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Abstract. There is plenty of room for improvement in credit risk pre-
diction. Intuitively, similar customers should have similar credit risk.
Capturing this similarity is often carried out using Euclidean distances
between customer features and predicting credit default via logistic re-
gression. Here we explore the use of topological data analysis for describ-
ing this similarity. In particular, persistent homology algorithms provide
summaries of point clouds which relate to their topology. This approach
has been shown to be useful in many applications but to the best of
our knowledge, applying topological data analysis to prediction of credit
risk is novel. We develop a pipeline which is based on the topological
analysis of neighbourhoods of customers, with the neighbourhoods given
through a geometric network construction. Using two data sets from the
Lending Club we find a modest signal; the results have high variance, but
they could be seen as indication that including such topological features
could improve credit risk prediction when used as additional explanatory
variable in a logistic regression.

Keywords: Credit Risk · Topological Data Analysis · Barcode · Land-
scape · Logistic Regression

1 Introduction

The context for this paper is bank unsecured lending. The bank makes its lending
decisions using customer details (or features) such as the customer’s employment
status, income, expenditure, current total unsecured debt, previous credit record,
and other third party and derived features (such as debt-to-income ratio). No
single factor, nor combination of factors, is a sure-fire predictor of ’success’ in
repaying the loan. Bank predictions mostly succeed, but there is room for im-
provement. A better understanding of the probability of default can make even
risky customers profitable. The heuristic behind credit risk prediction is that
customers with “similar” features should be associated with similar risk of de-
fault. Finding useful measures of similarity is an ongoing issue in credit risk
forecasting.
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Here we investigate the use of Topological Data Analysis (TDA), which em-
braces the topological relationship between a single datum and other data. As
such, there is a direct expression in topological terms of the phrase "If cus-
tomer A paid back a loan, and customer B looks like customer A, then customer
B should also pay back a loan". There are many applications of TDA in a fi-
nancial context (e.g. [10]) but to the best of our knowledge, it has not been
applied to credit risk modelling. Outside finance, there have been successes of
classifiers based on TDA in many areas such as neuron spike data [17], cancer
prognosis [5], and image classification [2]. This work follows previous discus-
sions on financial credit-worthiness using data from the Lending Club (LC -
https://www.lendingclub.com/ ), a US-based personal loan organisation.

To validate the pipeline, in the absence of related work for credit scoring,
we apply and compare the pipeline to oncology data [8] 5. Using that data set,
Wu and Hargreaves [19] carried out a related study, using logistic regression
enhanced with TDA features. We set a high bar. For a training set, we use a set
which achieves very high accuracy based on logistic regression alone, rather than
a random sample. Hence, achieving similar results when including topological
information, which is what we find, is promising.

The main contributions of this paper are, first, the finding that there can
be a topological signal in credit risk data, and second, a pipeline for including
topological summaries in credit scoring.

Nomenclature: In this paper the acronyms LR and TDA refer, respectively, to
the logistic regression curve-fitting method, and the application of topological
concepts to data analysis. We use the acronym LR+TDA to refer to a logistic
regression calculation that incorporates topological components.

2 Literature Review: Credit Scoring

We concentrate on a summary of previous work on credit analysis. Work on TDA
will be discussed in Section 3. Credit scoring was developed in the early 1940s
in an attempt to control credit risk. In 1941 Durand [9] developed a ’scorecard’
formula based on factors such as a customer’s salary, age, sex, credit history,
and occupation. Variants on that system are still used today. More factors have
been introduced, and the weights attached to each factor have matured. A no-
table example is the U.S. FICO credit score 6, originally formulated in 1956 by
the Fair Isaac Corporation. The idea of nearest neighbours, a key TDA compo-
nent, was first applied by Chatterjee in 1970 [7]. In 1980, Ohlson [14] applied
multivariate discriminator analysis (MDA) in an early probabilistic model of
corporate bankruptcy prediction; similar probabilistic models have since been
applied to retail contexts. An early application of a Logistic Regression (logit)
model was formulated by Wigginton in 1980 [18]. Logit models were an advance
on MDA models by removing the MDA requirement for characteristics to be
5 https://archive.ics.uci.edu/ml/datasets/heart+disease
6 https://www.fico.com/
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drawn from a multivariate normal distribution. Further techniques, including
genetic algorithms, neural networks and decision trees are discussed in [11].

3 Concepts in Topological Data Analysis

Here we briefly introduce some concepts from topological data analysis which
are useful for this paper. More detailed introductions can be found, for example,
in [15] and [6]. Following [6], we start with a set of points P in Euclidean space
RN with Euclidean distance, the norm ∥·∥2. For each point p ∈ P we define its
ϵ−neighbourhood Nϵ(p) as the ball Bϵ(p) of radius ϵ around p.

3.1 The Vietoris-Rips Filtration

For increasing ϵ, the balls around points will increasingly overlap, and eventually
there will be no holes left between the balls. The process of increasing ϵ is used to
construct characteristics of the point cloud P . First we create a sequence of so-
called Vietoris-Rips simplicial complexes VRϵ(P ). We start with a graph having
vertices P and edges (p0, p1) for all pairs of points p0, p1 in P with distance
∥p0 − p1∥2 ≤ ϵ. We then set

VRϵ(P ) =
⋃
l≥0

VRϵ(P )l, VRϵ(P )l = {(p0, . . . , pl) | ∥pi − pj∥2 ≤ ϵ for all i, j}.

Here VRϵ(P )l can be viewed as a list of all l-simplices of the complex VRϵ(P ).
This construction is called Vietoris-Rips filtration. For this object we can calcu-
late so-called homology groups. We shall only use the first two homology groups,
which are easy to describe intuitively: The dimension-0 homology counts the
number of connected components, and the dimension-1 homology counts the
number of holes. The process as ϵ increases is illustrated in Figure 1, reproduced
from [6].

3.2 Barcode

A barcode is a visual representation of point cloud connectivity as ϵ increases.
A non-zero element (connected component for dim 0, and hole for dim 1) that
first appears at ϵ = ϵb and vanishes at ϵ = ϵd is represented by the interval (or
bar) (ϵb, ϵd].

The process described in Subsection 3.1 takes a finite set of points P ⊆ RN as
an input and for every homological dimension k ≤ N outputs a barcode B(P, k),
which can be represented as a multiset of intervals of the form

{
(ϵb(i), ϵd(i)]

}mk

i=1
.

An important feature of barcodes is that they are directly comparable between
each other by many different metrics that are stable, in the sense that a small
perturbation in the input point-cloud leads to only a small perturbation of the
barcode, as measured by the metric. For an overview of stability results, see [16,
Ch. 3].
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Fig. 1. An example of a Vietoris-Rips filtration and the corresponding barcodes in
dimension 0 and dimension 1. Figure 1 from [6].

3.3 The Wasserstein Metric

Here we describe the 1-Wasserstein metric, used here to measure distance be-
tween barcodes. Let B1,B2 be two barcodes such that every homological feature,
like a connected component or a hole, has to persist for a finite time. Then the
1-Wasserstein metric is defined as:

W1(B1,B2) = inf
γ∈Γ

∑
(ϵb,ϵd]∈B1∪∆

∥(ϵb, ϵd]− γ((ϵb, ϵd])∥∞ , (1)

where Γ is the set of bijections from B1∪∆ to B2∪∆. Here ∆ = {(x,∞) : x ∈ R},
which we use for technical reasons to take care of the case when the barcodes
do not have the same number of bars. The distance between two intervals (a, b]
and (a′, b′] is defined as ∥(a, b]− (a′, b′]∥∞ := max(|a− a′|, |b− b′|). Note that in
theory the 1-Wasserstein distance can be infinite.

3.4 Landscape

An alternative to the barcode encoding of topological information is a persistence
landscape [4]. A landscape is derived from the set of mk birth-death points at
dimension k:

{
(ϵb(i), ϵd(i)]

}mk

i=1
of a barcode. With ϵb(i) plotted against ϵd(i), a

piecewise continuous function, termed a landscape, can be defined to model the
extremities of the plot. In practice, we use a discretised form of this function, at
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some predefined resolution. Since we use dimension 0 and 1 homologies, we get
two landscapes per point cloud. The precise mathematical definition of persis-
tence landscapes is beyond the scope of this paper, and we refer the interested
reader to [4].

We would like to highlight a few important properties of landscapes. They
are effectively vectorised expressions of barcodes at the predefined resolution (we
used 500 reference points). All landscapes for a point cloud can be expressed in
terms of the same resolution. That makes them easy to use in existing statistical
and machine learning techniques, especially as they and their corresponding met-
rics are fast to calculate compared to Wasserstein distances (given in Equation
(1)). Second, they are also stable: a small perturbation of the point cloud will
only result in a small perturbation of the landscape [4, Section 5]. Third, as
real-valued functions, we can leverage different statistical techniques (such as
adding, averaging) when analysing them.

Figure 2 shows an example of a typical barcode and the corresponding land-
scapes used in our analysis.

Fig. 2. Left to right: typical LC Barcode, with Landscapes at dimensions 0 and 1.

4 Application Pipeline to Credit Data

Topology is essentially a tool to analyse a structure, not an individual node.
Therefore, a preliminary step is to impose a structure on each node by defining
a list of neighbouring nodes. Here we represent credit data as a network between
customers, with two customers connected by an edge if their feature vectors are
close in Euclidean space. With such a network representation we then calculate
the barcodes and landscapes for each individual neighbourhood. We use these
topological summaries as additional measures of similarity in a logistic regres-
sion.

In more detail, we assume that a credit data set is available with N customers,
and each customer has n features associated with it. The features are normalised
to [0, 1]. A node with index i, ni, comprises a set of n normalised features xij ,
and an binary outcome Yi representing successful repayment of a loan or not (1
or 0 respectively); ni =

{
{xi,1, xi,2, . . . , xi,n}, Yi

}
with xi ∈ [0, 1], Y i ∈ {0, 1} .

A collection of N nodes, CN , constitutes the point cloud which is the basis of
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the credit risk TDA analysis; CN =
{
ni

}N

i=1
. The neighbourhood of a target

node ni is a set of other nodes {nj , j ̸= i} that are ’close to’ ni, according to
some ’closeness’ criterion. To construct edges in this network, one could use a k-
nearest-neighbours (kNN ) algorithm with a Euclidean distance metric. However,
we have found that a k-nearest-neighbours approach is very slow to calculate.
Instead, we have used the kd-Tree approximation [1]. In the kd-Tree algorithm,
the sample space is bisected, and the Euclidean nearest neighbours algorithm is
applied only within the subspace containing ni. The containing subspace is re-
peatedly bisected in the same way until a required neighbourhood size is reached.
This method is considerably faster than kNN, but can omit ’near’ nodes that
are in the ’wrong’ subspace. In R, the kd-Tree algorithm is implemented in the
RANN package, which is a wrapper for the ANN C++ library.

Once the network is constructed, each node ni (customer) is assigned its
neighbourhood as the subgraph induced by the nodes nj , j ̸= i such that there
is an edge between ni and nj in the network.

4.1 Homologies for neighbourhoods

The central step when applying TDA in any context is the calculation of per-
sistent homologies for each node. Persistent homologies are calculated using the
neighbourhoods at dimensions 0 and 1. The dimension 2 components of the bar-
codes for the data used are minor, and we assume that they have a negligible
effect on the results. The homologies are then used to calculate outcome predic-
tors. The Wasserstein predictor is based on the 1-Wasserstein distance metric,
Equation (1) (see e.g. [12]), which accounts for geometry of the barcodes being
compared. The Wasserstein predictor for a Test node reports the proportion of
Training nodes in its Wasserstein neighbourhood who repay the loan, separately
for dimension 0 and 1. The Landscape predictor is derived from a persistence
diagram Landscape construct [3]. It reports the proportion of Training nodes in
the Landscape neighbourhoods who repay the loan, again separately for dimen-
sions 0 and 1. With a Wasserstein and a Landscape predictor for each dimension,
there is a total of four predictors. Finally, the predictors are used as a classifier
for a set of Test nodes. The predicted outcomes are compared to the actual test
outcomes.

4.2 Detailed LR+TDA Credit Risk algorithm

The LR+TDA pipeline details are described in the algorithm in this section. The
first step, generation of a single Training set plus multiple Test sets, was designed
to identify an "optimal" training set using the original data only. Specifically,
this training set yields maximum Accuracy in multiple trials. The high accuracy
training set presents a severe test for the case where the original data are aug-
mented by TDA predictors. Consequently, results for TDA-augmented data that
are close to those of the original data are sought.
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1. Sample data
(a) Draw 100 random samples (balanced 50:50 between defaulted and not),

partition each into Training/Test sets in a ratio 2/3 : 1/3
(b) Run LR calculations for each Training/Test pair, then choose the train-

ing set that yields the highest LR Accuracy.
(c) Generate further similar Test sets

2. Calculate neighbourhoods using the kd− Tree algorithm, such that the re-
sulting number of neighbours is at least the square root of the number of
Training nodes, subject to the two conditions below.
(a) The neighbourhood for each Training node is derived from all other

Training nodes
(b) The neighbourhood for each Test node is derived from all Training nodes

3. Calculate Training homologies, relative to Training nodes, separately for
outcomes Y = 0 and Y = 1

4. Calculate Test homologies, also relative to Training nodes, separately for
outcomes Y = 0 and Y = 1

5. Find 1-Wasserstein distances between neighbourhoods:
(a) For all Training nodes, calculate the 1-Wasserstein distances relative to

other Training nodes, at dimensions 0 and 1. Select the M (we used
M = 25) nearest nodes

(b) For all Test nodes, calculate the 1-Wasserstein distances relative to all
Training nodes, at dimensions 0 and 1. Select the M nearest nodes

6. Calculate Wasserstein predictors
(a) For all Training Wasserstein neighbourhoods, calculate the proportion

of those corresponding successful predictions at dimensions 0 and 1
(b) For each Test node, calculate the proportion of Training nodes in its

Wasserstein neighbourhood with Outcome = 1
7. Find least squares distances between Landscapes of neighbourhoods

(a) Calculate landscapes for all nodes
(b) Calculate least squares distance metrics for all Training landscapes, rel-

ative to other Training landscapes, at dimensions 0 and 1. Select the M
least (we used M = 25)

(c) Calculate least squares distance metrics for all Test landscapes, relative
to all Training landscapes, at dimensions 0 and 1. Select the M least

8. Calculate Landscape predictors
(a) For all Training Landscape neighbourhoods, calculate the proportion of

the corresponding successful predictions at dimensions 0 and 1
(b) For each Test node, calculate the proportion of Training nodes in its

Landscape neighbourhood with Outcome Y = 1
9. Logistic regressions

(a) Augment the original data with additional features in separate calcula-
tions: the Wasserstein predictors alone, the Landscape predictors alone,
then both together

(b) Do the LR calculations for all combinations.
10. Assess signal detection on Test data using a Voting algorithm: If predictions

for Wasserstein and Landscape agree at dimension 0, accept the common
dimension 0 result. Otherwise, accept the mean prediction at dimension 1.
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The Wasserstein calculations impose a severe restriction on the use of TDA
with large data sets. The time taken to do them makes it infeasible to pro-
cess more than 1000 nodes. Therefore we draw random samples from the data,
and repeat each complete LR+TDA calculation 10 times. We have found that
using more than 10 repetitions reduces standard deviations of the results only
minimally.

5 Results

5.1 Data

Two data sets, sourced from the Lending Club, give details of unsecured loan
applications, either defaulted or not, for the period 2007-14. The first, LC-B
has 188000 nodes and 56 features. Its default rate is 15.7%. Predictions for this
data set have proved to be particularly difficult [13]. The second, LC-A has
42500 nodes and 25 features, with a default rate 15.1%. 7 Both default rates
are high for a European bank. The LC results are compared with the results
of two alternative data sets. The first, Japan Credit Screening Data is a small
credit data set (690 nodes with 13 features), known to yield a high LR accuracy.
Its source is the UCI repository. 8 The second is the Cleveland oncology data
[8], also sourced from the UCI repository, included to compare our results with
those of an independent TDA study on the same data [19] in order to validate
our procedure as there is no comparable study on credit risk data available. All
implementations were programmed in R on an Intel i7 quad core processor with
64GB RAM, using in particular, packages TDA and TDAStats.

5.2 Exploratory Classification Analysis

First we assess whether there is a topological signal in the data when not in-
cluding logistic regression (step 10 of Algorithm 4.2). The results are collated in
Table 1. We detect a signal in sensitivity and precision. For both LC data sets,
the signal is fairly weak and the overall success rate is not significantly different
from a random guess. However, even a small increase in precision may create
an improvement in assessing credit risk. For the Japan data, no sampling was
required and hence no standard deviation is reported; the signal is strong.

5.3 Sampling Results

Step 1 of Algorithm 4.2 gave details of how the Training set and Test sets were
generated. A total of ten Test sets were generated, and LR+TDA calculations
were carried out on all Training-Test combinations. With samples of size 500 (333
Training, 167 Test), each complete LR+TDA calculation took about 50 minutes
to complete. The Japan and Oncology Training data sets were selected in the
7 Neither is now available from the Lending Club website.
8 https://archive.ics.uci.edu/ml/datasets/Japanese+Credit+Screening
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Table 1. Success Indicators, LC and Japan data, exploratory analysis

Data % Accuracy Sensitivity Specificity Precision
LC-B Mean 51.74 0.529 0.506 0.516
LC-B SD 3.40 0.03 0.06 0.03
LC-A Mean 54.19 0.55 0.54 0.54
LC-A SD 3.86 0.06 0.04 0.04
Japan Mean 74.35 0.827 0.641 0.739
Japan SD n/a n/a n/a n/a

same way, except that all data were used, so that only one test set is necessary.
The results are shown in Table 2. The column headers are: None = Original
data only, Wass = Original data augmented by Wasserstein dimension 0 and 1
predictors, Land = Original data augmented by Landscape dimension 0 and 1
predictors, and Both = Original data augmented by both types of predictor.

Table 2. Success Indicators, LC-B and LC-A, sample size 500, 10 runs each: Japan,
all data 1 run

Mean SD
Data Metric None Wass Land Both None Wass Land Both
LC-B % Accuracy 57.01 56.29 57.07 54.85 4.72 5.00 4.17 3.97
LC-B Sensitivity 0.77 0.78 0.78 0.79 0.16 0.15 0.16 0.16
LC-B Specificity 0.37 0.35 0.36 0.31 0.2 0.19 0.18 0.18
LC-B Precision 0.55 0.55 0.55 0.53 0.04 0.04 0.03 0.03
LC-B AUC 0.63 0.63 0.63 0.62 0.03 0.03 0.03 0.03
LC-A % Accuracy 60.66 59.82 59.58 59.88 4 3.28 4.13 4.73
LC-A Sensitivity 0.52 0.49 0.51 0.52 0.11 0.11 0.13 0.11
LC-A Specificity 0.69 0.7 0.68 0.67 0.1 0.1 0.11 0.11
LC-A Precision 0.63 0.63 0.62 0.62 0.05 0.05 0.05 0.06
LC-A AUC 0.63 0.63 0.63 0.63 0.05 0.05 0.05 0.05
Japan % Accuracy 90.0 83.48 90.0 83.48 n/a n/a n/a n/a
Japan Sensitivity 0.87 0.76 0.87 0.93 n/a n/a n/a n/a
Japan Specificity 0.93 0.93 0.93 0.72 n/a n/a n/a n/a
Japan Precision 0.94 0.93 0.94 0.8 n/a n/a n/a n/a
Japan AUC 0.96 0.9 0.96 0.96 n/a n/a n/a n/a

The results with TDA indicate parity with those without, with some modest
improvements in the means of some metrics. The Both cases show that Wasser-
stein and Landscape should not, in general, be used together. We assume that
they provide contradictory indications of success. It is encouraging that im-
provements (i.e. increases) in success metric means are usually matched by im-
provements (i.e decreases) in success metric standard deviations. Comparison
of results with those from the Oncology and Japan Credit data provide further
evidence that results including TDA features are comparable to those without.
In particular, the independent study [19] using the same oncology data con-
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Table 3. Comparison of Cleveland oncology analyses [8], with and without TDA,
showing figures for best configurations found.

Publication Accuracy
without TDA

Accuracy
with TDA

Sensitivity Specificity Precision

Wu [19] 88.14 89.83 0.89 0.91 0.90
This paper 92.08 92.08 0.93 0.90 0.93

firms our 90% accuracy figure, and also our figures for sensitivity, specificity and
precision. Our result comparisons with and without TDA-augmented data are
stringent because the training sets are optimised for maximum LR Accuracy.
LR+TDA can compete, just!

6 Discussion

Three key considerations when implementing a credit decisioning model are:

1. Can customer creditworthiness be scored in (near) real time?
2. Is the scoring “fair”, can it proved to be so, and is it explainable?
3. How can a model be expressed in terms of a scorecard?

Each of these factors make linear modelling (after sigmoid transformation,
logistic regression) appealing and, indeed, logistic regression has become the de
facto method of credit analysis. Methods have been optimized by individual
banks over the past 30 years. Much of this optimization arises from data col-
lected for credit scoring. With recent progress in explainability of models (see
the DALEX and LIME packages in R) there is a path to work with Regulators
to help them become comfortable with the features being engineered.

Here we have explored features which arise from TDA. A TDA aspiration is
to capture features that a linear model cannot detect. We find indications for a
subtle signal in the TDA summaries which we chose, but the case is perhaps not
compelling. We have tried minor modifications (such as weighting importance of
neighbour scores by proximity; combining dimensions of TDA results in different
ways) but without significant change of predictive power.

Other improvements may be possible, such as extending the voting procedure
to include nodes outside the neighbourhood. However, in our view, a more fun-
damental change is needed. We propose a focus on how to expand the number of
records we may use to train models, as well as introducing novel features whose
structure is not revealed by linear methods. The next steps are for us are to see
if combining TDA predictions based on different training samples can provide
more insight, and to find if Filtration-derived neighbourhoods provide a viable
way forward.

Moreover, the high standard deviations in the LR+TDA predictions may be
an indication of substantial heterogeneity in the data which is not modelled.
Similar to personalised medicine, we shall try to identify subgroups of customers
for which predictions can be reached with substantially smaller variance than
for the entire population.
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