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ARTICLE INFO ABSTRACT
Keywords: Anaerobic digestion (AD)-based biogas production mitigates the environmental footprint of organic wastes (e.g.,
N.et'zem food waste and sewage sludge) and facilitates a circular economy. The work proposed an integrated system
Bioenergy where the thermal energy demand of an AD is supplied using an air source heat pump (ASHP). The proposed

Data-driven models system is compared to a baseline system, where the thermal energy is supplied by a natural gas-based heating

system. Several machine learning models are developed for predicting biogas production, among which the
Gaussian Process Regression (GPR) showed a superior performance (R? = 0.84 and RMSE = 0.0755 L gVS™*
day™!). The GPR model further informed a thermodynamic model of the ASHP, which revealed the maximum
biogas yield to be approximately 0.585 L.gvVS~l.day ! at an optimal temperature of 55 °C (thermophilic).
Subsequently, life cycle assessment showed that ASHP-based AD heating systems achieved 28.1 % (thermophilic)
and 36.8 % (mesophilic) carbon abatement than the baseline system.

Life cycle assessment
Waste management

1. Introduction effective way of reducing the volume of organic waste significantly,
while recovering value-added products such as biogas and digestate. The
Over the past decades, anaerobic digestion (AD) has proven to be an performance of an AD process is strongly influenced by the choice of
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Fig. 1. Integration of the thermal systems with AD-CHP in for the baseline and alternative scenarios. The baseline scenario corresponds to a natural gas-based AD
heating system, while the alternative scenario uses an ASHP-based heating system. Abbreviations — El: Electricity, D: Diesel, Ch: Chemicals, Em: Emissions. The grey

shaded regions indicate processes that are included within the system boundary.

input waste which varies from vegetable and animal waste, agricultural
waste to industrial and municipal solid waste, etc. Using multiple waste
streams as a feedstock (co-digestion) is receiving increasing attention
due to a higher biogas and methane production than that of the single
feedstock AD processes (mono-digestion) (Pastor et al., 2013). Co-
digestion is an efficient technique that balances the carbon-to-nitrogen
(C/N) ratio, reduces the inhibitory effect of ammonia, and overcomes
the disadvantages of mono-digestion (Karki et al., 2021; Polizzi et al.,
2018). This further intensifies the fermentation process due to substrate
nutrient balance, digesting the leftover materials and resulting in higher
biogas production (Xu et al., 2018).

The AD process is also influenced by the choice of operating pa-
rameters such as pH, temperature, retention time, and solid content
(Kothari et al., 2014). In terms of the temperature range of AD, there are
psychrophilic (10-30 °C), mesophilic (30-40 °C), and thermophilic
(50-60 °C) conditions (Sudiartha et al., 2022). At temperatures below
30 °C, the AD process becomes acidic, which is unfavourable for high
biogas production. Similarly, at temperatures above 70 °C, the microbial
communities (methanogenic bacteria) that facilitate the AD process are
destroyed, which diminishes biogas production (Sun et al., 2022). It is
seen that for temperatures higher than 45 °C, the amount of gas pro-
duction monotonically increases (Sharma et al., 2022) and in the case of
thermophilic bacteria, this temperature can increase up to 70 °C.

However, some of the studies argued that exploiting the monotonic
increment of biogas by maintaining a temperature higher than 45 °C was
not economically viable for several feedstocks, since maintaining this
temperature would require significant thermal energy input. (Almo-
mani, 2020). Similarly, in the psychrophilic range, the process is not

economically viable due to limited biogas production. Therefore, tuning
the operating temperature dynamically with changes in the input
feedstock variation has been an everlasting challenge in AD process
management (Nie et al., 2021).

AD systems are equipped with different types of heating systems with
hot water or steam as the working fluid: (a) continuous passage of water
through a heat exchanger installed outside the digester, (b) passage of
hot water through heating coils installed inside the digester, (c) passage
of hot water through the jacket around the digester, and (d) direct in-
jection of steam into the AD. The required hot water or steam can be
produced using (a) natural gas-fired boilers, (b) solar water heaters, or
(c) biogas-fired boilers. Natural gas-fired boilers are the most common
type of systems used in tandem with AD which has a significant eco-
nomic and environmental footprint. On the other hand, the efficiency of
solar energy-driven AD heating systems is strongly regulated by inter-
mittency and geo-distributed availability of solar irradiance (Lombardi
et al., 2020). For systems with biogas-fired boilers (or combined heat &
power (CHP)), it is possible to supply the thermal energy required by AD
by utilizing a fraction of the output biogas (Edwards et al., 2017;
Evangelisti et al., 2014). However, deploying this system to an extreme
climate with large seasonal temperature variations could drastically
diminish the biogas output (thus heat and electricity) due to an abrupt
increase in seasonal heating demand of AD. To circumvent these chal-
lenges, this work provides an alternative solution for supplying the
thermal energy required by the AD using an air-source heat pump
(ASHP), which is a low-carbon emission technology (Yu et al., 2022).
Downstream to an AD plant, usually biogas-driven CHP plants are
installed, which can simultaneously supply electricity and heat to the
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central electricity grid and district heating network.

To study the performance of an ASHP-AD-CHP system, an accurate
biogas (and methane) yield prediction model is essential, which can be
achieved by data-driven AD modelling (Cruz et al., 2022). These models
require preparing an a priori database, based on which they are trained.
Following the training procedure, several unseen trial cases (test data)
are subjected to the ML model, based on which the accuracy of the
model is evaluated. A wide range of ML models has been developed for
predicting biogas production from AD processes, among which artificial
neural network (ANN) (Senol, 2021), recurrent neural network (RNN)
(Park et al., 2021), random forest (RF) (Wang et al., 2021), support
vector machine (SVM) (Long et al., 2021), and extreme gradient boost
(XGBoost) (Xu et al., 2021) have been popular choices among re-
searchers. Therefore, the work compares the accuracies of five different
ML models for predicting biogas yield and methane content for AD
processes.

The optimal ML model informs the thermodynamic model of an
ASHP and whole-system life cycle assessment (LCA) models, based on
which the technological and environmental benefits of the ASHP-AD-
CHP system are systematically evaluated. An exhaustive investigation
is carried out which includes feature importance and parametric sensi-
tivity analyses. The environmental benefit of the proposed integrated
system is compared to a baseline AD-CHP operation system consisting of
a natural gas-based heating system using LCA. To the best knowledge of
the authors, this is a maiden attempt for integrating an ASHP with an AD
system based on ML modelling, thermodynamic analysis, and LCA.

2. Material and methods

The technical feasibility and environmental benefits of retrofitting an
AD system with ASHP is evaluated via thermodynamic analysis and LCA.
An ML-based data-driven model of AD system using food waste and
sewage sludge as feedstocks (Section 2.2) is coupled with a thermody-
namic model of ASHP (Section 2.3). The data-driven and thermody-
namic models together inform the input parameters for LCA (Section
2.4) to quantify the environmental benefits of the proposed solution.

2.1. System-level integration of heat pump with anaerobic digester

For different input waste compositions, the AD process should be
kept within a temperature range between 30 and 55 °C to ensure optimal
biogas production. Since the input temperature of the waste is usually
always lesser (within the range of 10-20 °C) than the temperature range
of AD reactor, additional thermal energy is required to elevate the
temperature of the waste stream (thus enhancing the microbial activity).
In usual practice, the thermal energy required by AD is resourced from a
central thermal energy production plant driven by natural gas (see
Fig. 1).

The alternative scenario incorporates an HP, which is an
environment-friendly technology with a potential to reduce dependence
on the fossil fuel sector. ASHP attracts significant attention among the
other categories of HPs (such as water source and geothermal) due to its
simpler configuration and lower initial cost. In addition, ASHP has high
heating potential in cold-climate and is characterized by energy-saving
potential, while being operationally reliable. By using HP, the heat
released in the condenser is utilized to heat the external fluid which is
applied as the heat agent for the heating purpose of AD as shown in
Fig. 1. In fact, AD acts as a thermal storage tank and absorbs the heat that
is rejected from the HP. For different operation temperatures of AD, the
condenser heat capacity is calculated to provide the required heat for the
digester. According to the condenser heat, the refrigerant mass flow rate
of the ASHP is calculated, and by having the mass flow rate, compressor
power consumption and system COP are consequently obtained using
Eq. (10).

The main product of AD is biogas which has a significant percentage
of methane and can be used as a combustible material in various
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Table 1
Statistics of the databases for developing biogas yield and methane content
prediction models containing 167 and 91 datasets, respectively.

Biogas yield prediction model database

Type Variable Min Max Average SD

Inputs OLR (gVS L™ ! day™) 0.04 1615  3.46 2.89
VS (wt.%) 1.58 35.26 9.59 6.76
Temperature (°C) 20 56 39.9 8.15
HRT (day) 4 100 28.67 17.64
pH 6.4 8.3 7.55 0.40
Reactor volume (L) 0.1 64 9.22 12.14

Output  Biogas yield (L gVS~'day™})  0.16  0.97 0.55 0.19

Methane content prediction model database

Type Variable Min Max Average SD

Inputs OLR (gVS L1 day ™) 0.37 19.7 4,27 3.74
VS (wt.%) 1.43 35.26 8.38 6.98
Temperature (°C) 35 56 43.75 9.01
HRT (day) 3 100 25.65 16.83
pH 6.61 8.3 7.6 0.32
Reactor volume (L) 0.1 30 5.95 5.25

Output Methane content (%) 40.3 78. 61.17 6.71

industries to produce electricity and heat. By installing an onsite CHP,
the AD-generated biogas is further converted to thermal energy and
electricity, which can partially displace the load on the central grid.
Therefore, by performing the AD process, it is possible to reduce the
volume of sludge, and use the resulting biogas for energy production.

2.2. Machine learning model for anaerobic digestion

2.2.1. Data assimilation

Being a multi-step multi-physics biokinetic process, developing an
intricate model for AD is highly complex. The work herein requires
prediction of biogas production rate and percentage of methane within
biogas by deploying a model for AD. To achieve this, a data-driven
model is developed based on the data obtained from the literature that
includes a wide range of food waste and sewage sludge as AD feedstock.
A total of 167 biogas yield and 91 methane percentage datasets are
obtained from the literature (see Supplementary Material). It is impor-
tant to note that these datasets only represent the low-solid AD (i.e., total
solids (TS) < 25 wt.%). Since the ML model is to be integrated with an
ASHP thermodynamic model, the primary criterion for shortlisting
relevant literature is that it must report the operating temperature,
which limits the size of the dataset. Additionally, the mismatch between
the size of biogas yield and methane percentage datasets is due to the
inconsistency in output variable reporting within the collected datasets.
While one can incorporate a large variety of input variables for con-
structing the database, it is not practically feasible to gather data from
the literature for each of them. Therefore the following variables are
chosen based on their frequency of reporting and importance in regu-
lating biogas (and methane) yields: (1) organic loading rate (OLR) in
gVvs L1 day_l, (2) volatile solid (VS) in wt.%, (3) reactor temperature in
°C, (4) hydraulic retention time (HRT) in days, (5) pH, (6) reactor vol-
ume in L, (7) biogas generation in L gVS’1 day’l, and (8) methane
content in biogas expressed in vol.%. Out of these eight attributes, the
first six are to be used as input variables (or predictor) to the data-driven
models, while the latter two are the output variables (or predicted). It is
inevitable that the constructed dataset still contains missing values of
input features. This is addressed by the mean imputation of missing
value for facilitating a mean regression model development, which is a
common practice in data-driven bioprocess modelling (Ascher et al.,
2022a). A statistical summary of these attributes across the entire
datasets is provided in Table 1. Since the dataset contains attributes of
different range and central tendency, a normalization step is required to
be applied before being fed into the data-driven model. Following a
prior ML work (Li et al., 2022), the standard normal variate (Z;) is used
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for this purpose, defined as Z; = (X; —u)/o. Here X; is the data series for
i variable, u and o are the mean and standard deviation of the data
series corresponding to the i variable.

To gain a better sense of nonlinear relationship among any two
variables in the parametric space, the Spearman Correlation Coefficient
(SCC), a nonlinear statistical metric is selected and defined as (Ascher
et al., 2022a),

i {R(:) — R() HR() — R }

SCC =
5 ota) G 3 (k) - R

@

Here, the total length of data points is N, R(x;) and R(y;) are the rank

of each sample for the variables of interest, and R(x) and R(y) are the
average ranks of the two variables. An SCC value of zero suggests that
the variables are uncorrelated, while SCC = +1 suggests the strongest
possible correlation between the variables. The result obtained from SCC
analysis is visualized via a two-dimensional heatmap in Section 3.1.

2.2.2. Model development

Two data-driven models are developed where the first predicts
biogas production in L gVS~! day !, while the latter predicts percentage
of methane content in biogas. Each model is provided with six inputs:
OLR, VS, HRT, reactor temperature, pH, and volume. The ML models are
implemented based on the Regression Learner Toolbox in the MATLAB
R2021b environment. Five different types of data-driven ML methods
such as Neural Network (NN), Support Vector Machine (SVM), Gaussian
Process Regression (GPR), Tree, and Ensemble are explored to predict
the two output variables of AD. The MATLAB toolbox enables automatic
hyperparameter optimization based on the Bayesian Optimization
method (iterations = 30), which provides the best set of hyper-
parameters for each ML algorithm. Each of the databases was randomly
split into two parts (a) 12.5 % for testing and (b) 87.5 % for training/
validation. With the training/validation dataset, a 5-fold cross-
validation was performed to ensure model generalizability and
optimal fitting.

The first method, NN, is a widely used non-linear ML algorithm that
creates a computational graph consisting of input, output, and hidden
layers. Essential hyperparameters search ranges adopted by the toolbox
are number of fully connected layer: 1-3; activation function: ReLU,
Tanh, Sigmoid; regularization strength (Lambda): 5.988 x 1078-5.988
x 10?% and neurons in each layer: 1-300.

The second method SVM is a non-parametric non-linear non-
probabilistic method, that relies on mapping the input features into a
high-dimensional space using a non-linear kernel function. Subse-
quently it creates an optimal hyperplane to differentiate between
various subsets. Important SVM hyperparameters search ranges in the
MATLAB toolbox are box constraint: 0.001-1000; kernel scale:
0.001-1000; Epsilon: 0.00021868-21.8681; and kernel function:
Gaussian, Linear, Quadratic, and cubic.

The third algorithm GPR is a non-linear, non-parametric, Bayesian
probabilistic data-driven method specifically suitable for datasets with
high variances. An additional incentive offered by GPR is the informa-
tion about predictive uncertainty of the model output variable, which is
absent for most of the other non-probabilistic data-driven methods.
Essential GPR hyperparameters ranges considered in the toolbox are
Sigma: 0.0001-1.9087; basis function: Constant, Zero, Linear; kernel
function: Nonisotropic Exponential, Nonisotropic Matern 3/2, Non-
isotropic Matern 5/2, Nonisotropic Rational Quadratic, Nonisotropic
Squared Exponential, Isotropic Exponential, Isotropic Matern 3/2,
Isotropic Matern 5/2, Isotropic Rational Quadratic, Isotropic Squared
Exponential; and kernel scale: 0.096-96.

The fourth method is the tree-based algorithm, constructed of nodes
(or leaves) and branches, which are routinely used for solving regression
problems. The hyperparameter search range responsible for this algo-
rithm is minimum number of leaves: 1-83. The fifth algorithm is the
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ensembles of trees, which uses several trees constructed in series or
parallel, which circumvents simplicity and overfitting problems expe-
rienced by single tree-based algorithms. Optimizable ranges for hyper-
parameters for the ensemble-based method are ensembling method:
Bag, Least Square Boost (LSBoost); number of learners: 10-500; learning
rate: 0.001-1; minimum leaf size: 1-83; and number of predictors to
sample: 1-6. Based on the description of hyperparameter ranges for
various data-driven methods, the Bayesian optimization algorithm
yields the five best possible combinations of hyperparameters with
optimal regression fitting.

2.2.3. Accuracy metrics and feature importance

For examining the degree of accuracy and degree of fitting for a
regression-based problem several metrics are essential to be considered
such as: mean squared error (MSE), mean absolute error (MAE), root
mean squared error (RMSE), and coefficient of determination (R2)
defined as follows.

N srue f’f‘l[ 2
MSE = Ei:l (}i v y{ ) (2)
e =]
MAE = =N 3)
> (s =)’
_ i=1
RMSE = N (4)
EN ( sirue __ y;‘ared)z
RZ —1— i=1\/i i (5)

N true pred 2
Zi:l (yi - avg)

where y¢ and " are the true and predicted values of output variable,

respectively, and mr,egd is the average of all the predicted values of an

output variable.

In addition to accuracy metrics, quantifying the interpretability of a
data-driven model is essential. In this work, the interpretability of the
model is assessed by conducting the feature importance via Shapley
Additive Explanation (SHAP) metric, a game theory-based model output
explainer (Ascher et al., 2022b). The SHAP values obtained from the
data-driven model are represented in terms of average feature impor-
tance (AFI) using the following expression,

AFI = softmax(Jmean(SHAP) | ) (6)

where the softmax function converts the average of absolute SHAP
values (i.e., |mean(SHAP) |) to a range between 0 and 1.

2.3. Thermodynamic model of air source heat pump

An ASHP consists of a compressor (process 1-2), a condenser (pro-
cess 2-3), an expansion device (process 3-4), and an evaporator (process
4-1) as shown in Fig. 1. The low-pressure vapour refrigerant at point 1 is
compressed to the point 2 where the temperature is increased, and
pressure reaches a condensation level. The high temperature vapour
exiting the compressor de-superheats and condenses in the condenser
and its temperature decreases at point 3 (heat Q¢ is released). The high-
temperature and high-pressure liquid refrigerant leaving the condenser
is then throttled via the expansion valve to reach the evaporator tem-
perature at point 4. The produced two-phase mixture then fully evapo-
rates in the evaporator by absorbing heat from a heat source Qg (e.g.,
outdoor air) and returns to the compressor for circulation (Yu et al.,
2022). The model assumption are: (a) each equipment in the system is
operated at steady-state condition; (b) pressure loss is neglected in the
evaporator and condenser; (c) compressors are considered as isentropic
with efficiency of 100 %; (d) refrigeration state at point 1 and 3 is
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saturated vapor and saturated liquid, respectively; (e) heat transfer in
the heat exchanger equipment is isothermal; (f) The integrated system is
operated under the steady-state condition; and (g) the AD is well insu-
lated and heat loss from the digestion is considered negligible.

To simulate the ASHP cycle, each component is considered as a
control volume. Using the energy and mass balance for each component
the governing equations are obtained. As observed in Fig. 1, the
condenser heat load (QC) is calculated as,

Oc = rir(hy — ) %)

where m is the mass flow of refrigerant, h is the specific enthalpy. The
rejected heat in the condenser is absorbed to provide the heat demand of

the AD process. The heat transfer rate (QE) of the evaporator is expressed
as,

Oy = m(hy — hy) ®)

where subscript E is used to denote the evaporator. Similarly, the
compressor power consumption is (WcDmp) is defined as,

WCamp = m(hZ - hl) (9)

Here subscripts 1 to 4 represent the numbering of the state points
shown in Fig. 1. Consequently, the coefficient of performance (COP) in
the ASHP is calculated as:
cop =2

Comp

(10)

It is important to note that for all the simulation cases, the evaporator
temperature is fixed to 0 °C. The entire model is implemented in MAT-
LAB R2021a and linked to the REFPROP v9.0 database, which contain
the thermodynamic properties (such as enthalpy, entropy, temperature,
pressure) of the refrigerants. The COP of the ASHP for a range of
evaporator temperatures is benchmarked using a related literature
(Baskaran and Mathews, 2015) (see supplementary material).

2.4. Life cycle assessment

2.4.1. Goal, Scope, and functional unit

The goal of the LCA adopted in this work is to perform a comparative
assessment between a baseline AD system located in the United Kingdom
provided with thermal energy generated with natural gas to an alter-
native scenario where the required heat is provided using an ASHP
described in the previous section. The scope of the LCA framework in-
cludes sub-processes such as transportation of feedstock to AD plant,
modelling of AD process that intakes food waste and sewage sludge as
feedstock, modelling of a biogas-driven CHP plant, and supplying CHP-
generated energy content to the central electricity and heating grid. In
addition to biogas, the AD plant generates digestate as a by-product,
whose utilization or disposal is excluded from this study. Here, 1 wet
tonne of feedstock is assigned as the functional unit (FU). The frame-
work follows the guideline provided by ISO 14,040 and is implemented
within a commercial LCA software GaBi (Gupta et al., 2022a).

2.4.2. Life cycle inventory and process models

The hypothetical AD system is fed with two types of feedstocks, out
of which 60% is food waste and 40% is sewage sludge (Kesharwani and
Bajpai, 2020). Therefore, within the FU of 1 tonne feedstock, 600 kg is
food waste and 400 kg is the sewage sludge. Two separate truck pro-
cesses implemented in GaBi (US: Truck - Dump Truck/52000 1b payload)
transport these two waste streams over a 20 miles distance to the AD
plant. The diesel consumptions for the transportation process are
modelled via the GaBi process GB: Diesel mix at refinery.

The AD plant requires electricity, chemical, and heat as valuable
inputs to produce biogas as the major value-added product and off-gas
emissions. The electricity required by the AD is modelled using the
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Table 2
Life cycle inventory used for conducting the analysis in GaBi software.
Quantity Value (unit) Reference
Food waste 60 % of FU i.e., (Kesharwani and
0.6t Bajpai, 2020)
Sewage Sludge 40 % of FU i.e., (Kesharwani and
0.4t Bajpai, 2020)
Distance of feedstock generation site to 20 miles Assumed

AD plant

Polyacrylamide (for AD plant) 0.429 kg/t AD (Edwards et al.,

feedstock 2017)
Electricity (for AD plant) 15.4 kWh/t AD (Edwards et al.,
feedstock 2017)
Thermal energy for AD plant with 83.5 MJ/t AD Calculated
37.5 °C operating scenario feedstock
Thermal energy for AD plant with 55°C ~ 148.4 MJ/t AD Calculated
operating scenario feedstock
Direct CH4 emissions (for AD plant) 10.855 g/kg (Ascher et al., 2020)
biogas
Direct CO, emissions (for AD plant) 16.118 g/kg (Ascher et al., 2020)
biogas
Biogas generation for AD plant 4.22 kg/t AD Calculated
operating at 37.5 °C feedstock
Biogas generation for AD plant 7.35 kg/t AD Calculated
operating at 55 °C feedstock

(Ascher et al., 2020)
(Ascher et al., 2020)
(Ascher et al., 2020)
(Ascher et al., 2020)

Direct CO emissions (for CHP plant)

Direct CH,4 emissions (for CHP plant)

Direct NO emissions (for CHP plant)

Direct NMVOC emissions (for CHP
plant)

Particulate matter (2.5-10 pm)
emissions (for CHP plant)

2.16 g/kg biogas
8.72 g/kg biogas
2.78 g/kg biogas
1.97 g/kg biogas

0.72 g/kg biogas  (Ascher et al., 2020)

Electricity consumption of the HP for 4.49 kWh/t AD Calculated
37.5 °C AD operation scenario feedstock

Electricity consumption of the HP for 10.68 kWh/t AD Calculated
55 °C AD operation scenario feedstock

GB: Electricity grid mix process. An essential chemical required for the
AD process is polyacrylamide, which is modelled using the GaBi process
EU-28: Polyamide 6 (PA6). The heat required by the AD plant depends
on the operating temperature of the AD reactor and is given by the
following equation.

Oup = mFSCp,FS(TAD - TFS) 11)

where mgs is the mass flow of feedstock (1 tonne of waste per year), Cp rs
is the specific heat capacity at constant pressure for the mixed waste, Tap
is the operating temperature of AD (i.e., 37.5 °C for mesophilic condition
and 55 °C), and Trs is the temperature at which the feedstock enters the
AD reactor (assumed as 15 °C for UK-based scenario). The C, ys for the
mixed waste stream containing 60 % food waste and 40 % sewage sludge
is calculated as 3.71 KJ kg™'K™! based on the data obtained from
literature (Kesharwani and Bajpai, 2020).

The heat required by the AD i.e., Qap is supplied by two mechanisms
in the LCA framework: (a) for the conventional scenario the heat is
supplied from grid which is generated from natural gas (modelled using
GaBi process GB: Thermal energy from natural gas) and (b) for the
alternative scenario the heat is supplied by an on-site installed ASHP,
whose COP depends on the operating temperature. The electricity
required by the HP in the alternative scenario is modelled using GB:
Electricity grid mix. The biogas produced by the AD reactor under
varying temperature and other input conditions are calculated using the
ML model described in earlier sections. The direct emissions for the AD
systems such as carbon dioxide and methane caused by biogas leakage
are obtained from a relevant literature (Ascher et al., 2020).

The biogas produced by the AD is further fed to an onsite CHP system
producing electricity and heat simultaneously, which ultimately is
supplied to the grid. The following equations describe the electricity
(Egen) and heat (Qgen) production from biogas.
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Qeen = M (12)
PG

Ego = 1" msaCVse 13)
Psc

In addition, the CHP causes a significant amount of direct emissions
to the air which includes carbon monoxide, methane, nitrogen oxide,
non-methane volatile organic carbon (NMVOC), and particulate matter
(Ascher et al., 2020). In Eqgs. (13) and (14) 4§ = 0.5 is thermal effi-
ciency of CHP, 1" = 0.33 is the electrical efficiency of CHP, CVps = 23
MJ m~2 is the net calorific value of biogas, Ppc =12 kg m~? is the
density of biogas, and mp is the mass of biogas entering into the CHP.
Given the AD operating and feedstock conditions, the ML model de-
termines the mass of biogas generated that enters the CHP. The value-
added products generated by the CHP system offsets the environ-
mental footprint of the total system by supplying electricity and heat to
the grid. These emission offsets are calculated using the emissions fac-
tors provided by the UK government as 0.212 kgCO3-eq/kWh for elec-
tricity and 0.203 kgCOz-eq/kWh for natural gas. This calculation
assumes that using heat is analogous to consumption of natural gas. The
life cycle inventory (LCI) is provided in Table 2.

2.4.3. Life cycle impact assessment

The relative benefits of the two different scenarios i.e., AD with HP
and AD with natural gas-based heating, the GWP metric is considered
expressed in terms of kgCO2-eq/t feedstock added to the AD. The GWP is
evaluated using the CML 2001-August 2016 methodology (Gupta et al.,
2022a) and measured in terms of GWP over 100 years (i.e., GWP100),
which is in accordance with the IPCC norms. It is important to note that
the biogenic CO2 is excluded from the LCA framework, which is
consistent with a prior work (Gupta et al., 2022b).

Table 3
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2.4.4. Data interpretation

Following the LCIA described in Section 2.4.3, the environmental
impact (i.e., GWP) for AD systems resources resourced with thermal
energy from (a) natural gas and (b) heat pump is compared. For each
scenario, two cases are considered which incorporates two different
operating conditions of the AD process (Section 3.3). In addition, a one-
way sensitivity analysis is performed to examine the individual influ-
ence of parameters on the GWP. The sensitivity ratio for ith parametric
change (SR;) is considered defined as,
GWPbaseline _Gwpodiied

Gwphadine
i
ppusline _ prodified

SR; = ’ 14

i
phaseline
i

where ®; and GWP; are the value of ith parameter and the GWP corre-
sponding to that. Some of the essential parameters considered in the
sensitivity analysis are thermal and electrical efficiencies of the CHP
unit, electricity and polyacrylamide consumption of the AD, waste
transportation distance, biogas generation, temperature of the AD input
feedstock, and COP of the ASHP.

3. Results and discussion
3.1. Performance and interpretability of data-driven models

The accuracy metrics such as RMSE, R2, MSE of five different ML
models (GPR, ensembles of trees, NN, tree, and SVM) developed to
predict biogas production and methane content in biogas are provided in
Table 3. In addition, the prediction speed in observations per second and
the model training time in seconds are provided. A high-level inspection
of Table 3 reveals that the GPR outperforms all other ML models for
predicting both biogas production and methane content in biogas. For
the GPR-based biogas yield prediction model R? = 0.84 and RMSE =

Performance of various data-driven models investigated for constructing the biogas yield (L gVS™! day ') and methane content in biogas (%) prediction models. The

rank is provided based on R? and RMSE values.

Output variable Model Type Optimal Hyperparameters RMSE R? MSE MAE Prediction Training
Speed (Obs/sec)  Time
(sec)
Biogas yield (L GPR Basis function: constant, kernel function: nonisotropic squared 0.0755 0.84  0.0057  0.057 20,000 18.731
gvs 1 day B exponential, kernel scale: 1.1254, sigma: 0.028, standardize data:
true)
Ensemble of Ensemble method: least square boost, minimum leaf size: 2, number 0.0819 0.82 0.0067 0.062 5400 30.686
Trees of learners: 47, learning rate: 0.032, number of predictors to
sample: 6)
NN Fully connected layers: 2, activation: ReLU, iteration limit: 1000, 0.1060 0.69 0.0112 0.071 14,000 58.765
regularization strength: 0.0003, standardize data: true, 1st layer
size: 100, 2nd layer size: 290)
Tree Surrogate decision splits: off, minimum leaf size: 2) 0.1172  0.62  0.0137  0.087 17,000 11.333
SVM Type: fine Gaussian, kernel function: Gaussian, kernel scale: 0.61, 0.1174 0.62 0.0138 0.091 26,000 0.0281
box constraint: automatic, epsilon: automatic, standardize data:
true)
Methane GPR Basis function: constant, kernel function: nonisotropic matern 3/2, 1.4575 0.82 2.1244 0.7839 19,000 18.648
content in kernel scale: 0.3016, sigma: 0.0056, standardize data: true)
biogas (%)
Ensemble of Ensemble method: bag, minimum leaf size: 1, number of learners: 1.9081 0.69 3.6410 1.1240 540 101.73
Trees 500, number of predictors to sample: 4)
Tree Surrogate decision splits: off, minimum leaf size: 4) 2.5543 0.45 6.5243 1.4735 25,000 9.678
SVM Kernel function: Gaussian, kernel scale: 2.22, box constraint: 2.5962 0.43 6.7403 1.7228 26,000 23.798
43.492, epsilon: 0.461, standardize data: false
NN Fully connected layers: 3, activation: sigmoid, iteration limit: 1000, 2.9885 0.25 8.9309 2.0571 18,000 37.502

regularization strength: 0.0189, standardize data: yes, 1st layer size:
91, 2nd layer size: 1, 3rd layer size: 3)
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Fig. 2. Results for the data-driven models associated with AD of food waste and sewage sludge: (a) Spearman Correlation Coefficients between any two variables of
interest, (b) and (c) Parity plots showing performance of the optimal biogas yield and methane percentage prediction models evaluated based on testing dataset, (d)
and (e) Feature importance analysis for biogas yield and methane percentage prediction models via SHAP value quantification. The quantities shown in the feature
importance maps correspond to Softmax function-normalized mean of absolute SHAP values, showing relative importance of input features towards predictions of

output variables (biogas yield and methane percentage).

0.0755 L gVS~! day ! Similarly, the GPR-based methane content pre-
diction model has R? = 0.82 and RMSE = 1.4575 %. To test the signif-
icance level of the GPR model predictions, the F-statistic score is used,
given by,

R*(N — k)

F=— " "
1—R(k—1)

(15)

where N is the number of samples (167 and 91 for biogas yield and
methane content models, respectively), k = 6 is the number of inde-
pendent parameters. The R? values for biogas yield and methane content
models are 0.84 and 0.82 (see Table 3). This leads to F-statistic scores for

biogas yield and methane content models to be 91.9 and 42.6. Referring
to the F-table these correspond to the probability value (p-value) of zero,
suggesting that the GPR model correctly predicts the data trend (i.e., the
correlation is highly significant). The predictive accuracy of the optimal
model is competitive with those reported in the literature of ML-based
AD modelling with R? in the range of 0.8 to 0.9 (Cruz et al., 2022;
Long et al., 2021; Wang et al., 2021; Xu et al., 2021). This superior
performance of the GPR model when compared to other models is
attributed to the capability of probabilistic Gaussian processes to handle
datasets with a high degree of variance (see Table 3). Therefore, non-
probabilistic, yet kernelized (e.g., SVM) or non-kernelized (e.g., NN,
tree, ensembles) methods suffer inferior predictive accuracies under
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Table 4
Waste characteristics of two cases considered for the parametric sensitivity
analyses.

Parameters Thermodynamic Sensitivity LCA

Analysis

Case 1 Case 2 Case A CaseB
OLR (gVS L' day ™) 5 1 1.65 3.42
VS (wt.%) 15 30 1.2 2.5
HRT (days) 20 15 30 20
pH 7.5 7.5 7.5 7.7
Volume (L) 20 20 20 20
Optimal Temperature (°C)  37.5 55 37.5 55

such scenarios. For further model interpretability analysis, thermody-
namic assessment, and LCA, the GPR-based models are used.

The two-dimensional heatmap shown in Fig. 2a describes the cor-
relation between any two variables utilized for developing the ML
models based on the SCC (see Eq. (1)). In this work |[SCC|)0.1 is desig-
nated as a significant correlation between the inputs and outputs. It is
observed that the biogas yield is strongly correlated with AD several
input variables such as HRT, pH, and OLR, which are consistent with the
explainable ML-based AD literature (Long et al., 2021; Wang et al.,
2021). Although other influential factors such as C/N ratio, volatile fatty
acid (VFA), etc. can strongly influence the biogas yield, they were
excluded from this modelling framework due to the inconsistency in
their reporting in the literature (Cruz et al., 2022). In contrast, the
methane percentage in biogas is strongly correlated with VS HRT, OLR,
temperature, and pH, which has been observed by existing studies for
long-term industrial-scale co-digesters (Wang et al., 2021). Although the
[SCC| can indicate the correlation between various features and pre-
dictor variables, they donot descibe the model behavior. For this pur-
pose, model-agnostic interpretability metrics, such as SHAP score are
used in this work (see Eq. (6)). The parity plots showing the efficacy of
the GPR-based biogas yield and methane fraction prediction models are
shown in Fig. 2b and c. Most of the model predictions are within the 10%
prediction error band for the biogas yield and well-within the 5% error
band for the methane percentage models, further confirming the accu-
rate choice of the ML model. The explainability of the GPR model is
shown in Fig. 2d and e, describing the competitive influence of input
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features towards altering the output variables. The Figure shows feature
importance values calculated via Eq. (6), which is dependent on the
softmax-normalized mean SHAP score, a routinely used metric (Ascher
et al., 2022b). For biogas yield model the features with top three SHAP
scores are HRT, pH, and temperature, suggesting that any alteration or
uncertainty associated with these metrics will strongly influence the
accuracy of GPR-based ML model. For the methane percentage model,
the features with top three SHAP scores are reactor volume, VS, and
HRT. Although the present work does not include partial dependence
analysis, it will be an essential contribution in future to understand the
functional correlation between top input features and the output
variable.

3.2. Parametric sensitivity analysis

For ensuring an optimal set of operating parameters and type of
refrigerant choice that will provide maximum heating for the AD system
at minimum energy consumption, a rigorous parametric study is
essential. For this purpose, two cases of waste compositions and AD
operating parameters were considered. It is important to note that the
AD operational temperature needs to be adjusted as per the input waste
stream composition so that the biogas yield is maximized. The details for
these cases are shown in Table 4 and are used as input parameters to
calculate the biogas yield using the optimal ML model (i.e., GPR). The
influences of the following attributes are investigated: (a) choice of
refrigerant, (b) condenser temperature, (c) mass flow of refrigerant, and
(d) evaporator temperature.

3.2.1. Refrigerant selection

Six different types of popularly used refrigerants are investigated as
working fluid for the ASHP: R134a, R1234ze, R32, R290, R717
(ammonia), and R410. As shown in Table 4 the optimal AD temperature
corresponding to the waste streams for Cases 1 and 2 are 37.5 and 55 °C,
respectively. The values for biogas and methane yields for Case 1 are
0.568 and 0.342 L gVS~! day !, while those for Case B are 0.584 and
0.351 L gVS~! day?, respectively. These values are determined by the
optimal ML model (i.e., GPR) and suggest that increasing the AD tem-
perature as per the input waste composition, can enhance both biogas
and methane yields.
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Fig. 3. Influence of six refrigerants on (a) compressor power, (b) COP, and (c) refrigerant mass flow rate for the ASHP. The descriptions of the Cases 1 and 2 are

provided in Table 4.



Z. Hajabdollahi Ouderji et al.

0.6 T T T T 1.6
@
> 0.55 414
o
=)
=l 0.5 Biogas 1:2 E
2 = = Methane =
: 0.45 Compressor power 14 5
s 2
£ g
S 04} 0.8 g_
= 8
5 0.35 liei=
2]
) =l
2 03 ==~ 04
om
0.25 ; s : ; 0.2
45 50 55 60 65 70
0
Tcondenser( €)
(c)
0.6 T T - 16
D os5f m
g [—Biogas |
= 05 |= = gethane <1.2 E
° ompressor power =
> =
° 045 14 5
£
s 04 08 g
= E
=
© 035 L06 =
")
<
=3 a
£ 0.3 S~ ~04
m
0.25 - 7 5 > 0.2
2 25 3 35 4 45
-3
mrsfrigerant (kgls) x10
(e)
0.58 T T ; , 16
_ 056
2 -
@ g
=054} =
z 5
2 @
> 5
w 0.52 E
3 8
=3
) 06 =
o
0.5
0.48
30

Bioresource Technology 369 (2023) 128485

0.6 T T 1.6
©0.55 !
=)
12 =
o) L Biogas =
£ 051 |= — Methane =
© Compressor power 1 é
c ]
© @
0.45 2
<
- 10.8 g
= 8
S 04 {06 =
")
©
g’ 0.4
m 0.35 ___--—-"'""
ot D : . : 0.2
45 50 55 60 65 70
0
Tcondenser( C)
0.6 T T T T 1.6
2
> L 1.4
055 /
= 19.2
% 05 Biogas ’ E
= = = Methane 14 4
2 Compressor power §
] 4
0.45 - e
£ 08 g
= 8
=
o 04- 0.6
0
©
S
tm 0.35 L 04
—————— - ; 0.2
2 25 3 35 4 4.5
-3
mrefrigeran( (kg/s) x10
0.59 T T T T 1.6
0.58 - 14
o
> 1.2 =
057 2
= 15
o ]
© 0.56 | 2
> Biogas Yield|| 0.8 £
© Te,.=0 ‘ 8
g’ 0.55 - Eva | =
o T TEva=3 0.6
........ e |
0.54 0.4
Zo e — |
0.53 2 > - . 0.2
30 35 40 45 50 55

LS °c)
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Case 2. Details for different cases are provided in Table 4.

To transfer the required heat that would elevate the temperature of
the waste stream (which is within the range of 10-20 °C) to either 37.5
(Case 1) or 55 °C (Case 2), the heat generated by the ASHP condenser is
transferred to the AD by means of an external water jacketed coolant
loop. The refrigerant flow required, compressor power consumption,
and COP to supply these thermal energy demands are shown in Fig. 3a,
3b, and 3c, respectively. Fig. 3a reveals that for both the AD operational
cases, using ammonia as a refrigerant would require the lowest amount
of flow rate, which are 0.0025 kg/s (Case 1) and 0.0045 kg/s (Case 2).
Since the temperature difference between the waste stream and the AD
temperature is lower for Case 1 (AT = 22.5 °C) than the Case 2 (AT =

40 °C), the Case 1 is attributed to lower refrigerant flow rates. The lower
flow rate of refrigerant implies lower pumping power, compact design of
the ASHP, and less requirement of tubing, which can ultimately reduce
both capital and operational costs. If R410 would have been used as a
refrigerant instead of ammonia to produce similar AD performance, the
refrigerant mass flow should be 7.4 times higher for Case 1 and 9.4 times
higher for Case 2. The benefits of using ammonia as a refrigerant in
terms of compressor power reduction and COP improvement can be
confirmed from Fig. 3b and c, respectively. For instance, the ASHP uti-
lizing ammonia as the refrigerant can save 15 % and 33 % power as
compared to R410a for Cases 1 and 2, respectively.



Z. Hajabdollahi Ouderji et al.

Bioresource Technology 369 (2023) 128485

18 18
uCaso A (b)
o 14 14 4 uCase B
@
£ 10 10
g 6 6 4
™
8 2 2
2
o .2 -2
2
[ s "
& B D D Y D &
ée}o 6‘\& &"\6 o\@o ‘b‘;& \@d’ Q\°° Q\°°° «o‘
& & & &£ O F ¥ &Ff &
R S F ¢ F W s
R S M LR R CY
& G ¥ &
& v"°° Nl & <
18
© pm---""" 3
g1 36.8% :
5., ] 28.1% 1 savings |
s savings
o
& 9 A
o
)
X 6
3
o 3
o 4
Natural Gas Heat Pump Natural Gas Heat Pump
based based based based
(d)
Electricity (AD)
Transportation Distance
Thermal Efficiency (CHP)
Polyacrylamide (AD)
Electrical Efficiency (CHP)
Biogas generation (AD)
COP (ASHP) 1
H mCase B
Waste Input Temperature (AD) E mCase A
0 0.1 0.2 0.3 0.4 0.5
SR
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3.2.2. Influences of condenser Temperature, refrigerant mass Flow, and
evaporator temperature

Considering ammonia as the optimal refrigerant of the ASHP, in the
subsequent step a sensitivity analysis is performed to select the optimal
condenser for the AD operation as shown in Fig. 4a (Case 1) and 4b (Case
1). By varying the condenser temperature, an optimum value of biogas
and methane yields are seen at the condenser temperature of 52.5 °C for
Case 1 (see Fig. 4a), while that for the Case 2 increases to 70 °C (see
Fig. 4b). To provide an elevated condenser temperature, the compressor
power consumption increases monotonically. Additionally, to operate
near the optimal biogas and methane yield, the Case 1 requires a lower
amount of compressor power than that of Case 2. The higher heat de-
mand by the AD requires a higher outlet condenser temperature, which
causes more refrigerant to condense in the condenser. Therefore, raising
the heat supply temperature would in turn require a higher mass flow of
refrigerant to handle the higher heat load. Therefore, for both Fig. 4c
and d, the trends closely follow those shown in Fig. 4a and b,
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respectively.

Similar to refrigerant mass flow, the evaporator temperature has an
indirect effect on the ASHP and AD performance (Yu et al., 2022). The
parametric variations for Cases 1 and 2 are shown in Fig. 4e and f for
three different evaporator temperatures: 0 °C, 3 °C, and 5 °C. For Case 1
(see Fig. 4e), the maximum value of biogas production is approximately
0.556 L gVS~! day !, which required 0.65 kW compressor power if the
evaporator temperature is set to 0 °C. If the evaporator temperature was
set to 3 °C or 5 °C, then the compressor power would have reduced to
0.61 kW and 0.56 kW, respectively. This is because raising the evapo-
rator temperature diminishes the heat transfer-related irreversibility of
the AHSP and improves the COP of the ASHP (Gupta et al., 2020). A
similar inspection of Fig. 4f reveals that for the highest biogas yield of
0.585 L gVS_1 day_l, setting the evaporator temperature to 0 °C re-
quires 1.44 kW compressor power.
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3.3. Life cycle assessment

Based on the ML-based biogas yield prediction model, thermody-
namic model for heat pump, and LCA methodology, the carbon footprint
analysis has been conducted. Firstly, the biogas yields were calculated
based on the input parameters provided in Table 4. The temperature of
the AD system is selected such that it provides the maximum biogas yield
corresponding to a certain waste stream parameters (e.g., OLR, VS,
HRT). The first case (Case A) is a mesophilic temperature scenario
(37.5 °C), while the latter (Case B) corresponds to thermophilic condi-
tion with 55 °C. For each of these cases two LCA scenarios are considered
where heat to the AD system is supplied by: (a) heat produced from
central natural gas grid (for UK context) and (b) heat produced using an
on-site ASHP.

Fig. 5a and 5b show the stage-wise GWP breakdown expressed in
terms of kgCO2-eq/t feedstock for the natural gas-based and heat pump-
based scenarios, respectively. The total environmental footprints for
Cases A and B for the natural gas-based system are 13.87 and 16.74
kgCO4-eq/t feedstock, respectively (Edwards et al., 2017; Evangelisti
et al., 2014). Case B has a higher carbon footprint than Case A, due to its
higher demand for thermal energy to boost the temperature of AD
feedstock from 15 °C to 55 °C (i.e., AT = 40 °C) (Edwards et al., 2017). In
contrast, the case A requires only a AT = 22.5 °C, reducing the natural
gas based thermal energy requirement. Although a higher AT increases
the electricity and heat output from the AD process (see Fig. 5a) due to
higher biogas production, the input thermal energy requirement offsets
the carbon emission gains. This observation is consistent with the recent
literature which focuses on the effect of AD temperature on overall
process performance (Nie et al., 2021). It is also worth mentioning that
related LCA studies often account for the carbon emission offsetting
offered by AD when compared to conventional waste disposal methods
(e.g., landfill, compositing, or incineration) (Edwards et al., 2017;
Evangelisti et al., 2014; Gupta et al., 2022b). This is excluded from the
present work due to potential data uncertainty associated with this
component.

The carbon footprints for heat pump-based scenario are shown in
Fig. 5b, which for Cases A and B are 9.97 and 10.57 kgCOs-eq/t feed-
stock. In this scenario, the thermal energy required for the AD is supplied
by an ASHP operated by electricity. The carbon footprint hotspots for
these schemes are direct and indirect emissions for waste transportation
(29.5 %), polyacrylamide required by the AD plant (27 %), and elec-
tricity consumption for the AD plant (42 %). The components that
mitigate the GWP are grid electricity and thermal energy displacement.
Overall, it is evident from Fig. 5c that retrofitting a natural gas-based AD
heating system by electricity-driven ASHP can mitigate 28.1 % and 36.8
% GWP, when compared to the baseline system. These findings can
significantly support future development of carbon footprint mitigation
and environment-friendly waste management. It is worthwhile
mentioning that the ASHP system can have significantly high capital
expenditure. Therefore, to support such projects, government support
schemes in the form of carbon incentives for going beyond net-zero
would be essential to realize the economic viability of the project.

Fig. 5d reveals the outcome of the one-way sensitivity analysis for the
AD integrated with ASHP system for two different operating scenarios
described in Table 4. During this analysis each of the input parameters is
varied by 30 % and its influence on GWP is assessed via SR metric (Gupta
etal., 2022b). A high-level inspection of Fig. 5d suggests that the GWP is
more sensitive for Case B than that of Case A. For Case A, the parameters
showing a significant impact (i.e., with SR > 0.2) are the electricity and
polyacrylamide consumptions for AD, the transportation distance from
waste source to AD plant, and the thermal efficiency of the CHP plant
(Edwards et al., 2017; Evangelisti et al., 2014). For Case B (i.e., ther-
mophilic AD condition) all the parameters except the feedstock tem-
perature show SR > 0.2, suggesting that any uncertainties associated
with these quantities can significantly impact the GWP results.
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4. Conclusions

The research investigated the environmental benefits of heating an
anaerobic digestion (AD) process using an air source heat pump (ASHP),
a promising solution for tackling extreme ambient temperature varia-
tion and achieving net-zero pledge. The optimal machine learning-based
biogas yield prediction model achieved R? = 0.84 with RMSE = 0.0755
L/(gVS-day). A life cycle assessment framework compared the proposed
solution to a natural gas-based AD heating system. Findings revealed
that the ASHP-based AD systems achieved 28.1% (thermophilic) and
36.8% (mesophilic) reduction in the carbon footprint as compared to the
baseline system. Further techno-economic feasibility analysis for such
systems would facilitate policymaking and practical implementation.
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