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• Integration of air source heat pump with 
anaerobic digestion. 

• Applying machine learning models to 
predict biogas and methane yield. 

• Exploring the effects of heat pump 
operational parameters on biogas yield. 

• Life cycle assessment application to 
investigate the environmental impacts. 

• Proposed solution mitigates global 
warming potential significantly.  
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A B S T R A C T   

Anaerobic digestion (AD)-based biogas production mitigates the environmental footprint of organic wastes (e.g., 
food waste and sewage sludge) and facilitates a circular economy. The work proposed an integrated system 
where the thermal energy demand of an AD is supplied using an air source heat pump (ASHP). The proposed 
system is compared to a baseline system, where the thermal energy is supplied by a natural gas-based heating 
system. Several machine learning models are developed for predicting biogas production, among which the 
Gaussian Process Regression (GPR) showed a superior performance (R2 = 0.84 and RMSE = 0.0755 L gVS− 1 

day− 1). The GPR model further informed a thermodynamic model of the ASHP, which revealed the maximum 
biogas yield to be approximately 0.585 L.gVS− 1.day− 1 at an optimal temperature of 55 ◦C (thermophilic). 
Subsequently, life cycle assessment showed that ASHP-based AD heating systems achieved 28.1 % (thermophilic) 
and 36.8 % (mesophilic) carbon abatement than the baseline system.   

1. Introduction 

Over the past decades, anaerobic digestion (AD) has proven to be an 

effective way of reducing the volume of organic waste significantly, 
while recovering value-added products such as biogas and digestate. The 
performance of an AD process is strongly influenced by the choice of 
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input waste which varies from vegetable and animal waste, agricultural 
waste to industrial and municipal solid waste, etc. Using multiple waste 
streams as a feedstock (co-digestion) is receiving increasing attention 
due to a higher biogas and methane production than that of the single 
feedstock AD processes (mono-digestion) (Pastor et al., 2013). Co- 
digestion is an efficient technique that balances the carbon-to-nitrogen 
(C/N) ratio, reduces the inhibitory effect of ammonia, and overcomes 
the disadvantages of mono-digestion (Karki et al., 2021; Polizzi et al., 
2018). This further intensifies the fermentation process due to substrate 
nutrient balance, digesting the leftover materials and resulting in higher 
biogas production (Xu et al., 2018). 

The AD process is also influenced by the choice of operating pa
rameters such as pH, temperature, retention time, and solid content 
(Kothari et al., 2014). In terms of the temperature range of AD, there are 
psychrophilic (10–30 ◦C), mesophilic (30–40 ◦C), and thermophilic 
(50–60 ◦C) conditions (Sudiartha et al., 2022). At temperatures below 
30 ◦C, the AD process becomes acidic, which is unfavourable for high 
biogas production. Similarly, at temperatures above 70 ◦C, the microbial 
communities (methanogenic bacteria) that facilitate the AD process are 
destroyed, which diminishes biogas production (Sun et al., 2022). It is 
seen that for temperatures higher than 45 ◦C, the amount of gas pro
duction monotonically increases (Sharma et al., 2022) and in the case of 
thermophilic bacteria, this temperature can increase up to 70 ◦C. 

However, some of the studies argued that exploiting the monotonic 
increment of biogas by maintaining a temperature higher than 45 ◦C was 
not economically viable for several feedstocks, since maintaining this 
temperature would require significant thermal energy input. (Almo
mani, 2020). Similarly, in the psychrophilic range, the process is not 

economically viable due to limited biogas production. Therefore, tuning 
the operating temperature dynamically with changes in the input 
feedstock variation has been an everlasting challenge in AD process 
management (Nie et al., 2021). 

AD systems are equipped with different types of heating systems with 
hot water or steam as the working fluid: (a) continuous passage of water 
through a heat exchanger installed outside the digester, (b) passage of 
hot water through heating coils installed inside the digester, (c) passage 
of hot water through the jacket around the digester, and (d) direct in
jection of steam into the AD. The required hot water or steam can be 
produced using (a) natural gas-fired boilers, (b) solar water heaters, or 
(c) biogas-fired boilers. Natural gas-fired boilers are the most common 
type of systems used in tandem with AD which has a significant eco
nomic and environmental footprint. On the other hand, the efficiency of 
solar energy-driven AD heating systems is strongly regulated by inter
mittency and geo-distributed availability of solar irradiance (Lombardi 
et al., 2020). For systems with biogas-fired boilers (or combined heat & 
power (CHP)), it is possible to supply the thermal energy required by AD 
by utilizing a fraction of the output biogas (Edwards et al., 2017; 
Evangelisti et al., 2014). However, deploying this system to an extreme 
climate with large seasonal temperature variations could drastically 
diminish the biogas output (thus heat and electricity) due to an abrupt 
increase in seasonal heating demand of AD. To circumvent these chal
lenges, this work provides an alternative solution for supplying the 
thermal energy required by the AD using an air-source heat pump 
(ASHP), which is a low-carbon emission technology (Yu et al., 2022). 
Downstream to an AD plant, usually biogas-driven CHP plants are 
installed, which can simultaneously supply electricity and heat to the 

Fig. 1. Integration of the thermal systems with AD-CHP in for the baseline and alternative scenarios. The baseline scenario corresponds to a natural gas-based AD 
heating system, while the alternative scenario uses an ASHP-based heating system. Abbreviations – El: Electricity, D: Diesel, Ch: Chemicals, Em: Emissions. The grey 
shaded regions indicate processes that are included within the system boundary. 
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central electricity grid and district heating network. 
To study the performance of an ASHP-AD-CHP system, an accurate 

biogas (and methane) yield prediction model is essential, which can be 
achieved by data-driven AD modelling (Cruz et al., 2022). These models 
require preparing an a priori database, based on which they are trained. 
Following the training procedure, several unseen trial cases (test data) 
are subjected to the ML model, based on which the accuracy of the 
model is evaluated. A wide range of ML models has been developed for 
predicting biogas production from AD processes, among which artificial 
neural network (ANN) (Şenol, 2021), recurrent neural network (RNN) 
(Park et al., 2021), random forest (RF) (Wang et al., 2021), support 
vector machine (SVM) (Long et al., 2021), and extreme gradient boost 
(XGBoost) (Xu et al., 2021) have been popular choices among re
searchers. Therefore, the work compares the accuracies of five different 
ML models for predicting biogas yield and methane content for AD 
processes. 

The optimal ML model informs the thermodynamic model of an 
ASHP and whole-system life cycle assessment (LCA) models, based on 
which the technological and environmental benefits of the ASHP-AD- 
CHP system are systematically evaluated. An exhaustive investigation 
is carried out which includes feature importance and parametric sensi
tivity analyses. The environmental benefit of the proposed integrated 
system is compared to a baseline AD-CHP operation system consisting of 
a natural gas-based heating system using LCA. To the best knowledge of 
the authors, this is a maiden attempt for integrating an ASHP with an AD 
system based on ML modelling, thermodynamic analysis, and LCA. 

2. Material and methods 

The technical feasibility and environmental benefits of retrofitting an 
AD system with ASHP is evaluated via thermodynamic analysis and LCA. 
An ML-based data-driven model of AD system using food waste and 
sewage sludge as feedstocks (Section 2.2) is coupled with a thermody
namic model of ASHP (Section 2.3). The data-driven and thermody
namic models together inform the input parameters for LCA (Section 
2.4) to quantify the environmental benefits of the proposed solution. 

2.1. System-level integration of heat pump with anaerobic digester 

For different input waste compositions, the AD process should be 
kept within a temperature range between 30 and 55 ◦C to ensure optimal 
biogas production. Since the input temperature of the waste is usually 
always lesser (within the range of 10–20 ◦C) than the temperature range 
of AD reactor, additional thermal energy is required to elevate the 
temperature of the waste stream (thus enhancing the microbial activity). 
In usual practice, the thermal energy required by AD is resourced from a 
central thermal energy production plant driven by natural gas (see 
Fig. 1). 

The alternative scenario incorporates an HP, which is an 
environment-friendly technology with a potential to reduce dependence 
on the fossil fuel sector. ASHP attracts significant attention among the 
other categories of HPs (such as water source and geothermal) due to its 
simpler configuration and lower initial cost. In addition, ASHP has high 
heating potential in cold-climate and is characterized by energy-saving 
potential, while being operationally reliable. By using HP, the heat 
released in the condenser is utilized to heat the external fluid which is 
applied as the heat agent for the heating purpose of AD as shown in 
Fig. 1. In fact, AD acts as a thermal storage tank and absorbs the heat that 
is rejected from the HP. For different operation temperatures of AD, the 
condenser heat capacity is calculated to provide the required heat for the 
digester. According to the condenser heat, the refrigerant mass flow rate 
of the ASHP is calculated, and by having the mass flow rate, compressor 
power consumption and system COP are consequently obtained using 
Eq. (10). 

The main product of AD is biogas which has a significant percentage 
of methane and can be used as a combustible material in various 

industries to produce electricity and heat. By installing an onsite CHP, 
the AD-generated biogas is further converted to thermal energy and 
electricity, which can partially displace the load on the central grid. 
Therefore, by performing the AD process, it is possible to reduce the 
volume of sludge, and use the resulting biogas for energy production. 

2.2. Machine learning model for anaerobic digestion 

2.2.1. Data assimilation 
Being a multi-step multi-physics biokinetic process, developing an 

intricate model for AD is highly complex. The work herein requires 
prediction of biogas production rate and percentage of methane within 
biogas by deploying a model for AD. To achieve this, a data-driven 
model is developed based on the data obtained from the literature that 
includes a wide range of food waste and sewage sludge as AD feedstock. 
A total of 167 biogas yield and 91 methane percentage datasets are 
obtained from the literature (see Supplementary Material). It is impor
tant to note that these datasets only represent the low-solid AD (i.e., total 
solids (TS) < 25 wt.%). Since the ML model is to be integrated with an 
ASHP thermodynamic model, the primary criterion for shortlisting 
relevant literature is that it must report the operating temperature, 
which limits the size of the dataset. Additionally, the mismatch between 
the size of biogas yield and methane percentage datasets is due to the 
inconsistency in output variable reporting within the collected datasets. 
While one can incorporate a large variety of input variables for con
structing the database, it is not practically feasible to gather data from 
the literature for each of them. Therefore the following variables are 
chosen based on their frequency of reporting and importance in regu
lating biogas (and methane) yields: (1) organic loading rate (OLR) in 
gVS L− 1 day− 1, (2) volatile solid (VS) in wt.%, (3) reactor temperature in 
◦C, (4) hydraulic retention time (HRT) in days, (5) pH, (6) reactor vol
ume in L, (7) biogas generation in L gVS− 1 day− 1, and (8) methane 
content in biogas expressed in vol.%. Out of these eight attributes, the 
first six are to be used as input variables (or predictor) to the data-driven 
models, while the latter two are the output variables (or predicted). It is 
inevitable that the constructed dataset still contains missing values of 
input features. This is addressed by the mean imputation of missing 
value for facilitating a mean regression model development, which is a 
common practice in data-driven bioprocess modelling (Ascher et al., 
2022a). A statistical summary of these attributes across the entire 
datasets is provided in Table 1. Since the dataset contains attributes of 
different range and central tendency, a normalization step is required to 
be applied before being fed into the data-driven model. Following a 
prior ML work (Li et al., 2022), the standard normal variate (Zi) is used 

Table 1 
Statistics of the databases for developing biogas yield and methane content 
prediction models containing 167 and 91 datasets, respectively.  

Biogas yield prediction model database 

Type Variable Min Max Average SD 

Inputs OLR (gVS L− 1 day− 1) 0.04 16.15 3.46 2.89 
VS (wt.%) 1.58 35.26 9.59 6.76 
Temperature (◦C) 20 56 39.9 8.15 
HRT (day) 4 100 28.67 17.64 
pH 6.4 8.3 7.55 0.40 
Reactor volume (L) 0.1 64 9.22 12.14 

Output Biogas yield (L gVS− 1 day− 1) 0.16 0.97 0.55 0.19 

Methane content prediction model database 

Type Variable Min Max Average SD 

Inputs OLR (gVS L− 1 day− 1) 0.37 19.7 4.27 3.74 
VS (wt.%) 1.43 35.26 8.38 6.98 
Temperature (◦C) 35 56 43.75 9.01 
HRT (day) 3 100 25.65 16.83 
pH 6.61 8.3 7.6 0.32 
Reactor volume (L) 0.1 30 5.95 5.25 

Output Methane content (%) 40.3 78. 61.17 6.71  

Z. Hajabdollahi Ouderji et al.                                                                                                                                                                                                                



Bioresource Technology 369 (2023) 128485

4

for this purpose, defined as Zi = (Xi − μ)/σ. Here Xi is the data series for 
ith variable, μ and σ are the mean and standard deviation of the data 
series corresponding to the ith variable. 

To gain a better sense of nonlinear relationship among any two 
variables in the parametric space, the Spearman Correlation Coefficient 
(SCC), a nonlinear statistical metric is selected and defined as (Ascher 
et al., 2022a), 

SCC =

∑N
i=1{R(xi) − R(x) }{R(yi) − R(x) }

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
{R(xi) − R(x) }2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
{R(yi) − R(y) }2

√ (1) 

Here, the total length of data points is N, R(xi) and R(yi) are the rank 
of each sample for the variables of interest, and R(x) and R(y) are the 
average ranks of the two variables. An SCC value of zero suggests that 
the variables are uncorrelated, while SCC = ±1 suggests the strongest 
possible correlation between the variables. The result obtained from SCC 
analysis is visualized via a two-dimensional heatmap in Section 3.1. 

2.2.2. Model development 
Two data-driven models are developed where the first predicts 

biogas production in L gVS− 1 day− 1, while the latter predicts percentage 
of methane content in biogas. Each model is provided with six inputs: 
OLR, VS, HRT, reactor temperature, pH, and volume. The ML models are 
implemented based on the Regression Learner Toolbox in the MATLAB 
R2021b environment. Five different types of data-driven ML methods 
such as Neural Network (NN), Support Vector Machine (SVM), Gaussian 
Process Regression (GPR), Tree, and Ensemble are explored to predict 
the two output variables of AD. The MATLAB toolbox enables automatic 
hyperparameter optimization based on the Bayesian Optimization 
method (iterations = 30), which provides the best set of hyper
parameters for each ML algorithm. Each of the databases was randomly 
split into two parts (a) 12.5 % for testing and (b) 87.5 % for training/ 
validation. With the training/validation dataset, a 5-fold cross- 
validation was performed to ensure model generalizability and 
optimal fitting. 

The first method, NN, is a widely used non-linear ML algorithm that 
creates a computational graph consisting of input, output, and hidden 
layers. Essential hyperparameters search ranges adopted by the toolbox 
are number of fully connected layer: 1–3; activation function: ReLU, 
Tanh, Sigmoid; regularization strength (Lambda): 5.988 × 10− 8− 5.988 
× 102; and neurons in each layer: 1–300. 

The second method SVM is a non-parametric non-linear non- 
probabilistic method, that relies on mapping the input features into a 
high-dimensional space using a non-linear kernel function. Subse
quently it creates an optimal hyperplane to differentiate between 
various subsets. Important SVM hyperparameters search ranges in the 
MATLAB toolbox are box constraint: 0.001–1000; kernel scale: 
0.001–1000; Epsilon: 0.00021868–21.8681; and kernel function: 
Gaussian, Linear, Quadratic, and cubic. 

The third algorithm GPR is a non-linear, non-parametric, Bayesian 
probabilistic data-driven method specifically suitable for datasets with 
high variances. An additional incentive offered by GPR is the informa
tion about predictive uncertainty of the model output variable, which is 
absent for most of the other non-probabilistic data-driven methods. 
Essential GPR hyperparameters ranges considered in the toolbox are 
Sigma: 0.0001–1.9087; basis function: Constant, Zero, Linear; kernel 
function: Nonisotropic Exponential, Nonisotropic Matern 3/2, Non
isotropic Matern 5/2, Nonisotropic Rational Quadratic, Nonisotropic 
Squared Exponential, Isotropic Exponential, Isotropic Matern 3/2, 
Isotropic Matern 5/2, Isotropic Rational Quadratic, Isotropic Squared 
Exponential; and kernel scale: 0.096–96. 

The fourth method is the tree-based algorithm, constructed of nodes 
(or leaves) and branches, which are routinely used for solving regression 
problems. The hyperparameter search range responsible for this algo
rithm is minimum number of leaves: 1–83. The fifth algorithm is the 

ensembles of trees, which uses several trees constructed in series or 
parallel, which circumvents simplicity and overfitting problems expe
rienced by single tree-based algorithms. Optimizable ranges for hyper
parameters for the ensemble-based method are ensembling method: 
Bag, Least Square Boost (LSBoost); number of learners: 10–500; learning 
rate: 0.001–1; minimum leaf size: 1–83; and number of predictors to 
sample: 1–6. Based on the description of hyperparameter ranges for 
various data-driven methods, the Bayesian optimization algorithm 
yields the five best possible combinations of hyperparameters with 
optimal regression fitting. 

2.2.3. Accuracy metrics and feature importance 
For examining the degree of accuracy and degree of fitting for a 

regression-based problem several metrics are essential to be considered 
such as: mean squared error (MSE), mean absolute error (MAE), root 
mean squared error (RMSE), and coefficient of determination (R2) 
defined as follows. 

MSE =

∑N
i=1

(
ytrue

i − ypred
i

)2

N
(2)  

MAE =

∑N
i=1

⃒
⃒ytrue

i − ypred
i

⃒
⃒

N
(3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
ytrue

i − ypred
i

)2

N

√
√
√
√
√

(4)  

R2 = 1 −
∑N

i=1

(
ytrue

i − ypred
i

)2

∑N
i=1

(
ytrue

i − ypred
avg

)2 (5)  

where ytrue
i and ypred

i are the true and predicted values of output variable, 
respectively, and ypred

avg is the average of all the predicted values of an 
output variable. 

In addition to accuracy metrics, quantifying the interpretability of a 
data-driven model is essential. In this work, the interpretability of the 
model is assessed by conducting the feature importance via Shapley 
Additive Explanation (SHAP) metric, a game theory-based model output 
explainer (Ascher et al., 2022b). The SHAP values obtained from the 
data-driven model are represented in terms of average feature impor
tance (AFI) using the following expression, 

AFI = softmax(|mean(SHAP) | ) (6)  

where the softmax function converts the average of absolute SHAP 
values (i.e., |mean(SHAP) |) to a range between 0 and 1. 

2.3. Thermodynamic model of air source heat pump 

An ASHP consists of a compressor (process 1–2), a condenser (pro
cess 2–3), an expansion device (process 3–4), and an evaporator (process 
4–1) as shown in Fig. 1. The low-pressure vapour refrigerant at point 1 is 
compressed to the point 2 where the temperature is increased, and 
pressure reaches a condensation level. The high temperature vapour 
exiting the compressor de-superheats and condenses in the condenser 
and its temperature decreases at point 3 (heat QC is released). The high- 
temperature and high-pressure liquid refrigerant leaving the condenser 
is then throttled via the expansion valve to reach the evaporator tem
perature at point 4. The produced two-phase mixture then fully evapo
rates in the evaporator by absorbing heat from a heat source QE (e.g., 
outdoor air) and returns to the compressor for circulation (Yu et al., 
2022). The model assumption are: (a) each equipment in the system is 
operated at steady-state condition; (b) pressure loss is neglected in the 
evaporator and condenser; (c) compressors are considered as isentropic 
with efficiency of 100 %; (d) refrigeration state at point 1 and 3 is 
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saturated vapor and saturated liquid, respectively; (e) heat transfer in 
the heat exchanger equipment is isothermal; (f) The integrated system is 
operated under the steady-state condition; and (g) the AD is well insu
lated and heat loss from the digestion is considered negligible. 

To simulate the ASHP cycle, each component is considered as a 
control volume. Using the energy and mass balance for each component 
the governing equations are obtained. As observed in Fig. 1, the 
condenser heat load (Q̇C) is calculated as, 

Q̇C = ṁ(h2 − h3) (7)  

where ṁ is the mass flow of refrigerant, h is the specific enthalpy. The 
rejected heat in the condenser is absorbed to provide the heat demand of 
the AD process. The heat transfer rate (Q̇E) of the evaporator is expressed 
as, 

Q̇E = ṁ(h1 − h4) (8)  

where subscript E is used to denote the evaporator. Similarly, the 
compressor power consumption is (ẆComp) is defined as, 

ẆComp = ṁ(h2 − h1) (9) 

Here subscripts 1 to 4 represent the numbering of the state points 
shown in Fig. 1. Consequently, the coefficient of performance (COP) in 
the ASHP is calculated as: 

COP =
Q̇C

ẆComp
(10) 

It is important to note that for all the simulation cases, the evaporator 
temperature is fixed to 0 ◦C. The entire model is implemented in MAT
LAB R2021a and linked to the REFPROP v9.0 database, which contain 
the thermodynamic properties (such as enthalpy, entropy, temperature, 
pressure) of the refrigerants. The COP of the ASHP for a range of 
evaporator temperatures is benchmarked using a related literature 
(Baskaran and Mathews, 2015) (see supplementary material). 

2.4. Life cycle assessment 

2.4.1. Goal, Scope, and functional unit 
The goal of the LCA adopted in this work is to perform a comparative 

assessment between a baseline AD system located in the United Kingdom 
provided with thermal energy generated with natural gas to an alter
native scenario where the required heat is provided using an ASHP 
described in the previous section. The scope of the LCA framework in
cludes sub-processes such as transportation of feedstock to AD plant, 
modelling of AD process that intakes food waste and sewage sludge as 
feedstock, modelling of a biogas-driven CHP plant, and supplying CHP- 
generated energy content to the central electricity and heating grid. In 
addition to biogas, the AD plant generates digestate as a by-product, 
whose utilization or disposal is excluded from this study. Here, 1 wet 
tonne of feedstock is assigned as the functional unit (FU). The frame
work follows the guideline provided by ISO 14,040 and is implemented 
within a commercial LCA software GaBi (Gupta et al., 2022a). 

2.4.2. Life cycle inventory and process models 
The hypothetical AD system is fed with two types of feedstocks, out 

of which 60% is food waste and 40% is sewage sludge (Kesharwani and 
Bajpai, 2020). Therefore, within the FU of 1 tonne feedstock, 600 kg is 
food waste and 400 kg is the sewage sludge. Two separate truck pro
cesses implemented in GaBi (US: Truck - Dump Truck/52000 lb payload) 
transport these two waste streams over a 20 miles distance to the AD 
plant. The diesel consumptions for the transportation process are 
modelled via the GaBi process GB: Diesel mix at refinery. 

The AD plant requires electricity, chemical, and heat as valuable 
inputs to produce biogas as the major value-added product and off-gas 
emissions. The electricity required by the AD is modelled using the 

GB: Electricity grid mix process. An essential chemical required for the 
AD process is polyacrylamide, which is modelled using the GaBi process 
EU-28: Polyamide 6 (PA6). The heat required by the AD plant depends 
on the operating temperature of the AD reactor and is given by the 
following equation. 

QAD = mFSCp,FS(TAD − TFS) (11)  

where mFS is the mass flow of feedstock (1 tonne of waste per year), Cp,FS 
is the specific heat capacity at constant pressure for the mixed waste, TAD 
is the operating temperature of AD (i.e., 37.5 ◦C for mesophilic condition 
and 55 ◦C), and TFS is the temperature at which the feedstock enters the 
AD reactor (assumed as 15 ◦C for UK-based scenario). The Cp,FS for the 
mixed waste stream containing 60 % food waste and 40 % sewage sludge 
is calculated as 3.71 KJ kg− 1K− 1 based on the data obtained from 
literature (Kesharwani and Bajpai, 2020). 

The heat required by the AD i.e., QAD is supplied by two mechanisms 
in the LCA framework: (a) for the conventional scenario the heat is 
supplied from grid which is generated from natural gas (modelled using 
GaBi process GB: Thermal energy from natural gas) and (b) for the 
alternative scenario the heat is supplied by an on-site installed ASHP, 
whose COP depends on the operating temperature. The electricity 
required by the HP in the alternative scenario is modelled using GB: 
Electricity grid mix. The biogas produced by the AD reactor under 
varying temperature and other input conditions are calculated using the 
ML model described in earlier sections. The direct emissions for the AD 
systems such as carbon dioxide and methane caused by biogas leakage 
are obtained from a relevant literature (Ascher et al., 2020). 

The biogas produced by the AD is further fed to an onsite CHP system 
producing electricity and heat simultaneously, which ultimately is 
supplied to the grid. The following equations describe the electricity 
(
Egen

)
and heat 

(
Qgen

)
production from biogas. 

Table 2 
Life cycle inventory used for conducting the analysis in GaBi software.  

Quantity Value (unit) Reference 

Food waste 60 % of FU i.e., 
0.6 t 

(Kesharwani and 
Bajpai, 2020) 

Sewage Sludge 40 % of FU i.e., 
0.4 t 

(Kesharwani and 
Bajpai, 2020) 

Distance of feedstock generation site to 
AD plant 

20 miles Assumed 

Polyacrylamide (for AD plant) 0.429 kg/t AD 
feedstock 

(Edwards et al., 
2017) 

Electricity (for AD plant) 15.4 kWh/t AD 
feedstock 

(Edwards et al., 
2017) 

Thermal energy for AD plant with 
37.5 ◦C operating scenario 

83.5 MJ/t AD 
feedstock 

Calculated 

Thermal energy for AD plant with 55 ◦C 
operating scenario 

148.4 MJ/t AD 
feedstock 

Calculated 

Direct CH4 emissions (for AD plant) 10.855 g/kg 
biogas 

(Ascher et al., 2020) 

Direct CO2 emissions (for AD plant) 16.118 g/kg 
biogas 

(Ascher et al., 2020) 

Biogas generation for AD plant 
operating at 37.5 ◦C 

4.22 kg/t AD 
feedstock 

Calculated 

Biogas generation for AD plant 
operating at 55 ◦C 

7.35 kg/t AD 
feedstock 

Calculated 

Direct CO emissions (for CHP plant) 2.16 g/kg biogas (Ascher et al., 2020) 
Direct CH4 emissions (for CHP plant) 8.72 g/kg biogas (Ascher et al., 2020) 
Direct NO emissions (for CHP plant) 2.78 g/kg biogas (Ascher et al., 2020) 
Direct NMVOC emissions (for CHP 

plant) 
1.97 g/kg biogas (Ascher et al., 2020) 

Particulate matter (2.5–10 μm) 
emissions (for CHP plant) 

0.72 g/kg biogas (Ascher et al., 2020) 

Electricity consumption of the HP for 
37.5 ◦C AD operation scenario 

4.49 kWh/t AD 
feedstock 

Calculated 

Electricity consumption of the HP for 
55 ◦C AD operation scenario 

10.68 kWh/t AD 
feedstock 

Calculated  
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Qgen =
ηCHP

el mBGCVBG

ρBG
(12)  

Egen =
ηCHP

th mBGCVBG

ρBG
(13) 

In addition, the CHP causes a significant amount of direct emissions 
to the air which includes carbon monoxide, methane, nitrogen oxide, 
non-methane volatile organic carbon (NMVOC), and particulate matter 
(Ascher et al., 2020). In Eqs. (13) and (14) ηCHP

th = 0.5 is thermal effi
ciency of CHP, ηCHP

el = 0.33 is the electrical efficiency of CHP, CVBG = 23 
MJ m− 3 is the net calorific value of biogas, ρBG = 1.2 kg m− 3 is the 
density of biogas, and mBG is the mass of biogas entering into the CHP. 
Given the AD operating and feedstock conditions, the ML model de
termines the mass of biogas generated that enters the CHP. The value- 
added products generated by the CHP system offsets the environ
mental footprint of the total system by supplying electricity and heat to 
the grid. These emission offsets are calculated using the emissions fac
tors provided by the UK government as 0.212 kgCO2-eq/kWh for elec
tricity and 0.203 kgCO2-eq/kWh for natural gas. This calculation 
assumes that using heat is analogous to consumption of natural gas. The 
life cycle inventory (LCI) is provided in Table 2. 

2.4.3. Life cycle impact assessment 
The relative benefits of the two different scenarios i.e., AD with HP 

and AD with natural gas-based heating, the GWP metric is considered 
expressed in terms of kgCO2-eq/t feedstock added to the AD. The GWP is 
evaluated using the CML 2001-August 2016 methodology (Gupta et al., 
2022a) and measured in terms of GWP over 100 years (i.e., GWP100), 
which is in accordance with the IPCC norms. It is important to note that 
the biogenic CO2 is excluded from the LCA framework, which is 
consistent with a prior work (Gupta et al., 2022b). 

2.4.4. Data interpretation 
Following the LCIA described in Section 2.4.3, the environmental 

impact (i.e., GWP) for AD systems resources resourced with thermal 
energy from (a) natural gas and (b) heat pump is compared. For each 
scenario, two cases are considered which incorporates two different 
operating conditions of the AD process (Section 3.3). In addition, a one- 
way sensitivity analysis is performed to examine the individual influ
ence of parameters on the GWP. The sensitivity ratio for ith parametric 
change (SRi) is considered defined as, 

SRi =

⃒
⃒
⃒

GWPbaseline
i − GWPmodified

i
GWPbaseline

i

⃒
⃒
⃒

⃒
⃒
⃒

Φbaseline
i − Φmodified

i
Φbaseline

i

⃒
⃒
⃒

(14)  

where Φi and GWPi are the value of ith parameter and the GWP corre
sponding to that. Some of the essential parameters considered in the 
sensitivity analysis are thermal and electrical efficiencies of the CHP 
unit, electricity and polyacrylamide consumption of the AD, waste 
transportation distance, biogas generation, temperature of the AD input 
feedstock, and COP of the ASHP. 

3. Results and discussion 

3.1. Performance and interpretability of data-driven models 

The accuracy metrics such as RMSE, R2, MSE of five different ML 
models (GPR, ensembles of trees, NN, tree, and SVM) developed to 
predict biogas production and methane content in biogas are provided in 
Table 3. In addition, the prediction speed in observations per second and 
the model training time in seconds are provided. A high-level inspection 
of Table 3 reveals that the GPR outperforms all other ML models for 
predicting both biogas production and methane content in biogas. For 
the GPR-based biogas yield prediction model R2 = 0.84 and RMSE =

Table 3 
Performance of various data-driven models investigated for constructing the biogas yield (L gVS− 1 day− 1) and methane content in biogas (%) prediction models. The 
rank is provided based on R2 and RMSE values.  

Output variable Model Type Optimal Hyperparameters RMSE R2 MSE MAE Prediction 
Speed (Obs/sec) 

Training 
Time 
(sec) 

Biogas yield (L 
gVS− 1 day− 1) 

GPR Basis function: constant, kernel function: nonisotropic squared 
exponential, kernel scale: 1.1254, sigma: 0.028, standardize data: 
true)   

0.0755  0.84  0.0057  0.057 20,000  18.731 

Ensemble of 
Trees 

Ensemble method: least square boost, minimum leaf size: 2, number 
of learners: 47, learning rate: 0.032, number of predictors to 
sample: 6)   

0.0819  0.82  0.0067  0.062 5400  30.686 

NN Fully connected layers: 2, activation: ReLU, iteration limit: 1000, 
regularization strength: 0.0003, standardize data: true, 1st layer 
size: 100, 2nd layer size: 290)   

0.1060  0.69  0.0112  0.071 14,000  58.765 

Tree Surrogate decision splits: off, minimum leaf size: 2)   0.1172  0.62  0.0137  0.087 17,000  11.333 

SVM Type: fine Gaussian, kernel function: Gaussian, kernel scale: 0.61, 
box constraint: automatic, epsilon: automatic, standardize data: 
true)  

0.1174  0.62  0.0138  0.091 26,000  0.0281 

Methane 
content in 
biogas (%) 

GPR Basis function: constant, kernel function: nonisotropic matern 3/2, 
kernel scale: 0.3016, sigma: 0.0056, standardize data: true)   

1.4575  0.82  2.1244  0.7839 19,000  18.648 

Ensemble of 
Trees 

Ensemble method: bag, minimum leaf size: 1, number of learners: 
500, number of predictors to sample: 4)   

1.9081  0.69  3.6410  1.1240 540  101.73 

Tree Surrogate decision splits: off, minimum leaf size: 4)   2.5543  0.45  6.5243  1.4735 25,000  9.678 

SVM Kernel function: Gaussian, kernel scale: 2.22, box constraint: 
43.492, epsilon: 0.461, standardize data: false  

2.5962  0.43  6.7403  1.7228 26,000  23.798 

NN Fully connected layers: 3, activation: sigmoid, iteration limit: 1000, 
regularization strength: 0.0189, standardize data: yes, 1st layer size: 
91, 2nd layer size: 1, 3rd layer size: 3)  

2.9885  0.25  8.9309  2.0571 18,000  37.502  
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0.0755 L gVS− 1 day− 1. Similarly, the GPR-based methane content pre
diction model has R2 = 0.82 and RMSE = 1.4575 %. To test the signif
icance level of the GPR model predictions, the F-statistic score is used, 
given by, 

F =
R2(N − k)

1 − R2(k − 1)
(15)  

where N is the number of samples (167 and 91 for biogas yield and 
methane content models, respectively), k = 6 is the number of inde
pendent parameters. The R2 values for biogas yield and methane content 
models are 0.84 and 0.82 (see Table 3). This leads to F-statistic scores for 

biogas yield and methane content models to be 91.9 and 42.6. Referring 
to the F-table these correspond to the probability value (p-value) of zero, 
suggesting that the GPR model correctly predicts the data trend (i.e., the 
correlation is highly significant). The predictive accuracy of the optimal 
model is competitive with those reported in the literature of ML-based 
AD modelling with R2 in the range of 0.8 to 0.9 (Cruz et al., 2022; 
Long et al., 2021; Wang et al., 2021; Xu et al., 2021). This superior 
performance of the GPR model when compared to other models is 
attributed to the capability of probabilistic Gaussian processes to handle 
datasets with a high degree of variance (see Table 3). Therefore, non- 
probabilistic, yet kernelized (e.g., SVM) or non-kernelized (e.g., NN, 
tree, ensembles) methods suffer inferior predictive accuracies under 

Fig. 2. Results for the data-driven models associated with AD of food waste and sewage sludge: (a) Spearman Correlation Coefficients between any two variables of 
interest, (b) and (c) Parity plots showing performance of the optimal biogas yield and methane percentage prediction models evaluated based on testing dataset, (d) 
and (e) Feature importance analysis for biogas yield and methane percentage prediction models via SHAP value quantification. The quantities shown in the feature 
importance maps correspond to Softmax function-normalized mean of absolute SHAP values, showing relative importance of input features towards predictions of 
output variables (biogas yield and methane percentage). 
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such scenarios. For further model interpretability analysis, thermody
namic assessment, and LCA, the GPR-based models are used. 

The two-dimensional heatmap shown in Fig. 2a describes the cor
relation between any two variables utilized for developing the ML 
models based on the SCC (see Eq. (1)). In this work |SCC|〉0.1 is desig
nated as a significant correlation between the inputs and outputs. It is 
observed that the biogas yield is strongly correlated with AD several 
input variables such as HRT, pH, and OLR, which are consistent with the 
explainable ML-based AD literature (Long et al., 2021; Wang et al., 
2021). Although other influential factors such as C/N ratio, volatile fatty 
acid (VFA), etc. can strongly influence the biogas yield, they were 
excluded from this modelling framework due to the inconsistency in 
their reporting in the literature (Cruz et al., 2022). In contrast, the 
methane percentage in biogas is strongly correlated with VS HRT, OLR, 
temperature, and pH, which has been observed by existing studies for 
long-term industrial-scale co-digesters (Wang et al., 2021). Although the 
|SCC| can indicate the correlation between various features and pre
dictor variables, they donot descibe the model behavior. For this pur
pose, model-agnostic interpretability metrics, such as SHAP score are 
used in this work (see Eq. (6)). The parity plots showing the efficacy of 
the GPR-based biogas yield and methane fraction prediction models are 
shown in Fig. 2b and c. Most of the model predictions are within the 10% 
prediction error band for the biogas yield and well-within the 5% error 
band for the methane percentage models, further confirming the accu
rate choice of the ML model. The explainability of the GPR model is 
shown in Fig. 2d and e, describing the competitive influence of input 

features towards altering the output variables. The Figure shows feature 
importance values calculated via Eq. (6), which is dependent on the 
softmax-normalized mean SHAP score, a routinely used metric (Ascher 
et al., 2022b). For biogas yield model the features with top three SHAP 
scores are HRT, pH, and temperature, suggesting that any alteration or 
uncertainty associated with these metrics will strongly influence the 
accuracy of GPR-based ML model. For the methane percentage model, 
the features with top three SHAP scores are reactor volume, VS, and 
HRT. Although the present work does not include partial dependence 
analysis, it will be an essential contribution in future to understand the 
functional correlation between top input features and the output 
variable. 

3.2. Parametric sensitivity analysis 

For ensuring an optimal set of operating parameters and type of 
refrigerant choice that will provide maximum heating for the AD system 
at minimum energy consumption, a rigorous parametric study is 
essential. For this purpose, two cases of waste compositions and AD 
operating parameters were considered. It is important to note that the 
AD operational temperature needs to be adjusted as per the input waste 
stream composition so that the biogas yield is maximized. The details for 
these cases are shown in Table 4 and are used as input parameters to 
calculate the biogas yield using the optimal ML model (i.e., GPR). The 
influences of the following attributes are investigated: (a) choice of 
refrigerant, (b) condenser temperature, (c) mass flow of refrigerant, and 
(d) evaporator temperature. 

3.2.1. Refrigerant selection 
Six different types of popularly used refrigerants are investigated as 

working fluid for the ASHP: R134a, R1234ze, R32, R290, R717 
(ammonia), and R410. As shown in Table 4 the optimal AD temperature 
corresponding to the waste streams for Cases 1 and 2 are 37.5 and 55 ◦C, 
respectively. The values for biogas and methane yields for Case 1 are 
0.568 and 0.342 L gVS− 1 day− 1, while those for Case B are 0.584 and 
0.351 L gVS− 1 day− 1, respectively. These values are determined by the 
optimal ML model (i.e., GPR) and suggest that increasing the AD tem
perature as per the input waste composition, can enhance both biogas 
and methane yields. 

Table 4 
Waste characteristics of two cases considered for the parametric sensitivity 
analyses.  

Parameters Thermodynamic Sensitivity 
Analysis 

LCA 

Case 1 Case 2 Case A Case B 

OLR (gVS L− 1 day− 1) 5 1 1.65 3.42 
VS (wt.%) 15 30 1.2 2.5 
HRT (days) 20 15 30 20 
pH 7.5 7.5 7.5 7.7 
Volume (L) 20 20 20 20 
Optimal Temperature (◦C) 37.5 55 37.5 55  

Fig. 3. Influence of six refrigerants on (a) compressor power, (b) COP, and (c) refrigerant mass flow rate for the ASHP. The descriptions of the Cases 1 and 2 are 
provided in Table 4. 
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To transfer the required heat that would elevate the temperature of 
the waste stream (which is within the range of 10–20 ◦C) to either 37.5 
(Case 1) or 55 ◦C (Case 2), the heat generated by the ASHP condenser is 
transferred to the AD by means of an external water jacketed coolant 
loop. The refrigerant flow required, compressor power consumption, 
and COP to supply these thermal energy demands are shown in Fig. 3a, 
3b, and 3c, respectively. Fig. 3a reveals that for both the AD operational 
cases, using ammonia as a refrigerant would require the lowest amount 
of flow rate, which are 0.0025 kg/s (Case 1) and 0.0045 kg/s (Case 2). 
Since the temperature difference between the waste stream and the AD 
temperature is lower for Case 1 (ΔT = 22.5 ◦C) than the Case 2 (ΔT =

40 ◦C), the Case 1 is attributed to lower refrigerant flow rates. The lower 
flow rate of refrigerant implies lower pumping power, compact design of 
the ASHP, and less requirement of tubing, which can ultimately reduce 
both capital and operational costs. If R410 would have been used as a 
refrigerant instead of ammonia to produce similar AD performance, the 
refrigerant mass flow should be 7.4 times higher for Case 1 and 9.4 times 
higher for Case 2. The benefits of using ammonia as a refrigerant in 
terms of compressor power reduction and COP improvement can be 
confirmed from Fig. 3b and c, respectively. For instance, the ASHP uti
lizing ammonia as the refrigerant can save 15 % and 33 % power as 
compared to R410a for Cases 1 and 2, respectively. 

Fig. 4. Results for the parametric sensitivity analysis of HP integrated with the AD system for two scenarios (Case-1 and Case-2). Effect of condenser temperature 
variation for (a) Case 1 and (b) Case 2. Effect of refrigerant mass flow variation for (c) Case 1 and (d) Case 2. Effect of evaporator temperature for (e) Case 1 and (f) 
Case 2. Details for different cases are provided in Table 4. 
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3.2.2. Influences of condenser Temperature, refrigerant mass Flow, and 
evaporator temperature 

Considering ammonia as the optimal refrigerant of the ASHP, in the 
subsequent step a sensitivity analysis is performed to select the optimal 
condenser for the AD operation as shown in Fig. 4a (Case 1) and 4b (Case 
1). By varying the condenser temperature, an optimum value of biogas 
and methane yields are seen at the condenser temperature of 52.5 ◦C for 
Case 1 (see Fig. 4a), while that for the Case 2 increases to 70 ◦C (see 
Fig. 4b). To provide an elevated condenser temperature, the compressor 
power consumption increases monotonically. Additionally, to operate 
near the optimal biogas and methane yield, the Case 1 requires a lower 
amount of compressor power than that of Case 2. The higher heat de
mand by the AD requires a higher outlet condenser temperature, which 
causes more refrigerant to condense in the condenser. Therefore, raising 
the heat supply temperature would in turn require a higher mass flow of 
refrigerant to handle the higher heat load. Therefore, for both Fig. 4c 
and d, the trends closely follow those shown in Fig. 4a and b, 

respectively. 
Similar to refrigerant mass flow, the evaporator temperature has an 

indirect effect on the ASHP and AD performance (Yu et al., 2022). The 
parametric variations for Cases 1 and 2 are shown in Fig. 4e and f for 
three different evaporator temperatures: 0 ◦C, 3 ◦C, and 5 ◦C. For Case 1 
(see Fig. 4e), the maximum value of biogas production is approximately 
0.556 L gVS− 1 day− 1, which required 0.65 kW compressor power if the 
evaporator temperature is set to 0 ◦C. If the evaporator temperature was 
set to 3 ◦C or 5 ◦C, then the compressor power would have reduced to 
0.61 kW and 0.56 kW, respectively. This is because raising the evapo
rator temperature diminishes the heat transfer-related irreversibility of 
the AHSP and improves the COP of the ASHP (Gupta et al., 2020). A 
similar inspection of Fig. 4f reveals that for the highest biogas yield of 
0.585 L gVS− 1 day− 1, setting the evaporator temperature to 0 ◦C re
quires 1.44 kW compressor power. 

Fig. 5. Stagewise breakdown of GWP for AD with different operating and feedstock conditions. (a) natural gas-based heating for AD, (b) heat pump-based heating for 
AD, and (c) comparison of both systems with percentage of savings. (d) One-way parametric sensitivity analysis via quantification of SR. The sensitivity map shows 
the influence of individual parameters on the GWP. The black dotted line corresponds to SR = 0.2, which signifies 6 % change in GWP. The parametric scenarios with 
SR values below 0.2 have insignificant influence on the GWP. Parametric details for Cases A and B are provided in Table 5. 
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3.3. Life cycle assessment 

Based on the ML-based biogas yield prediction model, thermody
namic model for heat pump, and LCA methodology, the carbon footprint 
analysis has been conducted. Firstly, the biogas yields were calculated 
based on the input parameters provided in Table 4. The temperature of 
the AD system is selected such that it provides the maximum biogas yield 
corresponding to a certain waste stream parameters (e.g., OLR, VS, 
HRT). The first case (Case A) is a mesophilic temperature scenario 
(37.5 ◦C), while the latter (Case B) corresponds to thermophilic condi
tion with 55 ◦C. For each of these cases two LCA scenarios are considered 
where heat to the AD system is supplied by: (a) heat produced from 
central natural gas grid (for UK context) and (b) heat produced using an 
on-site ASHP. 

Fig. 5a and 5b show the stage-wise GWP breakdown expressed in 
terms of kgCO2-eq/t feedstock for the natural gas-based and heat pump- 
based scenarios, respectively. The total environmental footprints for 
Cases A and B for the natural gas-based system are 13.87 and 16.74 
kgCO2-eq/t feedstock, respectively (Edwards et al., 2017; Evangelisti 
et al., 2014). Case B has a higher carbon footprint than Case A, due to its 
higher demand for thermal energy to boost the temperature of AD 
feedstock from 15 ◦C to 55 ◦C (i.e., ΔT = 40 ◦C) (Edwards et al., 2017). In 
contrast, the case A requires only a ΔT = 22.5 ◦C, reducing the natural 
gas based thermal energy requirement. Although a higher ΔT increases 
the electricity and heat output from the AD process (see Fig. 5a) due to 
higher biogas production, the input thermal energy requirement offsets 
the carbon emission gains. This observation is consistent with the recent 
literature which focuses on the effect of AD temperature on overall 
process performance (Nie et al., 2021). It is also worth mentioning that 
related LCA studies often account for the carbon emission offsetting 
offered by AD when compared to conventional waste disposal methods 
(e.g., landfill, compositing, or incineration) (Edwards et al., 2017; 
Evangelisti et al., 2014; Gupta et al., 2022b). This is excluded from the 
present work due to potential data uncertainty associated with this 
component. 

The carbon footprints for heat pump-based scenario are shown in 
Fig. 5b, which for Cases A and B are 9.97 and 10.57 kgCO2-eq/t feed
stock. In this scenario, the thermal energy required for the AD is supplied 
by an ASHP operated by electricity. The carbon footprint hotspots for 
these schemes are direct and indirect emissions for waste transportation 
(29.5 %), polyacrylamide required by the AD plant (27 %), and elec
tricity consumption for the AD plant (42 %). The components that 
mitigate the GWP are grid electricity and thermal energy displacement. 
Overall, it is evident from Fig. 5c that retrofitting a natural gas-based AD 
heating system by electricity-driven ASHP can mitigate 28.1 % and 36.8 
% GWP, when compared to the baseline system. These findings can 
significantly support future development of carbon footprint mitigation 
and environment-friendly waste management. It is worthwhile 
mentioning that the ASHP system can have significantly high capital 
expenditure. Therefore, to support such projects, government support 
schemes in the form of carbon incentives for going beyond net-zero 
would be essential to realize the economic viability of the project. 

Fig. 5d reveals the outcome of the one-way sensitivity analysis for the 
AD integrated with ASHP system for two different operating scenarios 
described in Table 4. During this analysis each of the input parameters is 
varied by 30 % and its influence on GWP is assessed via SR metric (Gupta 
et al., 2022b). A high-level inspection of Fig. 5d suggests that the GWP is 
more sensitive for Case B than that of Case A. For Case A, the parameters 
showing a significant impact (i.e., with SR > 0.2) are the electricity and 
polyacrylamide consumptions for AD, the transportation distance from 
waste source to AD plant, and the thermal efficiency of the CHP plant 
(Edwards et al., 2017; Evangelisti et al., 2014). For Case B (i.e., ther
mophilic AD condition) all the parameters except the feedstock tem
perature show SR > 0.2, suggesting that any uncertainties associated 
with these quantities can significantly impact the GWP results. 

4. Conclusions 

The research investigated the environmental benefits of heating an 
anaerobic digestion (AD) process using an air source heat pump (ASHP), 
a promising solution for tackling extreme ambient temperature varia
tion and achieving net-zero pledge. The optimal machine learning-based 
biogas yield prediction model achieved R2 = 0.84 with RMSE = 0.0755 
L/(gVS-day). A life cycle assessment framework compared the proposed 
solution to a natural gas-based AD heating system. Findings revealed 
that the ASHP-based AD systems achieved 28.1% (thermophilic) and 
36.8% (mesophilic) reduction in the carbon footprint as compared to the 
baseline system. Further techno-economic feasibility analysis for such 
systems would facilitate policymaking and practical implementation. 
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