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ABSTRACT

Previous work has established that the distribution of
daily reputation scores is best modelled by a bi-partite
pair of exponential distributions. Simulations developed
from that distributional model did not account for auto-
correlations in the data. We now extend the bi-partite
model in two ways. Candidate auto-correlation methods
are assessed in order to incorporate the auto-correlation
structure of the data in a simulation. Negative rep-
utational shocks are then modelled using a chi-square
distribution, so that they can then adequately model
runs of successive days of either positive or negative
sentiment. Auto-correlation goodness-of-fit tests show
that the optimal auto-correlation model uses the fit-
ted auto-regression components of the original data, and
that goodness-of-fit can be improved by inflating them
by about 1%. This optimised model is successful in at
least 88% of simulations where auto-correlation in the
original data does not extend beyond 10 lags. In other
cases (mainly due to severe reputational shock), 80%
success can be expected. Examples of shock simulations
for large corporate organisations are shown, and the im-
plications for reputational analysis are discussed.

INTRODUCTION

Technological advances since 2014 have made it pos-
sible to measure reputation in a comprehensive and
objective way. On a daily basis, the output of that
measurement process is a single number (the score)
that represents the reputation of a target organisation
on the day of measurement. However, reputation has to
be established over an extended period, using an accu-
mulation of multiple successive daily reputation scores.
Therefore, an objective view of a target’s reputation
is encapsulated in the statistical properties of the set
of scores. In this paper we consider reputation in the
context of large corporate organisations, with emphasis
on those that have experience a severe reputational
shock in the past decade: Volkswagen (’Dieselgate’
emissions in 2015), Boeing (the 737 MAX aircraft

crashes in 2018 and 2019) and HSBC (illegal Swiss
bank accounts first reported in 2015).

Previous work (Mitic (2017)) has established that the
distribution of daily reputation scores is unusual. With
measurements in the range (−1, 1), there is a marked
clustering close to zero, indicating that the majority
of scores indicate near neutral reputation. The opti-
mal model is a bi-partite pair of exponential distribu-
tions (the BiExponential distribution). That distribu-
tion, and any other, is independent of the order of the
daily scores. Investigations show that reputation scores
can manifest significant auto-correlations. In particular,
sequences of successive negative reputation are frequent.
A plausible reason is that agents (people, the press etc.)
are encouraged to express negative sentiment if they see
prior negative sentiment. The correlogram for Volkswa-
gen in Figure 1 illustrates the point. Significant auto-
correlations persist up to 26 lags. The date range for the
data used to compile it span the period of the ’Diesel-
gate’ emissions scandal in September 2015.

Figure 1: Volkswagen Correlogram, 30/06/2015 to
30/07/2016

The purpose of this paper is therefore to develop a repu-
tation score distribution that incorporates an appropri-
ate auto-correlation structure. Reputational scores can
then be better simulated in order to study the effect of
potential reputational events.



LITERATURE REVIEW

This literature review deals with two distinct aspects of
reputation. First, its measurement, and second, issues
related to auto-correlation.

Reputation Measurement Review

Three modes of reputation measurement are currently
apparent. The first chronologically is by survey. The
survey technique was pioneered by George Gallup
with the founding of the Gallup organization in 1935.
Surveys are appropriate for gathering statistics on
single issues, and problems with them are now well
known. Durant (1954) listed them as dependency of
the outcome on the nature of the survey (location,
respondents, questionnaire design and administration),
cost, bias, and reliability of results. The survey
technique has now morphed into online reviews, blogs
and comments on platforms such as Twitter. The
Consumers Organisation (https://www.which.co.uk/)
is currently prominent in the UK for product reviews.

A more sophisticated survey method, Reptrak, specifi-
cally geared to reputation measurement, was developed
in the 1990s (Fombrun (2015)). Reptrak is a software
tool for tracking and analysing stake-holder percep-
tions. Its basis is to consider reputation as an intangible
property rather than a quantity that can be measured
directly. 23 such ’intangibles’ are combined into 7
latent variables which are regarded as observables,
using structural equation modelling (SEM). Overall,
subjectivity is not avoided, and assessment can only be
reasonably made twice yearly.

An alternative indirect approach is ’event association’
(Perry and de Fontnouvelle (2005) and Fiordelisi
(2013)). A proxy has to be used for reputation, and
share price is readily available for corporates (although
not for other organisations or individuals). ’Event
association’ proceeds by first identifying, subjectively,
reputational events. The proxy is then projected
forward in time from the point of a reputational event,
and is compared to the actual proxy value at the
forward projection point. The difference between the
projected and actual values constitutes the ’abnormal
return’, which is used as a measure of reputation. In
using a proxy in this way, an assumption is required
that the proxy is a valid reputation measure. That
is not always true for share price, which is subject to
many other factors.

Direct reputation became possible during the past 10
years with widespread use of the internet. An outline of
the ’sentiment mining’ technique may be found in (alva
Group (2021)) and (Mitic (2017)). Since ’sentiment

mining’ forms the basis of the reputation time series
used in this research, a more detailed summary of
the process follows in the section on Reputation Mea-
surement. The method is more objective than others
provided that the data feeds used can cover as many
as possible relevant data sources, and that a history
of measurement has been accumulated. Once sourced,
contents are scored using sentiment analysis (see, for
example, Lui (2015)). The idiosyncrasies of written
language are difficult to analyse, and is therefore a
source of error.

Auto-correlation Review

Press (1969) presents an account of early research on
auto-correlation, including work on the distribution
of the serial correlation coefficient (Anderson (1942)),
and the standard statistical test for auto-correlation
(Durbin-Watson (1951)). Auto-correlations in reputa-
tional time series have not hitherto been studied, al-
though they have been noted in many other contexts.
Fishman and Kiviat (1967) provide an early reference to
the effect of induced auto-correlation in generic time se-
ries simulated by stochastic processes. They consider in-
duced auto-correlation using the power spectral density
as the Fourier transform of the auto-correlation func-
tion (ACF) of the time series. More specifically, negative
auto-correlations in financial time series have been noted
many times since the 1960s (Fama (1965) and Schwartz
and Whitcomb (1997)). Early research in other contexts
include Leith (1973) (weather and climate), Sayers et al
(1981) (biomedical), and (later for the context) Wang
et al (2014) (social networks).

Auto-correlation and Simulation

The basis of the copula method (namely separation
of the analysis of dependence from the properties of
marginals) for generating auto-correlated time series
is discussed in, for example, Durante and Sempi
(2010). Since copulas are used in this paper, discussion
of copula usage in the context of reputational time
series is deferred until the section on Theoretical Models.

In the Davis-Harte (1987) method, an auto-correlated
time series is be generated using a stationary Gaussian
Process. However, that method is only applicable
if there is non-negative auto-correlation, and that
either the auto-correlation sequence is convex and
decreasing, or zero beyond some particular lag.
That is not always the case with reputation time
series. The ARTA (’Auto-Regressive To Anything’)
method of Cario and Nelson (1996) uses a Gaussian
Process to transform a process with a known auto-
correlation structure such that any desired marginal
distribution results. Cholesky decomposition is a



commonly-used way to generate a correlated time series
from a non-correlated time series (See, for example,
https://en.wikipedia.org/wiki/Cholesky decomposition).
However, the required positive-definite conditions
cannot be guaranteed for reputational time series. In
practice, some reputational auto-correlation intensities
were under-estimated using Cholesky decomposition.
ARIMA modelling (see, for example, Hyndman and
Khandakar (2008)) requires much pre-conditioning,
as in https://otexts.com/fpp2/arima-r.html). As an
alternative, we have used the auto.arima function in
the R package forecast, which selects a best-fit model
from a range of viable alternatives using the minimum
AIC criterion.

Reputation Measurement

Details of the reputation measurement process used to
derive the data used in this study can be found in (Mitic
(2017)). The Reputation Score originates by data min-
ing content from as many sources (social and ’tradi-
tional’ media) as possible, targeted upon a particular
organisation or person. After rejecting irrelevancies,
Contents are analysed using Natural Language Process-
ing (NLP), thereby deriving a sentiment score for each.
A weighted average of those sentiment scores is calcu-
lated using weights derived from the prominence of the
content’s source and mode of transmission. That consti-
tutes a reputation score for a single day, for a target or-
ganisation or individual. It should be noted that a daily
reputation score is built from a base of zero sentiment.
This may explain reputational distribution properties
(discussed below). Reputation is a long term (at least 6
months) time series of single day reputation scores.

Reputational Distribution

Prior work in (Mitic (2021)) showed that the Bi-
Exponential distribution was a best-fit for all data
sets considered. The Bi-Exponential density, fB(), is
shown in Equation 1. In that equation, c is the nor-
malising constant determined from c

∫m

−1
eb(x−m)dx +

c
∫ 1

m
e−a(x−m)dx = 1.

fB(x,m, a, b) =

{
ceb(x−m); x ∈ (−1,m]

ce−a(x−m); x ∈ [m, 1)
(1)

The corresponding BiExp distribution function is de-
noted by FB .

FB(x,m, a, b) =

∫ x

−1

fB(z,m, a, b)dz (2)

Reputational Bi-Exponential densities show major den-
sity concentrations near m, the empirical modal value.
These originate from averaging of NLP calculations,

leading to cancellation of positive and negative senti-
ments for individual contents. Contents that express
extreme sentiment are rare.

Reputational Auto-correlation

Observations of auto-correlation in reputation data re-
veal two basic patterns. Some show no evidence of sig-
nificant auto-correlations, indicating that the reputation
on any one day is independent of the reputation on any
other. Other cases have a very long ’memory’. Auto-
correlations persist for between 3 and 4 weeks, especially
in cases of severe reputational shock. One case (Nation-
wide Building Society) had a periodic ACF in the years
2015-16, with a period of approximately 1 week. We
speculate that Nationwide generated very positive news
weekly in that period. Any simulation needs to be able
to replicate all those cases.

Reputational Shocks

Very few prolonged negative reputational shocks have
been observed. For those that have, the following fea-
tures are apparent:

• a rapid drop in the daily reputation score (1-5 days);
• a short period near the minimum score (2-14 days);
• a long relaxation period where reputation climbs
slowly to or near to its pre-shock level;
• periodic 1-day ’after shocks’, due to reiterations of
previous negative sentiment.

Positive shocks follow a completely different pattern.
They comprise isolated spikes of positive sentiment that
last one, two, or three days only. They arrive in response
to short lived positive sentiment related to particular
events. Examples are positive reports of excellent trad-
ing results in the financial press, or very positive product
reviews on social media.

THEORETICAL MODELS

The aim of the elements in this section is to gener-
ate a random sample that preserves both the auto-
correlation, and the distribution of the original data.
With both components, a more reliable simulation can
be made than with any one of them. Care must be
taken if random elements, other than sampling from the
BiExp distribution, are introduced. Any random per-
turbation of a simulated time series that expresses an
accurate auto-correlation structure always degrades the
auto-correlation structure, often completely.

Initial Data Preparation

The common basis of two autocorrelation models used
here (Copula and Cholesky), is an estimation of the Bi-
Exp parameters m, a, b from Equation 1, followed by



a calculation of the auto-correlations, a copula simula-
tion, and then a separate shock simulation. The auto-
correlations are generated by producing a matrix, M of
lagged data. For a time series of length N with L lags,
M and its (Pearson) correlation matrix C are given in
Equation 3. Other methods use the original data series
{xt}.


M =


x1 x2 ... xN

x2 x3 ... xN+1

... ... ... ...

xL xL+1 ... xN+L−1


C = corr(M)

(3)

Auto-correlation Copula Model

Proposition 5.1 in Durante and Sempi (2010) shows that
a copula is preserved under any transformation that gen-
erates any distribution. This proposition establishes a
generic method for generating a random sample of any
distribution from a random sample of any other. The
copula is generated starting with a multi-variate nor-
mal (MVN) distribution, using any convenient genera-
tor. The R MVN function to generate n random samples
of takes arguments n, C, and parameter m from Equa-
tion 1. The function Φ−1 transforms the multi-variate
normal vectors to uniformly-distributed vectors. They,
in turn, are transformed to BiExp distributions X using
the BiExp distribution function.

z[i] = MVN(n,C,m); i = 1..L

u[i] = Φ−1(z[i])

X[i] = FB(u[i],m, a, b) (4)

The penultimate stage of the copula process is to recre-
ate the temporal sequence that was used to formulate
(n-by-N ) matrix M, by interleaving the column vectors
X row-wise. So if Y [r] = {X[1, r], X[2, r], ..., X[n, r]}
represents the rth row of X, the interleaved sequence Y ′

is defined by the following ’interleave’ operator Ξ.

Y ′ = Ξ(Y ) = Y [1] ∪ Y [2] ∪ ... ∪ Y [n] (5)

The final stage is to select a random starting point, J, in
the sequence Y ′ such that a sequence of n consecutive
entries can be drawn. Donating this sequence by Y ′

n,
with a ’random select’ operator Ψ, the random sample
that preserves both the auto-correlation and the distri-
bution of the original data is given in Equation 6.

Y ′
n = Ψ(Y ) =

{
Y ′[j]

}J+n−1

j=J
(6)

Auto-correlation Cholesky Model

The equations below show a sequence for generating an
auto-correlated simulation using a Cholesky decompo-
sition. The starting point is the correlation matrix C
from equation 3. U is its Cholesky decomposition: a
proxy for the square root of C. b is a random BiExp
vector, with dimension equal to the column dimension
of U. The operators Ξ and Ψ are defined in the Copula
section.

C = UU∗

X = (Ub)T

Y = Ξ(X)

Y ′ = Ψ(Y ) (7)

Auto-correlation AR Model

In the AR model, the simulation {xt)} proceeds us-
ing estimated auto-regressive parameters pi in Equa-
tion 8, with standard deviation and mean parameters
equal to the standard deviation and mean of the orig-
inal data. To compensate for an underestimate of the
auto-regressive parameters, those estimates are inflated
by a small constant factor λ (i.e. pi → λpi). A value
of λ = 1.01, empirically conditioned on the cases listed
in the Results section, proved to be suitable. The auto-
regression used is therefore as in Equation 8. This model
produces surprisingly good results given its simplicity.

xt = µ+ λ

p∑
i=1

pixt−i + ϵt (8)

Auto-correlation ARTA Model

The ARTA model is an extended AR (auto-regression)
process, based on a transformation of a distribution
with a known correlation structure. ’TA’ means ’To
Anything’. Let {zt} be a standardised Gaussian AR(p)
process with auto-correlations r1, r2, ..., rp. Then, with
the Normal distribution function Φ, a transformed auto-
regressive process with a BiExp distribution, {yt}, can
be generated. The next stage is to (implicitly) define
a function, ρ, that maps each auto-correlation ri to a
target auto-correlation value ρi.

yt = F−1
B (Φ(zt))

ρi = ρ(ri); i = 1..p (9)

The function ρ is a search algorithm. It is shown in
Cario and Nelson (1996) that any such algorithm that
approximates each ri to sufficient accuracy, preserves
the target distribution FB .



Auto-correlation ARIMA Model

ARIMA modelling shows that both auto-regressive
(AR) and moving average (MA) components are im-
portant in reputational time series. With AR, MA and
differencing parameters p, q and d respectively, plus a
constant µ and error term ϵt, the ARIMA model used
is given in 10. The same λ-factor that was used for the
AR model was applied in the ARIMA model, although
its effect was small.

xt = µ+ λ

p∑
i=1

pixt−i +

q∑
i=1

qiϵt−i + ϵt (10)

Shock Models

A negative shock profile can be modelled using a chi-
square density with an appropriate degrees of freedom
(DoF ) parameter that reflects the duration of the shock,
d, from inception on day t0 to the end of the relaxation
period. Equation 11 shows the shock density, s, as a
function of the day number, t, the DoF parameter, k,
the shock duration, d, and the shock inception day, t0.
The factor 10 is a scaling so that the chi-squared density
applies for a period in excess of a 365-day year.k = d/10 + 2

s(t, t0, k) = − 1
2(k/2)Γ(k/2)

(
t−t0
10

)(k/2−1)

e

(
t−t0
20

) (11)

The post-shock period is augmented by appropriate
number of single-day shocks, with intensity between -I
and −I/2, applied on random days between the middle
of the relaxation period and the last day.

Other densities were considered as a shock model. A
LogNormal density is a viable alternative, and gives
similar results provided that its µ and σ parameters
are both near to 1. Others were rejected because
they their densities were too concentrated near the
peak depression, and failed to model a long relaxation
period. They include the Beta and Gamma densities,
and by implication other fat-tailed distributions.

Having thus defined the shock density, a superposition of
the shock density with a reputational data series, R(t),
can be made. Multiple shocks s1, s2, ... can be added
to the superposition, although more than two have not
been observed to date. Therefore, a ’shocked’ data series
with n shocks, S(t), may be expressed as in Equation
12.

S(t) = R(t) +

n∑
i=1

si(t, t0, k) (12)

A positive shock profile can be modelled in a similar way
to Stage 4 of the negative shock profile. Positive 1- or
2-day shocks are superposed on a ’no-shock’ simulated
profile at random intervals, determined empirically.

RESULTS

Data

The data series used in this study were selected be-
cause they are rare examples of severe reputational
shocks. Specifically, the shock model is based on obser-
vations of the Volkswagen ’Dieselgate’ shock, the Boe-
ing ’737 MAX’ shocks in October 2018 and March 2019
(Federal Aviation Authority (2020)), and the HSBC
tax evasion reports in February 2015 (see, for exam-
ple, https://www.bbc.co.uk/news/business-31248913 ).
Some sector competitors have been added for compari-
son. The ’shocked’ data series exhibit considerable auto-
correlation, whereas the sector competitors more resem-
ble random data.

ACF Significance Tests

The accuracy of the auto-correlation in the generated
samples was measured by comparing ACFs for the sam-
ple and original time series. A t-test was used to com-
pare heights of corresponding significant ACF compo-
nents, up to 50 lags. Table shows the results. For each
of the organisations considered, 25 simulations were gen-
erated. The table records the percentage of goodness-of-
fit (GoF) passes in the simulations for each organisation
(column Org) for each auto-correlation method (Cop
and Chol are Copula and Cholesky respectively). A
’pass’ in this test indicates that the difference between
the simulation and original ACFs was small.

Table 1: ACF Significance Tests: Percentage of GoF
passes

Org Cop Chol ARTA ARIMA AR
VW 64.0 87.6 75.6 77.6 96.8
BMW 98.8 99.2 94.4 99.6 100.0
Mercedes 100.0 100.0 100.0 100.0 100.0
Boeing 31.6 98.4 44.4 50.0 80.8
Airbus 86.4 76.4 93.6 88.0 88.0
HSBC 60.8 93.6 70.8 74.4 91.6
Barclays 96.0 96.0 90.0 94.0 97.6
N’wide 82.8 98.0 88.0 88.4 97.6

In most cases, the percentage of passes was high. The
AR (simple auto-regressive) model was the best per-
former. HSBC, Boeing and Volkswagen with Copula
simulation were anomalies, but the reason is unclear.
Although Nationwide/Cholesky scored well using the
t-test, the periodic profile produced was irregular in
many simulations. Cholesky simulations tended to be
too heavily biased to either positive or negative senti-
ment, depending on the overall sentiment trend. The
Nationwide/Copula simulations were able to reproduce



the periodic pattern more successfully. The ARTA sim-
ulation was mostly satisfactory, but ACFs showed a
marked periodicity in almost all cases, which was ab-
sent in the original data. Not all Nationwide/ARTA
simulations displayed the periodicity that exists in the
Nationwide data. ARIMA simulations struggled to pro-
duce satisfactory auto-correlations for the original time
series where auto-correlations persisted for more than 10
lags. The combination Nationwide/ARIMA produced a
further anomaly. Although the pass rate is high, the
periodic auto-correlation pattern was absent in some
simulations, and tended to diminish in intensity with
increasing lag in others.
Introducing the λ-factor into the AR and ARIMA mod-
els (Equations 8 and 10 respectively) had a mixed ef-
fect. It provided a significant boost in the success rate
for the VW/AR combination, but only a small boost
for the Boeing/AR combination. There was no signif-
icant boost for the VW/ARIMA and Boeing/ARIMA
combinations.

Shock Simulation illustrations

We first show a series of simulation illustrations for Volk-
swagen, illustrating the ’Dieselgate’ negative shock. AR
simulation is used, since that method, in general, pro-
duces acceptable simulated ACF results (as in Table ).
Figures 2 and 3 show two views of the Volkswagen shock
simulation, superimposed upon the original data. The
sharp discontinuity following ’Dieselgate’ inception on
day 80 is apparent. Organisations tend to have their own
distinct cumulative reputation profiles, and the shock
appears as a marked discontinuity in the profile gradi-
ent.

Figure 2: Volkswagen Reputation Shock Simulation:
original data in blue, with 1 independent shock simu-
lation in red

Projection Simulation illustrations

In order to explore possibilities for predicting future
reputation, AR simulations based on the first 300 days
of available Volkswagen data were developed, projected
for the next 5 days (nominally a ’working week’), and

Figure 3: Volkswagen Cumulative Reputation Shock
Simulation: original data in blue, 10 simulations in red

compared with the original data. The AR method pro-
duces deterministic projections, so small random pertur-
bations were added to them so as to provide a small de-
gree of variation without disturbing the auto-correlation
structure too much. Figure 4 shows two sets of projec-
tions for Volkswagen. The first (in red) shows a view
of Volkswagen’s cumulative reputation if no attempt is
made to mitigate to the consequences of ’Dieselgate’.
Mitigation could be achieved, for example, by admit-
ting liability, compensating customers, or strengthening
operating procedures. The second (in green) shows what
might happen if those measures are applied. In the for-
mer case, cumulative reputation continues to drop. In
the latter case, cumulative reputation drops less. It does
not reverse direction without a more significant boost.
The simulations illustrate the important point that a
poor reputation is very difficult to reverse.

Figure 4: Volkswagen Projection Cumulative Simula-
tion: original data in blue, 10 negative sentiment simu-
lations in red, and 10 positive sentiment simulations in
green

ACF Simulation illustrations

ACF simulations also follow the ACF profile of the orig-
inal data closely. Figure 5 shows three independent VW
ACF simulations. Some underestimation of correlations
for lag 1-25 is apparent on some simulations. The black



horizontal lines show, approximately, 95% significance
levels. Significant auto-correlations lie above the upper
bound or below the lower bound.

Figure 5: Volkswagen Auto-correlation Simulations:
original data in blue, with 3 independent simulations
in red

As comparisons, ACF simulations for BMW (Figure 6)
and Nationwide (Figure 7) are also shown. The BMW
data shows no significant auto-correlation, and the Na-
tionwide data shows the curious periodicity referred to
in the discussion of reputation distribution. In both
cases, the simulations follow the profile of the original
data.

Figure 6: BMW Auto-correlation Simulations: original
data in blue, with 3 independent simulations in red

DISCUSSION

It became evident in generating simulations, that
sampling from the BiExp (or any other appropriate)
distribution was not sufficient for preserving the auto-
correlation structure of the original data. Four methods
to generate an appropriate auto-correlation structure
were considered. Three of them were ’established’
(Cholesky, AR and ARIMA), and two of them were
’bespoke’ (ARTA and Copula). Comparison of the
ACF statistic successes in multiple runs of each method
(Table ), shows that the AR method’s performance is,

Figure 7: Nationwide Auto-correlation Simulations:
original data in blue, with 3 independent simulations
in red

overall, the best of the five. Given that the ARIMA
method is an extension of AR, it is surprising that the
ARIMA method was not successful at reproducing the
autocorrelation structure in cases where the significant
autocorrelations persist for more than 10 lags. That
was a problem common to all the simulation methods
considered. Additionally, it proved to be difficult to
reproduce the periodic ACF structure for Nationwide.
A more general problem was that auto-correlations
tended to be underestimated rather than overestimated.

Despite these misgivings, it has been possible to simu-
late shocks that closely resemble the few that have been
observed. This ability is useful for practitioners in two
ways. First, in generating scenarios to show what could
happen in the event of a shock of specified intensity
and duration. Second, to investigate what would have
happened had a shock not occurred. It would be partic-
ularly valuable in decision-making. For example, there
may be a reputational effect associated with bringing a
new product to market, or in changing the nature of an
existing product, or in dealings with another organisa-
tion. Reputational analysis, done in this way, provides
a valuable addition to the insights apparent in balance
sheet data.
Applications of auto-correlated simulations in other con-
texts are apparent. Of those mentioned in the literature
review, simulated time series for financial instruments
are important for risk mitigation and medical time se-
ries are key in drug trials. Uses in social networks are
largely unexplored. In all cases, three points should be
noted. First, the simulation depends on an underly-
ing distribution (BiExponential in the case of reputation
data), and an appropriate distribution should be fitted.
Second, raw data should be normalised by a linear scal-
ing to the range [-1,1]. Third, it should be noted that
reputational time series are constructed by daily accu-
mulations, from zero, of sentiment scores. As such, they
might correspond more closely to first differences of time
series from other domains. Further work in reputational



analysis would also be useful to inject variation into the
deterministic AR (and other) simulation, such that pro-
jection auto-correlation structures are not impaired.
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