A large Copula (H¢) metric is often associated with imbalanced
data and almost coincident tuples in two or more classes. For example, RAN-NP
tuples in class 0 are a random perturbation of its class 1 tuples, corresponding to
the {POL1, POL5, LC, LCAB} group. The Hypersphere (Hg) metric measures
the effect of outliers: either many of them or a smaller number of extremes, or
both. Coincident clustering in more than one class is indicated by a high value
of the k-Neighbours metric My .

The value of the concentration metric, H , should only be seen either as a
guide or as an explanatory element of the ANN analysis. A high value H implies
that either the data are too noisy or that they provide insufficient predictive in-
formation. When trying to predict credit-worthiness, cases that appear to be high
risk sometimes turn out not to be, and vice versa. These cases look like 'noise’
in the data, but they are significant because they provide alternative paths to
‘success’. It is better to be able to predict a higher proportion of potential credit
failures going to deny credit to borrowers who are apparently low risk. Therefore
the within-class error rates (i.e. type I and II errors) are also important.
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