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Abstract. Some Value-at-risk estimates can be so large that their va-
lidity is questionable, and are subjectively rejected. An objective rejec-
tion criterion, based on a comparison of empirical data with a Gener-
alised Pareto model of the data tail and applying the Pickands-Balkema-
deHaan Theorem is presented. A consequent definition and measure of
’Maximum Value-at-risk’ is developed and validated.
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1 Introduction

The context of this paper is Operational Risk (hereinafter OpRisk), which is,
informally, the risk of “things going wrong”. More rigorously, the European
Banking Authority defines OpRisk as “the risk of losses stemming from inade-
quate or failed internal processes, people and systems, or from external events.”
[1]. Regulated firms (banks, insurers, financial advisors etc.) must, annually, cal-
culate the amount of retained capital to cover OpRisk losses that it might incur
in the following year. This is done by fitting an appropriate fat-tailed distribu-
tion to data, drawing random samples from that distribution, and calculating
value-at-risk (VaR). Sometimes the calculated value is considered, subjectively,
”excessive”. In that case, an alternative distribution must be selected. Here we
propose a simple objective criterion for distribution acceptance or rejection.

1.1 Minimum and Maximum Value-at-Risk

A ’natural’ theoretical minimum for VaR exists. It is best understood by re-
ferring to the Loss Distribution Algorithm [2] (usually abbreviated to LDA),
which is a generally applicable method for VaR calculation. The LDA comprises
a convolution of a frequency and a severity distribution, in which a single draw
from the frequency distribution is used in the severity distribution to generate a
random sample of losses. If VaR is calculated using the empirical data only, the
maximum draw from any random sample cannot be greater than the maximum
of the empirical data. Sampling in this way is known as the Empirical Bootstrap.
In contrast, if a distribution is fitted to the data, and a sample is drawn from
the fitted distribution, the sample could contain elements that are much greater
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(even by orders of magnitude) than the maximum of the empirical data. There-
fore, VaR derived using the Empirical Bootstrap is expected to be less than VaR
derived from a fitted distribution.

The concept of maximum VaR is problematical because a draw from a dis-
tributional random sample is theoretically unbounded. Informally, we refer to
a maximum acceptable VaR, which is the maximum that would be tolerated in
normal practice. If an extremely high VaR value emerges, it might be immedi-
ately rejected because it exceeds some established statistic (e.g. a country’s GDP
or capitalisation of a large corporation). Such cases are obvious, but others are
not. An acceptability decision for cases that are higher than usual are harder
to judge, especially if there has been no significant data change compared to
prior calculations. A rigorous definition will be formulated in Section 3. Maxi-
mum VaR (hereinafter MaxVaR) is calculated by optimising a function of the
Generalised Pareto maximum order statistic.

2 Literature Review

In this review we concentrate on the relevance of the Generalised Pareto Distri-
bution (GPD) to tail VaR calculations, and on associated approximations. See
[3] and [4] for details of the latter.
The relevance of the GPD arises from the theory of Threshold Exceedances,
which links the GPD to the tail data (a subset comprising the largest data ele-
ments). The basic formulation was done in the mid-1970s by Pickands [5], and
Balkema and de Haan [6]. They defined an Excess distribution, which models
the distribution of data that exceeds some threshold u. Equation 1 gives the
definition of an Excess distribution Hu(x) when the distribution function of X
is F (x). Hu(x), is equivalent to the distribution of a random variable X-u, given
X > u.

Hu(x) = P (X − u < x|X > u) =
F (u+ x)− F (u)

1− F (u)
(1)

The ensuing Pickand-Balkema-de Haan Theorem (hereinafter abbreviated to
PBH ), states that the Excess distribution tends to a function G as the tail size
decreases (Equation 2). G is the GPD , with density and distribution functions
given in Equation 3. Its three parameters are location (µ), scale (σ) and shape
(ξ). G is particularly sensitive to ξ. See [7] or [8] for the case ξ ≤ 0.

Hu(x)→ G(x, µ, σ, ξ); u→∞ (2)

f(x : µ, σ, ξ) =
( 1

σ

)(
1 +

ξ(x− µ)

σ

)−1− 1
ξ

x ≥ µ, σ > 0, ξ > 0

F (x : µ, σ, ξ) = 1−
(

1 +
ξ(x− µ)

σ

)− 1
ξ

x ≥ µ, σ > 0, ξ > 0 (3)
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A formal proof was given by Leadbetter [9], and an outline of the proof may
be found in the books by Coles [7] (section 4.2.2), Resnick [10], or Embrechts et
al [8]. The PBH theorem has remained largely static since it was first proved,
and enhancements are few and more recent. An example is a 2-dimensional ex-
tension using copulas to model marginal distributions [11].

The proposed solution in this paper assumes that a set of OpRisk losses may
be replaced by the largest loss in the set. This replacement is the basis of the
closed form VaR approximation formulated by Boecker et al. [3], known as the
Single Loss Approximation (SLA). For confidence level 0 < κ < 1, with κ ∼ 1,
the SLA takes the form in Equation 4 for a fitted distribution F :

V aR(κ) ∼ F−1
(

1− 1− κ
ν

)
; κ→ 1− (4)

The SLA assessment by Hess [12] concluded that accuracy is best for high fre-
quency data. Boecker later added a refinement by including a ”data mean cor-
rection” [4]. Degan [13] further modified the SLA by analysing the asymptotic
behaviour of the underlying distribution. Further SLA enhancements were made
by Opdyke [14] and Hernandez [15].

3 Proposed Solution

In order to deal with problem cases where a calculated VaR value appears ex-
cessive, we propose the following definition. It is suggested by the observation
that VaR is largely determined by tail losses, for which a GPD is, by the PBH
Theorem, a good model.

Definition 1.
Maximum VaR, abbreviated to MaxVaR with notation M, is a scaling of the me-

dian value M′, by a scale factor λ, of the distribution of random sample maxima
of given size drawn from a GPD distribution.

This definition enables us to develop an objective acceptability criterion (Sec-
tion 3.3). M(µ, σ, ξ, ν, λ) is a function of the three GPD parameters, the sample
size ν, and the scale factor λ. For convenience, we omit them and write M. The
scale factor, λ, has to be determined by a regression of the derived median M′ on
the fitted distribution VaR. We will refer to that regression line as the Median
Line.

3.1 Overall Procedure

In order to calculate a value for λ, the following procedure is used. It makes use
of the PBH Theorem by modelling the distribution tail by a GPD, and uses the
order statistic of the maximum loss via the SLA.

1. Generate multiple data sets, partition each into body/tail at predetermined
percentages. For each data set:
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(a) Fit an optimal distribution to the body, and a GPD to the tail
(b) Calculate the median of the maximum order statistic of the data

2. Formulate a regression model scaled median against fitted VaR
3. Calculate the best linear fit line with error bounds
4. Optimise the scale factor such that lower error bound gradient is 1. This

forces MaxVaR to be numerically equal to the scaled median.

Assumptions
This above procedure requires two assumptions. Both concern the convolution
of the frequency and severity distributions.

Assumption 1
ν can be treated as a constant, not a random variable. Therefore there are ν
terms in the sum of severities for all Monte Carlo iterations in the LDA. This as-
sumption is justified empirically for medium/large frequencies. For a theoretical
proof, see [16].

Assumption 2
The SLA approximation can be applied to the sum of severities. The sum of
severities can then be replaced by the largest element in the sum. This assump-
tion has been justified for medium/large frequencies in [13] and [12].

3.2 Theoretical basis

We would like to quantify an upper bound for ”acceptable” VaR by considering
the distribution tail. Theorem PBH shows that a good model for a distribution
tail is a GPD. In particular, the tail maximum is significant in determining
the VaR for all losses. Ideally, we would prefer to designate the expected value,
E(M), of the distribution of the maximum as representative of the required upper
bound. However, the generalised form of the integral involved in calculating that
expected value is intractable.

Rather than attempt an approximation for the expected value, we use the
median in place of the mean. This gives an expression which is much easier to
simplify, and uses a principle that often applies in Oprisk : the median is often a
more representative distribution property than is the mean. The median is not
subject to influence by extreme outliers. Using the median prompts the following
proposition.

Proposition 1.
Let M be measured by the scaled median value of the distribution function of the
maximum datum in a random sample of size ν, Sν = {X1, X2, ..., Xν}, drawn
from a GPD(µ, σ, ξ) distribution. Then, if the scale factor is λ and M′ is the
median, M is given by Equation 5.

M′ =
[( 21/ν

21/ν − 1

)
ξ − 1

]σ
ξ

+ µ ; M = λM′ (5)
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Proof.
Consider the LDA component in the rth Monte Carlo iteration. With Assumption
1, there are a constant number ν of severity draws (from a GPD random variable
X ) The sum of severities is:

S(r) = Xr1 +Xr2 + ...,+Xrν (6)

With Assumption 2, replace S(r) by max{Xr1, Xr2, ..., Xrν}. Then the dis-
tribution function of S(r) can be expressed in terms of the distribution function
of a GPD.

For any loss x, with a standardised random variable z = x−µ
σ , denote the

distribution function of a GPD(µ, σ, ξ) by F (x). Then the distribution function
of the maximum of the random samples of size ν, S(r), is F ν(x). Then using the
standard result for the maximum order statistic of a GPD, the median value,
M′ is given by Equation 7.

1

2
= F ν(M′) =

[
1− (1 + zξ)−1/ξ

]ν
(7)

Solving for M′ gives

M′ =
[( 21/ν

21/ν − 1

)
ξ − 1

]σ
ξ

+ µ (8)

Now set M = λM′ for some scale factor λ, which is to be optimised empiri-
cally. The result, Equation 5, follows immediately. ut

Observations from empirical data indicate that there is a lower limit for M.
That limit may not be useful in practice (it may be too low), but its existence
is quite marked. We therefore propose a corollary to the above proposition that
quantifies the lower limit. Figure 1 shows the relationship between the Median
Line, and its lower confidence bound, which forms a MaxVaR line. The horizon-
tal axis records the VaR calculated by fitting a distribution to all the data, V,
and the vertical axis records the calculated MaxVaR, M. The figure is also used
in the corollary.

Corollary
In Figure 1, the lower confidence bound represents the condition in the first part
of Equation 9, referred to a value V = U95. Its gradient is 1, so that numerically,
M = U . Any line with gradient 0 < α < 1 represents a lower value for MaxVar
(the second part of Equation 9. One such line is shown.

P (M < U) = 0.05 ; ∴ P (αM < U) < 0.05 (9)

We now seek a value for α such that P (αM < U) is extremely small. Specif-
ically, the value U is a distance corresponding to a confidence bound of 1.96
standard deviations relative to the Median Line. We seek a line that represents
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Fig. 1. Median Line with the 95% lower confidence bound (representing ”MaxVaR”),
optimised such that ”MaxVaR” is numerically equal to the Fitted VaR. Distance AB
corresponds to a confidence bound of 1.96 standard deviations, and distance AC cor-
responds to 5 standard deviations.

5 standard deviations (i.e. ”5-sigma confidence”). Referring to Figure 1, we set
a value for α as in Equation 10.

α =
AC −AB

AC
= (5− 1.96)/5 ∼ 0.6

∴ P (αM < U) ∼ 2.7× 10−7 (10)

The value α ∼ 0.6 is apparent in practice. See Section 4.

3.3 Acceptance/Rejection criterion

Given a fitted VaR, Vf , an Accept/Reject criterion is formulated as follows.

1. Extract the data tail at p%. Note the tail length ν
2. Fit a GPD to the tail, giving parameters µ, σ, ξ
3. Apply Equation 8 to yield M′
4. Multiply by an appropriate factor λ to give M = λM′
5. Accept the fitted VaR if Vf ≤M. Reject otherwise

3.4 Data

Data sets were generated from random samples drawn from distributions com-
monly encountered in OpRisk for a medium-sized European bank:

– LogNormal, Lognormal mixtures and Lognormal Gamma Mixtures;
– The Max-Stable distributions: Weibull, Frechet and Gumbel;
– Generalised Pareto, Tukey G-and-H, LogLogistic, Burr (Type VII);
– Others: Gamma, LogGamma, and LogCauchy.
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Data sets were then mixed at random, and random data perturbations were
made, so that it would not possible to conclude that any particular distribution is
optimal. Approximately 2500 mixed data sets were generated, each with between
200 and 2000 elements. Elements that were clearly unrealistic (e.g. greater than
5 billion) were removed before use.

4 Results

We first present overall results in terms of two metrics. The scale factors λ, were
calculated from the optimisation in Equation 8. Post-calculation, the number of
data sets ’accepted’ and ’rejected’, according to the criterion in Section 3.3, were
enumerated. In Table 1, if nA is the number of data sets for which the calculated
VaR was accepted, and nR is the number rejected, the Pass Rate is defined as
the ratio nA

nA+nR
.

Table 1. Summary of scale factors λ and pass rates per tail percentage

Tail % Lambda Pass Rate

1 22.3 70.1
2 25 69
5 27.2 74.2
10 34.6 68.3
15 33.9 68.9
20 28.8 66.8
25 25.6 62.4
33 27.5 66.3
50 17.6 63.8

Mean 26.9 67.8
SD 5.3 3.5

Table 1 shows no clear pattern for the variation of λ with tail size. A linear fit
results in R2 = 0.157, and the fit improves as the degree of the fitted polynomial
increases. For a quadratic, R2 = 0.656 and for a cubic, R2 = 0.803. However,
we caution against increasing the polynomial excessively to avoid over-fitting.
Instead, we prefer to use the mean value, and add one standard deviation if
higher measured VaR values are merited due to significant data changes.

Figure 2 shows a typical the regression line (in this case for a 10% tail) of
MaxVaR (calculated using Equation 8) against fitted VaR. Each element in the
point cloud is one of the generated data sets. In this case, the value λ = 34.6
was somewhat high. The point cloud shows a typical ’splay’ from the origin.
Some points with V aR ∼ 100 have MaxVar between 400 and 500. Intuitively,
such VaR values are likely to be deemed ’excessive’. Note that the region repre-
senting mid-to-high fitted VaR and low MaxVar is empty. A straight line traced
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from the origin to the point (600, 1000) (i.e. its gradient is 0.6) approximately de-
marcates the populated region from the ’empty’ region. This observation agrees
with the theoretical value obtained in the corollary to Proposition 1, the value α
in Equation 10. The empirical results from all other percentage tails also agree
with the theoretical result.

Fig. 2. Scatter of Fitted VaR against scaled VaR Upper Limit, showing linear fit with
lower 95% confidence bound aligned at gradient = 1. The VaR Upper Limit is repre-
sented by the upper 95% confidence bound.

Figure 3 shows a view of the collective results. The surface shown is of Max-
VaR (the dependent variable) against the independent variables Tail % and
Fitted VaR. It shows the following features in particular.
1. An association between high MaxVaR, and low tail % plus high Fitted VaR.
2. At fixed tail %, sharp ridges reflect wide variation of MaxVaR with Fitted
VaR. Variation is most marked for Fitted VaR between 1000 and 2000.
3. The region corresponding to high Fitted VaR plus a high tail % is empty,
with a sharp diagonal linear boundary, as in Figure 3.

Fig. 3. The surface shows the ”choppy” relationship between MaxVaR and variables
Fitted VaR and Tail %, including a sharply demarcated ’empty’ region, and increasing
MaxVar with increasing Fitted VaR and decreasing Tail %
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4.1 Informal Validation

For an informal validation, ten additional data sets were generated, and the test
of Section 3.3 was applied. Table 2 shows a comparison of the fitted VaR, and
the MaxVaR for the tail percentages indicated. The λ values from Table 1 were
used for each corresponding tail percentage. Column Note is an ”Accept/Reject”
decision, qualified in some cases.

Table 2. Validation

Fitted VaR 1% 2% 5% 10% 15% 20% 25% Note

1 104 106 140 135 132 129 108 95 Accept, note 1
2 4101 5667 27201 5191 6338 6534 5687 5444 Accept, note 2
3 3.0 19.4 21.8 42.8 17.1 27.2 24.4 19.3 Accept, note 3
4 828 531 648 730 671 755 843 735 Reject, note 1
5 1017 1471 1649 1874 2251 3049 2922 2231 Accept
6 6125 41292 46292 50365 3794 59787 41291 294855 Accept, note 2
7 1.0 4.1 4.6 5.0 7.0 7.5 6.4 4.9 Accept, note 3
8 201 763 856 898 1131 1073 940 1002 Accept
9 135 3724 4855 1615 1510 1259 1184 722 Accept
10 531 5997 7974 11844 3301 2511 2023 1285 Accept

Validation Notes for Table 2
1. Majority decision based on tail %
2. Accepted, but VaR is intuitively high given the fitted LogNormal parameters
3. Low VaR would not normally be subject to a ”maximum” test

5 Discussion

The problem outlined in the Introduction - how to formulate an objective crite-
rion to decide whether or not a fitted VaR value is excessive given the data, has
been solved by developing an optimisation procedure based on a GPD model
of tail data. The result is the MaxVaR value, M, which should be greater than
the fitted VaR. The decision criterion is not foolproof, as the comments on the
validations in Table 2 show. It should be seen more as guide.

We end with two reasons why a VaR calculation might be considered ’exces-
sive’. First, the gradient of the fitted cumulative distribution function might be
very small (although positive) for large loss values. The 99.9% centile will there-
fore be extremely large. Second, the data fitting process may have failed, in the
sense that it may have converged to an alternative local optimum. In principle,
any marked change in VaR on a year-on-year basis should be reflected in a clear
change in the data distribution. For example, if one or more severe losses have
appeared, an increase in VaR would be expected.
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