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HIGHLIGHTS 

• Assessing the reliability of hygrothermal simulations. 

• Description of monitoring conducted in a historic building. 

• Calibration of the model compared to monitoring data. 

• Validation of the numerical model. 

• Sensitivity analysis of materials parameters and boundary condition coefficients. 
 
ABSTRACT 
The reliability of hygrothermal simulations of building components is key for designing energy efficiency measures, 

assessing living comfort, and preventing building damage. The model accuracy is related to the reliability of the 
selection of input parameters. Due to the high uncertainty, the selection of the input values is challenging. This 
work aims to calibrate a hygrothermal simulation model exploiting monitored values recorded in a case study 
located in Settequerce (Italy), to understand how close to reality a numerical model can be. Moreover, a sensitivity 
analysis, based on the Morris method together with a Latin Hypercube sampling, is applied to identify the input 
parameters that affect most significantly the simulation. The results of the calibration indicated that is possible to 
obtain reliable outputs by appropriately selecting materials within the database. The sensitivity analysis showed 
that the relative humidity under the insulation is largely influenced by the water vapor diffusion resistance factor 
of the plaster, applied during the renovation phase both on the internal and external side. Among the coefficients 
describing the coupling with the boundary conditions, only the external convective heat coefficient and the 
coefficient of short-wave solar radiation influence slightly the objective function. 
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1 Introduction 

When planning a historic building renovation, a common solution is to apply internal wall insulation to 
preserve the aesthetic appearance and heritage value of the external façade [1]. The application of insulation 
from the inside is a practice used to safeguard the historic exterior surfaces but at the same time, it reduces the 
heat flow from the occupied rooms to the historic wall, making it colder. This increases the risk of interstitial 
condensation and moisture related damages [2]. The moisture accumulation within the insulated wall can 
damage the envelope and, in case of mold growth, the health of the occupants. For this reason, it is necessary 
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to carefully plan an intervention using the right tools. Among those, hygrothermal simulations are a valuable tool 
for researchers and designers. 

 Nowadays, it is possible to use numerical models to simulate and predict masonry conditions before and 
after the intervention. Despite this, the construction of the numerical model can be complex; it requires 
knowledge of a large number of input parameters that are often not easy to obtain. Furthermore, the numerous 
uncertainties complicate the relationship between the model's inputs and outputs, increasing the complexity [3]. 
Therefore, a stochastic model has been used [4] by taking uncertainties into account in the numerical model, 
leading to longer calculation times. On the other hand, as computing power increases, the performance of 
building performance simulations improves [5]. 

Hens [6] stated that it is unrealistic to claim a perfect agreement between model and reality. However, 
numerical models can aim to predict the hygrothermal conditions in building components [7]. In the case of 
hygrothermal simulations, the complexity of the physical phenomena involved makes it difficult to represent the 
simulated model. For example, most building materials are hygroscopic and can contain moisture in different 
thermodynamic phases [8] which change their hygrothermal response. This is certainly relevant for historic 
masonry buildings, which are notoriously difficult to replicate in hygrothermal models [9]. Although climate data 
are frequently averaged or based on empirical coefficients, they do not always correspond to the actual design 
conditions. In the case of materials, the identification of the correct input parameters can be difficult, especially 
when dealing with historical walls which are formed by a combination of materials (stones and mortar joints) 
whose hygrothermal properties are typically unknown [10]. 

For those reasons, uncertainties must be accepted, and, to avoid making design mistakes, the results must 
be carefully interpreted. At the same time, the greater the level of knowledge of the input parameters, the 
greater the probability that the model will return reliable outputs [11]. For this reason, a good strategy is to make 
an effort to minimize input parameter uncertainty. In particular, a good knowledge of the parameters of the 
materials constituting the walls is essential for a good agreement between the simulated and the real values 
[12].  

How accurately a hygrothermal simulation model represents reality is still a matter of debate today. 
Numerous studies have investigated how accurate  simulation software can be [13–15]. Several studies have 
tried to calibrate hygrothermal simulations [16–23]. Calibrating a model that describes only heat transport is 
already challenging [24,25], whereas, when it comes to the hygrometric part, there is a greater number of 
parameters that need to be considered [26]. In the literature, numerical model calibration is often carried out 
using laboratory scale samples [19,22,27]. In particular, sometimes the calibration has been performed by 
varying input parameters or, in other studies, the model outputs have been evaluated by choosing different 
materials. For example, in work carried out by Jensen, N et al. [2], the calibration of the numerical model was 
carried out against values of the relative humidity recorded within the wall, evaluating the effects on the output 
by changing the type of mortar and the effect of varying the thicknesses of materials in the numerical model. 
Hansen, T et al. [28] investigated the impact of varying specific parameters on the relative humidity results in 
three points within a brick masonry. A stochastic approach is conducted by [29–31] in which model outputs 
consider the uncertainties of the inputs. To date, there is a lack of guidelines for calibrating hygrothermal models 
[25]. No works in the literature consider calibrations and validations of hygrothermal models using long-term 
monitoring data in actual buildings [25] using values monitored inside the building component. 

Input parameter measurements, such as those for the climate or the materials, can in any case significantly 
decrease the model's uncertainty [7]. However, these measures are frequently time-consuming and costly. 
Nevertheless, they are still the best support for reducing uncertainties, but such measures should be guided and 
limited to only those parameters which would most improve the reliability of the hygrothermal simulation.  

The application of a sensitivity analysis to the numerical model can yield crucial information that allows 
for the identification of the most influential parameters and, consequently, indicate which input parameters 
should be investigated to significantly reduce the uncertainties of the hygrothermal simulation [32,33]. Zhao et 
al. [31] proposed a probabilistic method by evaluating the most influential parameter with respect to the thermal 



  
 

resistance of the wall. Marincioni et al. [34], developed a methodology that aims to create a probabilistic 
predictive model for the assessment of moisture risks considering model uncertainties. T. Valdbjørn et al. [33] 
applied sensitivity analysis with the Morris method and the Sobol method to find parameters that are negligible 
among insulation thickness and conductivity, vapor barrier, wall orientation, air-change rate, and driving rain. 
The parameters are varied using a uniform distribution. The sensitivity analysis is performed to the innermost 
and outmost layer of a brick wall, in order to evaluate  the average moisture content. In particular, P. Heiselberg 
et al. [35] provided a complete overview of the types of sensitivity analysis, pointing out the advantages of the 
Morris Method which is evaluated as the most interesting for sensitivity analysis in sustainable building design. 

This paper echoes what has been carried out by Zhao et al. [31] and Marincioni et al.  [34] by comparing 
hygrothermal simulation results with monitoring data collected in a renovated historic wall insulated from the 
inside.  The monitoring data refer to a very long period of almost 2 years and include the hygrothermal conditions 
occurring in the wall during both hot and cold periods. The innovative methodology uses those long-term 
monitored data to calibrate and validate a hygrothermal simulation model; moreover, they are also used to 
perform a sensitivity analysis. This research focuses on two open questions. First, an analysis is conducted to 
determine how realistic the hygrothermal simulation model can be when applied in the context of the interior 
insulation of a historic stone masonry wall. Subsequently, in the second step, a sensitivity analysis method is 
used to identify the input parameters that most influence the numerical model. In particular, this is an essential 
aspect as the literature lacks a study of how different material properties influence the final results of a 
hygrothermal simulation [33]. Finally, a validation of the calibrated model verifies its robustness.  

2 Methodology 

This section outlines all steps of study development. . A hygrothermal analysis software is used to simulate a 
masonry wall of a historic building. In particular, Delphin 6.1 software is used. The creation of the model involves 
recreating the cross-section of the wall, assigning the material, the environmental conditions (internal and 
external), and the initial conditions of the component. The wall model is created based on the material 
thicknesses measured on site. The model is supplied with data from the monitoring system that measures the 
external climate conditions (described in Section 2.1) and those in the indoor room. In this way, it is possible to 
minimize the uncertainties related to the climatic conditions the wall is subjected to. The numerical model 
simulates the behaviour of the walls over the entire monitored period. The simulation outputs have been set to 
coincide with the temperature and relative humidity values at the same points in the cross-section where the 
sensors are installed. This allowed a comparison between the values obtained from the simulation and those 
recorded during the entire monitoring period. Table 1 shows all input parameters used in this study and the 
variables considered for model calibration and sensitivity analysis. 

 

Input Parameters Type of input data 
Sources used for the 

calibration 
Sources used for the 
sensitivity analysis 

External 
climatic 

conditions 

Temperature Hourly data [°C] 
Data from monitoring 

System 
Data from monitoring 

System 

Relative Humidity Hourly data [%] 
Data from monitoring 

System 
Data from monitoring 

System 
Short Wave Solar 

Radiation 
Hourly data [W/m2] 

Data from monitoring 
System 

Data from monitoring 
System 

Direct rain on 
surface 

Hourly data [l/m2] 
Data from monitoring 

System 
Data from monitoring 

System 

Indoor 
climatic 

conditions 

Temperature Hourly data [°C] 
Data from monitoring 

System 
Data from monitoring 

System 

Relative Humidity Hourly data [%] 
Data from monitoring 

System 
Data from monitoring 

System 

Materials 
properties 

Thermal transport Thermal conductivity as function of moisture content  
Parameter Variation: 
Section 2.4 (Model 

Calibration) 

Parameter Variation: 
Section 2.5 (Sensitivity 

analysis) 

Thermal storage Thermal storage parameters 
Vapor transport Vapor permeability as function of moisture content 
Liquid transport Liquid conductivity as function of moisture content 



  
 

Moisture storage Moisture content as function of capillary pressure 

Boundary 
coefficients 

Heat conduction Exchange coefficient [W/m2k] 
Fixed value: WTA 

Recommendations 6.2 
[36] 

Parameter Variation: 
Section 2.5 (Sensitivity 

analysis) 

Vapor diffusion Exchange coefficient [s/m] 
Fixed value: WTA 

Recommendations 6.2 
[36] 

Short wave 
radiation 

Absorption coefficient of the building surface [-] 
Fixed value: DIN 18599 

[37] 

Wind-driven rain Rain exposure coefficient [-] 
Fixed value: EN 15927-3 

[38]  

Table 1. All input parameters used to create the numerical model. The cells in green indicate the sources from which the values 
are taken. Cells in yellow indicate the input parameters varied for calibration and sensitivity analysis. 

After implementing the numerical model, the next step concerns the analysis and evaluation of 
uncertainties. Since the boundary conditions are monitored, the most significant uncertainties are associated 
with the choice of materials in the model. The knowledge of the materials changes depending on whether the 
material is new (i.e., a material added during the building renovation ) or existing. Therefore, it is essential to 
create a cluster of materials selected from the software database that is representative of each material present 
in the wall cross-section. Section 2.3 describes in detail the selection of clusters for each material. The 
implemented procedure exploits the clusters for the calibration of the numerical model: a Python script 
combined with the simulation tool ran several simulations using different combinations of materials to find the 
one that minimized the difference between the simulated and monitored data indicated as objective function 
(Section 2.4). Afterward, the calibrated model is validated over a later period. Finally, a sensitivity analysis is 
performed using the calibrated simulation, to determine the input parameters most influencing a selected 
objective function. The sensibility model used is discussed in more detail in Section 2.5. 

 

 
Figure 1. Applied framework to find a calibrated model, conduct sensitivity analysis and finally validate the model. 

2.1 Case Study 

A monitoring system was installed in a historic building located in Settequerce (Bolzano – Italy). The 
building was retrofitted in 2017 and a wood fiber insulation panel was applied from the internal side on the 
exterior stone walls. Sensors were installed on the external and internal surfaces, as well as within the wall, 
during the renovation, as shown in Figure 2. Detailed information on the monitoring system can be found in 
[23,24]. 

 



  
 

 
Figure 2. Cross-section of the analyzed masonry (left), the wall analyzed and all sensors placed on the external surface (right) 

On the outside, a pyranometer (Hukseflux SR05), a driving rain gauge (SMT – RS1119), a surface 
temperature sensor (thermocouples), and a temperature and humidity sensor (E + E EE060) were installed. The 
external temperature sensors were shielded to prevent solar radiation from affecting their measurements [39]. 
On the inside, a stand-alone sensor (E+E HUMLOG) for temperature and relative humidity was placed in the 
room. Temperature and relative humidity sensors (E + E EE060) were also installed within the wall during the 
renovation phase in the locations represented in Figure 2. To increase the measurement reliability, two sensors 
were placed in the layer behind the insulation. The sensing elements of the sensors were shielded to protect 
them from dirt, dust, chemicals, and salts. The sensors are linked to an external acquisition station, which houses 
a computer and a device that gathers all the recorded data. Data collection started in February 2017. The data 
used in this work refer to 22 months of data logging. 

Figure 3 shows the temperature and relative humidity values used as input boundary conditions of the 
numerical model. The values of the heat coupling coefficients ℎ𝑖𝑛𝑡 and ℎ𝑒𝑥𝑡 and of the vapor exchange 
coefficients 𝛽𝑖𝑛𝑡 and 𝛽𝑒𝑥𝑡 are selected following the WTA 6.2 guidelines [36]. The coupling parameters ℎ𝑖𝑛𝑡 and 

ℎ𝑒𝑥𝑡 are assigned the values 8 
𝑊

𝑚2𝐾
 and 17 

𝑊

𝑚2𝐾
, respectively. For 𝛽𝑖𝑛𝑡 and 𝛽𝑒𝑥𝑡, the values 2.5 x 10-8 

𝑠

𝑚
 and 7.5 x 

10-8 𝑠

𝑚
  are used, respectively. 

 

Figure 3. Temperature and relative humidity values recorded by the monitoring system with the internal HUMLOG sensor (left) 
and the external E+E sensor (right). 

The solar radiation absorption coefficient is chosen based on the standard DIN 18599 [37]. Since the 
surface plaster is white, the value 0.4 is assigned to build the numerical model. The rain values are calculated 



  
 

according to the model described in ISO 15927 [38]. Therefore, the rain exposure coefficient editable in Delphin 
is set to the value 1. The graph in Figure 4 shows the recorded solar radiation and the driving rain on the North-
east wall (62° North) for the entire observation period used as input boundary condition for the numerical model. 

 
Figure 4. Solar radiation and rain values recorded by the monitoring system from the external pyranometer (left) and the driving 

rain gauge (right). 

2.2 Description of the Numerical Model 

This paper uses the hygrothermal simulation software Delphin, developed at the Technical University of 
Dresden[40].  

Delphin allows the calculation of the coupled transport of heat and moisture to be simulated in 1-D, 2-D, 
and 3-D. Modelling involves describing the flow using physical models between volume elements (including 
material interfaces) and at the boundaries (external or internal interfaces). The flow is described by a set of 
balance equations. The numerical solution is obtained by a semi-discretization in space (using a finite 
volume/control method) and a subsequent integration in time. The model then converts the integral performed 
on the surface into the sum of the flux on all surfaces. The calculation of the flux into the volume performed on 
each representative elementary volume (REV) must be equal to the flux out of the volume. The procedure for 
estimating the flux divergence is applied iteratively to achieve convergence for the current time step. Below are 
the equations used in the numerical model to describe moisture and heat transfer. 

 

Convective liquid (capillary) water flux: 

 𝑗𝑐𝑜𝑛𝑣
𝑚𝑙 = −𝐾𝑙(𝜃𝑙)[

𝜕𝑝𝑙

𝜕𝑥
+ 𝜌𝑙𝑔]  Eq. 1 

Diffusive water vapor flux: : 

 𝑗𝑑𝑖𝑓𝑓
𝑚𝑣 = −

𝐷𝑣,𝑎𝑖𝑟

𝜇∗𝑅𝑣∗𝑇

𝜕𝑝𝑣

𝜕𝑥𝑘
  Eq. 2 

Heat conduction flux: 

 𝑗𝑑𝑖𝑓𝑓
𝑄 = −𝜆(𝜃𝑙) [

𝜕𝑇

𝜕𝑥𝑘
]  Eq. 3 

Where subscripts l and v denote liquid and vapor respectively, while conv and diff involve convective and 
diffusive transport. The other parameters are described in the nomenclature table. For more details on the 
equations and for the description of the models for the coupling with the boundary conditions, the reader can 
refer to the Delphin software manual [41]. 

 

2.3 Material Clustering 

It is generally recognized that simulation software is essential for hygrothermal assessment.  Simulations 
must be carried out carefully because – particularly in the case of a historic building – the numerous uncertainties 



  
 

can adversely affect the accuracy of the results. Therefore, it is reasonable to assume that better quality in the 
input parameters will return a more accurate simulation. External climatic data, such as temperature and relative 
humidity, solar radiation and driving rain, and the internal parameters (temperature and relative humidity), are 
important and must be chosen carefully. The material characteristics of all components are further essential 
inputs to the model. For this study, the climatic conditions are assumed to be correct since they are measured 
by the monitoring system. More attention is therefore paid to the selection of the input related to the materials. 

The materials used in the numerical model are supposed to be as close as possible to those present in the 
investigated wall. Material selection is a challenging task, especially when dealing with historical materials. In 
this phase, clusters of material files have been created, selecting them from the database of the software Delphin 
6.1. Every material will be afterward assigned to the corresponding layer in the cross-section of the numerical 
model to identify the best combination by comparing the outcomes with the monitoring data. To obtain 
adequate results for the sensitivity analysis study, the materials selected have to be representative of those 
found in the cross-section. At the same time, considering a greater variability of materials with different 
properties in every cluster allows a greater number of possible solutions to be investigated. The selection of 
materials can vary greatly depending on the level of knowledge available in the specific case study 
(documentation, laboratory tests, or historical materials with unknown properties). Only materials equivalent to 
the actual present in the cross-section are taken into consideration to prevent finding an unrepresentative 
combination. 

A knowledge level that only considers the type of material found in the wall is used in this study. The 
following characteristics of the five materials that compose the investigated wall are taken into account when 
creating the clusters: 

• The plaster applied to exterior and interior surfaces is a lime-based plaster. Therefore, all lime 
plasters are considered for this cluster. 

• The glue used to adhere the insulation to the historic wall is a clay-based glue. Since there are only 
a few clay glues in the database, other glue types are also considered in order to have greater 
variability. 

• A wood fibre-based insulation has been installed. Material is found in the database with very 
similar characteristics to those reported in its datasheet. However, all wood-fibre-based insulation 
materials are considered for the creation of the cluster. 

• Since the composition of the historical plaster in the cross-section is unknown, all plasters in the 
database are considered. In this way, the great uncertainty regarding the properties of this 
material is taken into account. 

• The historic stone in the wall consists of stone blocks bonded together with a historic mortar. 
Impurities from construction and possible voids are also present in this layer. For these reasons, 
all natural stones in the database have been considered to take uncertainties into account 
(excluding some materials such as tuffs and marbles to avoid including unrepresentative 
materials). 

2.4 Model Calibration 

This section describes the methodology used to calibrate the numerical model. The calibrated model aims 
to approach the relative humidity and temperature values under the insulation obtained as an output from the 
simulation with those recorded by the sensors at the same location. The sensors installed behind the insulation 
play an important role in this study. Indeed, the temperature and relative humidity sensors placed in the cross-
section are used as a benchmark compared to the output obtained from the simulation. The statistical index (𝜒2) 
is calculated to summarize how close the model is to the monitored values. This index is a modified RMSE (Root 
Mean Square Error) that accounts for measurement uncertainty. 



  
 

𝝌𝐓
𝟐 =

𝟏

𝑵
∑ (

𝑻𝒊,𝒎𝒐𝒏−𝑻𝒊,𝒔𝒊𝒎

𝒆𝑻𝒊,𝒎𝒐𝒏

)

𝟐

𝒊   Eq. 4 

𝝌𝐑𝐇
𝟐 =

𝟏

𝑵
∑ (

𝑹𝑯𝒊,𝒎𝒐𝒏−𝑹𝑯𝒊,𝒔𝒊𝒎

𝒆𝑹𝑯𝒊,𝒎𝒐𝒏

)

𝟐

 𝒊   Eq. 5 

Where: 

• 𝑇𝑖,𝑚𝑜𝑛 and 𝑅𝐻𝑖,𝑚𝑜𝑛 indicate the temperature and the relative humidity recorded by the sensors. 

• 𝑇𝑖,𝑠𝑖𝑚 and 𝑅𝐻𝑖,𝑠𝑖𝑚 indicate the hourly outcome in terms of temperature and relative humidity 
obtained with the hygrothermal simulation. 

• 𝑒𝑇𝑖,𝑚𝑜𝑛
 and 𝑒𝑅𝐻𝑖,𝑚𝑜𝑛

 represent the measurement uncertainty calculated as the maximum value 

between the sensor’s accuracy (± 0.3 °C and 0.5 %) and the standard deviation between the two 
sensors placed behind the insulation. 

A low index value indicates that the simulation is very close to the observed data. A value between 0 and 
1 corresponds to a simulation output that falls within the uncertainty. In this specific paper, the values obtained 

from the sensors positioned under the insulation (𝜒𝑎𝑣𝑔,𝑏𝑖
2 =

𝜒𝑅𝐻,𝑏𝑖
2 +𝜒𝑇,𝑏𝑖

2

2
) are considered as objective function. 

This position is considered because it is the most critical point from a hygrothermal point of view. Indeed, 
moisture accumulation is likely to occur, which can lead to interstitial condensation. In order to have a 
comparison index for validation, the MAE (mean absolute error) and RMSE (root mean square error) are also 
calculated. According to [42,43] this index is useful for the calibration of an energy model. Of the criteria listed 
in [21], a value of MAE and RMSE < 1°C for temperature and < 5% is an adequate value for the validation of a 
calibrated model. The proposed method involves a parameter variation (one at a time) of the materials in the 
database grouped in clusters for each type. That makes it possible to identify the best combination. 

Since running all possible combinations would have been costly in terms of simulation time, the following 
approach is proposed. First, five materials 𝐴 − 𝐵 − 𝐶 − 𝐷 − 𝐸 (taken from each respective cluster) are assigned 
to the model. Then a Python script is implemented to vary the assigned materials (one by one), run the 

simulation, and calculate the 𝜒𝑎𝑣𝑔,𝑏𝑖
2  index. The script proceeds as follows: four materials are fixed while the fifth 

is varied by assigning a material present in the corresponding cluster. After varying all the materials, the one that 
minimizes the index is identified and "fixed". The script then continues, varying a second material (of the four 
originally considered fixed) and again identifies the material with the lowest index and fixes it again. This 
procedure continues until all materials have been varied and then fixed. To consider a more significant number 
of possible combinations, the order in which the materials are varied is also changed. For example, consider the 
materials with the letters 𝐴 − 𝐵 − 𝐶 − 𝐷 − 𝐸 that were originally assigned to the model. First, the material 𝐴 is 
varied to obtain 𝐴𝑏𝑒𝑠𝑡. Then it is fixed: 𝐴𝑏𝑒𝑠𝑡 − 𝐵 − 𝐶 − 𝐷 − 𝐸. Then 𝐵 is varied and  𝐴𝑏𝑒𝑠𝑡 − 𝐵𝑏𝑒𝑠𝑡 − 𝐶 − 𝐷 −
𝐸 is obtained. And so on until the five "best materials of the first iteration are obtained: 𝐴𝑏𝑒𝑠𝑡 − 𝐵𝑏𝑒𝑠𝑡 − 𝐶𝑏𝑒𝑠𝑡 −
𝐷𝑏𝑒𝑠𝑡 − 𝐸𝑏𝑒𝑠𝑡.  

This permutation method considers all possible combinations. In the second iteration, the order of the 
variations is, for example: 𝐴 − 𝐵 − 𝐶 − 𝐸 − 𝐷, then 𝐴 − 𝐵 − 𝐷 − 𝐶 − 𝐸 and so on. This results in 120 different 
orders in which the five materials are varied. This allows a greater variety of combinations, resulting in a more 
accurate identification of the materials that produce the best agreement with the monitored data. 



  
 

  
Figure 5. Process of identifying the best combination of materials against the monitored data. 

2.5 Sensitivity Analysis 

Sensitivity analysis is defined as the study of how the uncertainty in the output of a model (numerical or 
otherwise) can be apportioned to different sources of uncertainty in the model input [44]. The variation of 
parameters and functions in the respective plausibility ranges is carried out considering all materials in each 
cluster and the coefficients of coupling with the boundary conditions. The objective is to identify the input 
parameters that are more important in the simulation. A screening method (Morris’s method) is implemented 
for this analysis, which allows a large number of variables to be considered but at the same time runs a relatively 
small number of simulations. The following paragraphs describe the sensitivity analysis method adopted, the 
input parameters considered and how their variation is handled within the numerical model. 

2.5.1 Morris Method 

The Morris method aims at identifying the  impact of parameters on a defined objective function when 
the number of uncertainty factors is high and with a relatively small number of simulations [45]. It represents a 
screening strategy that considers non-monotonic relationships and information on the interaction of 
parameters. The Method has been developed by Morris (1991). Campolongo [46] proposes an improved version 
of the sampling approach [47] and the use of a radial design as a sensitivity analysis model. 

The method is classified as OAT (one at a time), and it entails varying one input parameter at a time while 
keeping all others constant (at a random value) and calculating the variation of the objective function. The results 
provide a qualitative view of the parameters that matter most and recognize the inter-dependencies between 
them. 

The sampling phase is performed using Latin Hypercube Sampling (LHS) [48]. The identified clusters 
referred to each material are used to extract the discrete distribution and then for sampling. A further step is to 
assign a probability density function to each parameter. A Python script (SciPy library) creates several distribution 
curves (Uniform, Gamma, Normal and Pareto distribution) for each discrete distribution of any given parameter. 
The Sum of Square Error (SSE) is then calculated, and the distribution that minimizes the SSE value is identified. 
This way, the discrete distributions are fitted to obtain the best approximated continuous distribution. The LHS 
is chosen to perform random sampling from probability distributions for each parameter. This methodology 
allows the generation of random numbers covering the entire input space. In addition, this sampling method 
uses stratified sampling to reduce the sample size but still accurately represents the probability density function 
(pdf). An example of the distribution obtained is shown in Figure 6. The discrete values of the 𝜆𝑑𝑟𝑦 parameter 



  
 

extracted from the cluster referring to the Old Plaster are compared with those sampled with LHS method using 
the best distribution obtained. 

 
Figure 6. Comparison of the sampling by LHS method using the best distributions (among Uniform, Gamma, Normal and Pareto) 

and the discrete parameter values found in the relative cluster (Old Plaster cluster). In the case shown of the thermal conductivity of the 
old plaster, the distribution that best represents the discrete values is the gamma distribution 

The results of the sensitivity analysis usually depend more on the ranges chosen than on the probability 
distributions assigned [35]. Each continuous distribution is checked to ensure that it is representative with 
respect to discrete values. 

Matrix 1 represents a single iteration of the method. For the construction of the matrix, basic (a) and 
auxiliary terms (b) are generated during sampling. Each row consists of all input parameters used for each 
simulation. The first line consists of all basic terms (k = input parameters). In each subsequent line, a single value 
a is replaced by an auxiliary term as shown in Matrix 1 for a total of k+1 lines. For each simulation, the statistical 

indices 𝜒𝑎𝑣𝑔,𝑏𝑖
2  described in Section 2.4 are calculated as output, which consider the comparison between 

simulated and monitored values under the insulation and are used as objective function. 

𝑎1,𝑟 𝑎2,𝑟 … … … … 𝑎𝑘,𝑟

𝑏1,𝑟 𝑎2,𝑟 … … … … 𝑎𝑘,𝑟

𝑎1,𝑟 𝑏2,𝑟 … … … … 𝑎𝑘,𝑟

… … … … … … …
𝑎1,𝑟 … 𝑎𝑖−2,𝑟 𝑏𝑖−1,𝑟 𝑎𝑖,𝑟 … 𝑎𝑘,𝑟

𝑎1,𝑟 … 𝑎𝑖−2,𝑟 𝑎𝑖−1,𝑟 𝑏𝑖,𝑟 … 𝑎𝑘,𝑟

𝑎1,𝑟 𝑎2,𝑟 … … … … 𝑏𝑘,𝑟

  Matrix 1 

The elementary effect values, 𝐸𝐸𝑗
𝑖, are then calculated according to the following equation as also 

described in [47]: 

𝐸𝐸𝑗
𝑖 =

𝑌(𝑥𝑖
𝑎𝑥~𝑘

𝑎 )−𝑌(𝑥𝑖
𝑏𝑥~𝑘

𝑎 )

𝑥𝑖
𝑎−𝑥𝑖

𝑏   Eq. 6 

The values 𝑥𝑖
𝑎  and 𝑥𝑖

𝑏  indicate the reference percentile [0, 1] corresponding to the considered input value 

(𝑖). For every 𝑗𝑡ℎ iteration, the term 𝑌(𝑥𝑖
𝑎𝑥~𝑘

𝑎 ) represents the outcome value of the simulation with the basic 

value for the 𝑖𝑡ℎ input parameters while 𝑌(𝑥𝑖
𝑏𝑥~𝑘

𝑎 ) consider the row with the substitute auxiliar value. From the 

identified elementary effects, the sensitivity measures 𝜇∗ and 𝜎2 are calculated according to the following 
equations: 



  
 

�̅�𝑖 =
1

𝑁
∑ 𝐸𝐸𝑖

𝑗𝑁
𝑗=1   Eq. 7 

𝜇𝑖
∗ =

1

𝑁
∑ |𝐸𝐸𝑖

𝑗
|𝑁

𝑗=1   Eq. 8 

𝜎𝑖
2 =

1

𝑁−1
∑ (𝐸𝐸𝑖

𝑗
− �̅�𝑖)

2
𝑁
𝑗=1   Eq. 9 

The value 𝜇∗ describe the overall influence of the input variables on the objective function (taking in 
account non-monotonic relationships between the parameters). The values of 𝜎2 give an additional information 
regarding the interaction effects between all parameters. 

2.5.2 Parameters Selection 

In hygrothermal simulation software, the physical characteristics of every material are described by its 
heat and moisture transport and storage functions implemented in the material files, which depend significantly 
on moisture content. Varying the entire function can be complex. Therefore, it is necessary to find a simplified 
parameter-based approach. In practice, the behavior of the functions is often summarized by significant 
parameters (𝜇𝑑𝑟𝑦, 𝜆𝑑𝑟𝑦, 𝐴𝑤, 𝜃𝑒𝑓𝑓, 𝜃80). Our methodology involves varying the basic parameters and adapting 

the function accordingly. The approach chosen in this study represents a compromise between simplicity of 
implementation and provides a link to practice. Changing specific parameters allows for rescaling the 
hygrothermal function to which they are related. In this study, some rescaling functions implemented in Delphin 
software are used. 

This section presents the parameters considered for the sensitivity analysis and how their variation is 
considered. Since the heat storage function is equally related to the values of density and specific heat capacity, 
both parameters have been considered as a unique parameter. Their product, denoted by 𝐶𝑣𝑜𝑙  [𝐾𝐽/(𝑚3𝐾)], has 
been taken into account (also considered in [24]).  

For the purpose of this study, equations have been implemented that consider the correlation of 
parameters to the hygrothermal transport and storage functions. Table 2, Table 3, and Table 4, show the 
rescaling equations that have been applied for each considered parameter. In addition, the graphs in the table 
show how the variation of each parameter affect the hygrothermal functions (a plaster from the database has 
been used as an example). The initial functions are represented by the red curves, the grey curves show how by 
varying each parameter within a plausible range the related function is changed. 

 

Thermal Function Thermal Transport Thermal Storage 
Parameters 𝝀𝒅𝒓𝒚 [𝑾/𝒎𝒌] 𝜽𝒆𝒇𝒇 [𝒎𝟑/𝒎𝟑] 𝑪𝒗𝒐𝒍 

Rescaling 
equation 

𝝀(𝜽𝒍) = 𝝀𝒅𝒓𝒚 + 𝟎. 𝟓𝟔 ∗ 𝜽𝒍    Eq. 10 𝝆, 𝒄𝒑 

Example graphs 

   

 

Table 2. Rescaling functions implemented in the Python script to relate parameters to transport and heat storage functions. 

Regarding the thermal transport, the equation in Table 2 is used in Delphin. In particular, 𝜆𝑑𝑟𝑦 represents 

the thermal conductivity of the dry material, 𝜃𝑙 represents its moisture content and 0.56 W/mK is the thermal 
conductivity of water. When 𝜆𝑑𝑟𝑦 is varied, the function is translated but the slope remains constant. The other 



  
 

changed parameter is 𝜃𝑒𝑓𝑓 which represents the moisture content at effective saturation. This value represents 

the last point on the x-axis. Varying 𝜃𝑒𝑓𝑓 extends or shortens the function.  

Hygric Function Vapor Transport 

Parameters 𝝁𝒅𝒓𝒚 [−] 𝜽𝒆𝒇𝒇 [𝒎𝟑/𝒎𝟑] 

Rescaling 
equation 

𝑘𝑣,𝑑𝑟𝑦
𝑛𝑒𝑤 = 𝑘𝑣,𝑑𝑟𝑦

𝑜𝑙𝑑 𝜇𝑑𝑟𝑦
𝑜𝑙𝑑

𝜇𝑑𝑟𝑦
𝑛𝑒𝑤   Eq. 11 

log[𝑘𝑣
𝑛𝑒𝑤(𝜃𝑙)] = log[𝑘𝑣

𝑜𝑙𝑑(𝜃𝑙)] ∗
log [𝑘𝑣,𝑑𝑟𝑦

𝑛𝑒𝑤 ]

log [𝑘𝑣,𝑑𝑟𝑦
𝑜𝑙𝑑 ]

 Eq. 12 

𝜽𝒍
𝒏𝒆𝒘 = 𝜽𝒍

𝒐𝒍𝒅 𝜽𝒆𝒇𝒇
𝒏𝒆𝒘

𝜽𝒆𝒇𝒇
𝒐𝒍𝒅    Eq. 13 

Example graphs 

    
Table 3. Rescaling functions implemented in the Python script to relate parameters to vapor transport functions. 

For vapor transport, a moisture content-dependent vapor conductivity (𝑘𝑣) is generally implemented. Eq. 
11 and Eq. 12 define how the function 𝑘𝑣(𝜃𝑙) is rescaled when the basic parameter 𝜇𝑑𝑟𝑦 is changed from its 

original value (old) to its new value. Eq. 13 shows instead the applied rescaling when the value of 𝜃𝑒𝑓𝑓 is changed.  
 

Hygric Function Liquid Transport 

Parameters 𝑨𝒘  [
𝒌𝒈

𝒎𝟐
∗ √𝒔]  𝜽𝒆𝒇𝒇 [𝒎𝟑/𝒎𝟑] 

Rescaling 
equation 

𝑘𝑙
𝑛𝑒𝑤(𝜃𝑒𝑓𝑓) = 𝑘𝑙

𝑜𝑙𝑑(𝜃𝑒𝑓𝑓) (
𝐴𝑤

𝑛𝑒𝑤

𝐴𝑤
𝑜𝑙𝑑 )

2

     Eq. 14 

log[𝑘𝑙
𝑛𝑒𝑤(𝜃𝑙)] = log[𝑘𝑙

𝑜𝑙𝑑(𝜃𝑙)] ∗
log[𝑘𝑙

𝑛𝑒𝑤(𝜃𝑒𝑓𝑓)]

log[𝑘𝑙
𝑜𝑙𝑑(𝜃𝑒𝑓𝑓)]

   Eq. 15   
𝜃𝑙

𝑛𝑒𝑤 = 𝜃𝑙
𝑜𝑙𝑑 𝜃𝑒𝑓𝑓

𝑛𝑒𝑤

𝜃𝑒𝑓𝑓
𝑜𝑙𝑑     Eq. 16 

Example graphs 

    
Table 4. Rescaling functions implemented in the Python script to relate parameters to liquid transport functions.  

Materials in Delphin use the models for liquid water transport that considers the 𝑘𝑙(𝜃𝑙)  (conductivity for 
capillary pressure gradient). Eq. 14 and Eq. 15 define how the function 𝑘𝑙(𝜃𝑙) is rescaled when the basic 
parameter 𝐴𝑤 is changed from its original value (old) to its new value. Eq. 16 shows instead the applied rescaling 
when the value of 𝜃𝑒𝑓𝑓 is changed.  

 

Hygric Function Moisture Storage Function 

Parameters 𝜽𝒆𝒇𝒇 [𝒎𝟑/𝒎𝟑] 𝜽𝟖𝟎 [𝒎𝟑/𝒎𝟑] 

Rescaling 
equation 

𝜃𝑙 = 𝜃𝑒𝑓𝑓 ∗
(𝑏−1)∗𝜑

(𝑏−𝜑)
   Eq. 17 

𝑏 = 𝜑80% ∗
𝛳80−𝛳𝑒𝑓𝑓

(𝛳𝑒𝑓𝑓∗𝜑80%)−𝛳80
   Eq. 18 



  
 

𝜑80% = 0.8   Eq. 19 

Example graphs 

  
Table 5. Rescaling functions implemented in the Python script to relate parameters to moisture storage function. 

The Moisture Storage Function (MSF) is defined as the moisture content of a material as a function of the 
relative humidity or of the capillary pressure. The MSF in Delphin is typically represented as a function of the 
capillary pressure allowing for a more accurate description of high moisture contents.  In addition, in general, 
the MSF has a complex shape that depends on the pore structure of the material and is derived from different 
measurement points [49]. In this study, in order to simplify the sensitivity analysis methodology, the shape of 
the MSF is rescaled based on the variation of two basic parameters: 𝜃80, that correspond to the moisture content 
at a relative𝜃𝑒𝑓𝑓, that correspond to the moisture content at a relative humidity of 100%. For this purpose, the 

original shape of the MSF contained in the Delphin database is replaced with the analytical function described in 
Eq. 17 – 19. The graphs reported in Table 5 show how 𝜃80 and 𝜃𝑒𝑓𝑓 affect the shape of the MSF:  

The described relations are then implemented to modify the materials and perform the sensitivity analysis. 
The clusters identified for each type of material are considered. Table 6 shows the probability function and the 
range bounds used in this study and is based on the clusters identified in the material selection phase. Note that 
some parameters can have a wide range of variation since the uncertainties on the materials considered in this 
work (described in Section 2.3) allowed for finding several materials which, although of the same type, can have 
very different parameters (e.g. 𝜆𝑑𝑟𝑦 for the lime plaster). 

Among the values obtained in the distributions and for each type of material, 𝜃𝑒𝑓𝑓 values are almost 

always ten times higher than 𝜃80. However, a constraint is added in the script so that during sampling, the 
relation 𝜃80 < 𝜃𝑒𝑓𝑓 is always verified.  

In the calibration phase, the values of the coefficients of the boundary conditions are not varied but 
considered equal to the values given in the WTA recommendations and indicated in Section 2.1. In addition to 
material parameters, coupling parameters with boundary conditions are varied in the sensitivity analysis. The 
external and internal heat coupling coefficients (ℎ𝑒𝑥𝑡 and ℎ𝑖𝑛𝑡), the vapor exchange coefficients with internal 
and external surfaces (𝛽𝑒𝑥𝑡 and 𝛽𝑖𝑛𝑡), the shortwave solar radiation absorption coefficient (𝛼𝑠𝑜𝑙), and rain 
exposure coefficient are all taken into account. The limits for the boundary condition coefficients are chosen 
based on [50]. Tables Table 6 and Table 7 show the range of variation for each material’s parameter and for the 
coupling coefficients with the boundary conditions.  

Materials/par
ameters 

𝐴𝑤 𝐶𝑣𝑜𝑙 𝜆𝑑𝑟𝑦 𝜇𝑑𝑟𝑦 𝜃𝑒𝑓𝑓  𝜃80 

min max min max min max min max min max min max 

New Plaster 
0.004 0.49 1277 2379 0.11 1.045 6.1 51 0.16 0.73 0.006 0.062 

Gamma Gamma Norm Gamma Gamma Uniform 

Old Plaster 
0.0001 0.367 512 1780 0.1 1 5.5 251 0.059 0.787 0.002 0.092 

Gamma Norm Gamma Gamma Gamma Gamma 

Glue 
0.0001 0.124 676 1569 0.1 1 10.3 65.0 0.059 0.787 0.002 0.092 

Gamma Norm Gamma Gamma Gamma Gamma 

Stone 
0.003 0.67 1403 1979 0.96 3.27 11 178.5 0.05 0.27 0.0007 0.036 

Gamma Norm Norm Pareto Uniform Pareto 

Insulation 
0.003 0.084 267 400 0.034 0.093 3 15 0.38 0.931 0.0176 0.0528 

Uniform Pareto Gamma Pareto Uniform Pareto 



  
 

Table 6. Range of variation selected, and probability functions used for each material’s parameter. 

 

 Parameters 
𝛼𝑠𝑜𝑙 𝑅𝑎𝑖𝑛 𝑐𝑜𝑒𝑓𝑓. ℎ𝑒𝑥𝑡 ℎ𝑖𝑛𝑡 𝛽𝑒𝑥𝑡  𝛽𝑖𝑛𝑡  

min max min max min max min max min max min max 

Variation range 0.1 1.0 0.3 1.0 12.5 50.0 3.0 15.0 1.0 17.0 1.0 5.5 
Distribution Uniform Uniform Uniform Uniform Uniform Uniform 

Table 7. Range of variation selected for the coefficient of coupling with the boundary conditions. 

3 Results and Discussions 

The first step concerns the creation of material clusters, grouping material files present in the database 
that are representative of those present in the investigated wall. Table 8 summarizes the number of file materials 
used for each cluster. 

 

Material Type Category n° of materials in the cluster 

New Plaster Plaster 30 
Old Plaster Plaster 64 
Insulation Insulation 2 

Glue Plaster 32 
Stone Natural Stones 25 

Table 8. Number of materials selected for every cluster. 

Afterward, the identified material files are combined assigning them to the corresponding layer. An 
iteration procedure is conducted to find the best combination of material files that minimize the discrepancy 
between simulated and monitored data. For this purpose, over 4000 simulations with different material 
combinations are run. Figure 7 (a) represents the output of all simulation in terms of relative humidity under the 
insulation for the entire monitored period (curves in grey) in comparison with the data recorded by the sensors 
under the insulation (red curve with uncertainty area represented in orange). Figure 7 (b) shows the box plot of 

the values obtained considering all simulations in terms of 𝜒𝑅𝐻,𝑏𝑖
2  (minimum, maximum, 1st, 2nd, 3rd, 4th quartile, 

mean and median). 
 

(a) (b) 

 

 

Figure 7. (a) Relative humidity between the insulation and the existing wall as a function of time is shown for the monitored data 
(red curve) and the different variants simulated in the calibration process. (b) Box plot representing all main values obtained in terms of 

𝝌𝑹𝑯,𝒃𝒊
𝟐 . 

The output curves highlight the area of uncertainty that would occur if the climate data were measured, 
the boundary coefficients were assumed according to the WTA recommendation, and the assumed level of 

knowledge of the material used in this study is considered. The 75th percentile of 𝜒𝑅𝐻,𝑏𝑖
2  obtained for all 

simulations is around 2.25 [-], while only for a few outliers, the index is higher than 3.76 [-]. All material 



  
 

combinations reproduce the overall qualitative trend of the simulation. This shows that imposing the proper 
boundary conditions and selecting the materials carefully provides a solid basis for setting up a hygrothermal 
simulation model. However, from a quantitative point of view, the maximum relative humidity changes from 
75% up to 95%, which is not a negligible difference when predicting moisture-related damages in constructions. 
Only a few curves underpredict the relative humidity curve in winter, while many of the obtained combinations 
are reliable. 

Among all the simulations run, those that returned a very low 𝜒𝑎𝑣𝑔,𝑏𝑖
2  index had the same material file for 

the stone. In particular, it is a sandstone existing in the province of Rüthen in Germany. Stone is a mixed material 
with historic mortar and other impurities, so it is the element whose properties are most uncertain. At the same 
time, it constitutes the thickest layer of the wall. The material identified may not be representative of stone, but 
it more effectively balances the characteristics of the complex wall element. 

Figure 8 shows the best combination of materials obtained by the calibration process described in Section 
2.3.  

  

 
Figure 8. Output values of relative humidity and temperature behind the insulation of the simulation with the best combination 

of materials. 

These curves represent the one with the lowest value in terms of index 𝜒𝑎𝑣𝑔,𝑏𝑖
2 . The calibrated model 

shows the relative humidity values under the insulation within the area of the uncertainty of the monitored data 
for almost the entire monitored period. Considering the materials in the software database (and the above-

explained clusterization), a model with a 𝜒𝑅𝐻,𝑏𝑖
2  of 0.43 [-] is obtained. The comparison with the temperature 

values at the same position returns simulation values close to those monitored, with a 𝜒𝑇,𝑏𝑖
2  of 4.9. To compare 

the results with better-known indices in the literature, Table 9 shows the values of MAE and RMSE. 

Index 𝑹𝑯𝒃𝒊 𝑻𝒃𝒊 Hourly criteria 

MAE 1.87 % 0.31 °C <1°C (temperature) 
 < 5% (relative humidity) 

 [21] 
RMSE 2.24 % 0.45 °C 



  
 

Table 9. MAE and RMSE values obtained for the calibrated model. 

Although it is more straightforward than other approaches, the calibration with the parametric method 
gives a result very close to the experimental data. Moreover, past analyzes [24] have also shown that this 
approach provides a good calibration. In fact, in [24], it was seen that calibration with more sophisticated 
optimization methods (e.g. GenOpt) does not lead to consistent improvements in hygrothermal behavior. 
Furthermore, the same article discussed how optimization processes provide a calibrated model, but the 
parameters obtained do not necessarily reflect reality. 

Afterward, in this work, the numerical model is validated. The calibrated simulation is compared with a 
later period based on the hourly relative humidity measure. Figure 9 compares the calibrated model and the 
monitored relative humidity data under the Insulation from 01/01/2022 to 24/07/2022. 

 
Figure 9. Comparison of simulated and monitored data carried out for validation (01/01/2022 to 24/07/2022) 

The graph shows an excellent agreement between simulated and monitored data two years after model 

calibration. The statistical indices obtained in this period are 0.18 [-] for 𝜒𝑅𝐻,𝑏𝑖
2 . This indicates that the calibrated 

model continues to be representative for the case study analyzed.  

Index 𝑹𝑯𝒃𝒊 𝑻𝒃𝒊 Hourly criteria 

MAE 0.89 % 0.39 °C <1°C (temperature) 
 < 5% (relative humidity) 

 [21] 
RMSE 1.11 % 0.52 °C 

Table 10. MAE and RMSE values obtained for the model validation. 

As a result, can be assumed that the obtained curves are calibration of the numerical model that identifies 
a material file combination with properties that allow for good agreement with what is being monitored. The 
model's complexity and numerous uncertainties make it impossible to precisely match material parameters. 
Three factors must be considered: 

• It is possible that the materials present in the wall do not match those in the database. 

• Some material properties can be balanced and still provide an optimal result. 

• Some parameters in the numerical model may have a greater influence than others. The result of the 
calibration for the less impactful parameters is affected by a high degree of uncertainty 

This study focuses on the third point in particular. A sensitivity analysis has been performed starting from 
the calibrated model to identify the most influential input parameters in the hygrothermal simulation.  

The sensitivity analysis results identify the parameters that significantly influence the simulation with 

regards to the specified objective functions. This study concentrates on the 𝜒𝑅𝐻,𝑏𝑖
2  and 𝜒𝑇,𝑏𝑖

2  value, which 



  
 

quantifies the discrepancy between the simulated and monitored relative humidity and temperature under the 
insulation. Starting with a calibrated model can give excellent reliability to the sensitivity analysis. The 
methodology is repeated, starting with different material combinations (also, those combinations have curves 
very close to the monitored ones). It is possible to verify whether different hygrothermal functions of different 
materials could affect the results. It is therefore verified that the ranking of the parameters is approximately 
similar even when different material combinations are applied. The sensitivity analysis results are presented in 
Figures Figure 10 (a) and 10 (b). The values of 𝜇∗ on the x-axis represent the influence of the individual 
parameter, while the coefficient 𝜎2 provides additional information about the effects of parameter interactions. 

(a)  

(b) 

 
Figure 10. Sensitivity analysis results using the Morris Method considering the relative humidity (a) and temperature (b) 

monitored under the insulation. On the x-axis 𝝁∗ indicate the influence of the parameter on the objextive function. On y-axis 𝝈𝟐 
raperents the correlation’s effect. 

Table 11 summarizes the figure for a more effective representation: 

Boundary Coefficients 
Materials / 
Parameters 

New 
Plaster 

Old 
Plaster 

Glue Stone Insulation 
        
        

𝛼𝑠𝑜𝑙    𝐶𝑣𝑜𝑙           𝜇∗ > 3    Very Influential 

𝑅𝑎𝑖𝑛   𝜆           𝜇∗ > 2       

ℎ𝑖𝑛𝑡   𝜃𝑒𝑓𝑓           𝜇∗ > 1       

ℎ𝑒𝑥𝑡   𝜃80          𝜇∗ > 0.5       

𝛽𝑖𝑛𝑡   𝐴𝑤           0 < 𝜇∗ < 0.5     Not influential 

𝛽𝑒𝑥𝑡   𝜇                   

 

Boundary Coefficients 
Materials / 
Parameters 

New 
Plaster 

Old 
Plaster 

Glue Stone Insulation 
        
        

𝛼𝑠𝑜𝑙    𝐶𝑣𝑜𝑙           𝜇∗ > 0.40    Very Influential 
𝑅𝑎𝑖𝑛   𝜆           𝜇∗ > 0.30       



  
 

ℎ𝑖𝑛𝑡   𝜃𝑒𝑓𝑓           𝜇∗ > 0.20       
ℎ𝑒𝑥𝑡   𝜃80          𝜇∗ > 0.10       

𝛽𝑖𝑛𝑡   𝐴𝑤           
0 < 𝜇∗

< 0.10 
    Not influential 

𝛽𝑒𝑥𝑡   𝜇                   

Table 11. Summary table of 𝝁∗  values obtained with the Morris Method for the relative humidity and temperature values 

The results of the sensitivity analysis are specific to the analyzed case study. In general, they are related to 
three factors: 

• Cross-section: The type of materials present, their thicknesses and their distribution within the wall can affect 
the obtained results. 

• Climate conditions. The geographical location of the analyzed masonry and the surroundings (presence of 
other buildings or vegetation) can change the climatic conditions to which the component is exposed. 

• Knowledge level. The results of the sensitivity analysis largely depend on the available information on the 
materials [51]. This can affect the selection of material files for the creation of the clusters. Furthermore, this 
has an impact on the distributions and ranges values of every considered input parameter. 

Therefore, it must be underlined that, for this specific wall, in this specific climatic context and with the 
level of knowledge set for the materials, the authors are able to identify the most influential parameters 
concerning the chosen objective function (temperature and relative humidity under the insulation). 

Although no work in the literature considers the value of 𝜃80 among the analyzes for parameter variation, 
it is evident from the result that it is the one that counts most in this specific model. A possible interpretation 
could be that the simulation shows that the measured relative humidity in the critical point under the insulation 
varies from 60 % to a maximum of 90 %. This indicates that the hygroscopic state of the materials rarely reaches 
the over-hygroscopic range, so transport is mainly via vapor. Furthermore, 𝜃80 values with the most significant 
impact are precisely those of the materials closest to the compared position. Figure 11 shows the relative 
humidity values output obtained with the calibrated simulation. The great variability of this value in the ranges 
used could be the reason why this parameter is found to have a considerable influence on the results. For this 
reason, knowledge of this parameter could point toward the choice of representative materials. 

 
Figure 11. Representation of relative humidity values throughout the simulated period. The x-axis shows the simulated period. 

The left y-axis shows the thickness of the wall (in cm). The right y-axis indicates the colour scale used to represent the relative humidity 
values. 

Thermal conductivity plays an important role in determining relative humidity and temperature within the 
wall, as also shown in several studies [24,26,31,52,53]. The material whose thermal conductivity affects the 
numerical model more, in terms of humidity and temperature under the insulation, is the old plaster. The 
interpretation of this result could be evaluated through the wall's thermal resistances of every material 
component. Furthermore, the position of the old plaster layers with the investigated point is essential for 
analyzing the result. In contrast to the new plaster, the two layers of old plaster are located to the left of the 
insulation (and the measured point). Therefore, the thermal resistances to be compared are those of the stone 



  
 

layer and the old plaster. The graph in Figure 12 shows that when comparing the ranges of variation considered 
for this study, the dominant thermal resistance regards the historic plaster. This is because a lower thermal 
conductivity value creates an insulating effect from the outside, which raises the temperature. As a result, the 
vapor pressure difference between the external layers and the insulation is lowered, reducing the vapor 
transport at that point. A low 𝜆𝑑𝑟𝑦 value for historical plaster (present in the range) could, therefore, significantly 

influence the results in terms of relative humidity and temperature. Particularly important to note that the 
relative humidity behind the insulation, which is connected with the risk for interstitial condensation, depends 
strongly on the thermal conductivity. This parameter is usually considered negligible for the energy performance 
as soon as a wall is insulated and thus not investigated further. 

 
Figure 12. Comparison of the resistance difference referred to the range of variation of each material. The material layers' 

position refers to the monitored point under the insulation. 

As shown by the work carried out by Zeng et al. in [1] water absorption coefficient of the external plaster 
influences long-term moisture accumulation. This is confirmed by the results of the sensitivity analysis carried 
out in this work. Since the plaster is applied to both the inner and outer surface, it is plausible to assume that the 
𝜇𝑑𝑟𝑦 value determines the vapor flow within the wall. In contrast, there is a narrow range of variation for the 

𝜇𝑑𝑟𝑦-value in the case of insulation. Nonetheless, the results show a remarkable importance regarding the 

knowledge of this value. In general, the result shows that the coefficient 𝜇𝑑𝑟𝑦 is an important input parameter 

for each material in the wall (except stone material). 
Regarding the coefficients of the boundary conditions, only 𝛼𝑠𝑜𝑙  and ℎ𝑒𝑥𝑡 are found to play a role in the 

influence of the objective function. A previous study carried out on the same case study considering only the 
thermal parameters yielded the same result [24]. In the reported study, the objective function did not refer to 
the moisture under the insulation but an average index that considered the temperatures in the three monitored 
points. Therefore, it can be stated that these parameters should be carefully set during the creation of a 
numerical model. The density and specific heat capacity of the materials described by the 𝐶𝑣𝑜𝑙 parameter is 
found to be non-influential (again confirmed in [17,24]). 

A further analysis is carried out to compare the change in the relative humidity under the insulation for 

each individual material. Starting from the best combination (which has provided the lowest (𝜒𝑎𝑣𝑔,𝑏𝑖
2 ), several 

simulations have been run by varying one material at a time in the respective clusters. Figure 13 shows all the 
curves obtained for each material file and the respective parameter values. A correlation coefficient (Pearson) is 
determined for each parameter by correlating its values with the objective function. 

As far as the new plaster is concerned, the graph confirms what the Morris method reveals. There is no 
considerable influence from this material. The maximum difference in relative humidity is no more than 10 %. 
Furthermore, the only parameter that correlates with the results is 𝜇𝑑𝑟𝑦. A high value of 𝜇𝑑𝑟𝑦  tends to increase 

the relative humidity in summer and slightly lower it in winter. This could be due to the position of the plaster 
covering the external and internal surfaces; a high 𝜇𝑑𝑟𝑦-value acts as a barrier to the boundary conditions and 

decreases the moisture variation in the wall. Of the three wood fiber insulators, two have a very similar trend. 
The third shows a significant underestimation of relative humidity. The relative humidity values in the latter case 
are around 60 % for the entire simulated period. Further discussion of this aspect is not covered in this article. 
The choice of plaster in this case study can have the greatest influence on the objective function. Confirming the 



  
 

Morris method, the graphs show a correlation between the thermal conductivity value of the material and the 
objective function, especially in the colder months. A slight correlation (Pearson 0.6) is also present with the 𝐶𝑣𝑜𝑙 
value. This can be explained by the fact that thermal conductivity is related to the density of the material. 
Although the glue layer is only 1 cm, it also represents the layer in which the sensors are placed. The choice of 
glue has little influence on the change in relative humidity, which, at worst, is less than 10 %. However, there is 
a slight correlation between the values of 𝜇𝑑𝑟𝑦. A high value of this parameter brings the simulated curve closer 

to the monitored one. The stone material constitutes the thickest layer of the investigated wall (44 cm). 
Nevertheless, the choice of different materials does not influence the hygrothermal simulation. The comparison 
graphs between the materials and the objective function do not clearly correlate the investigated parameters. 

 

 

 



  
 

 

Figure 13. Comparison of the output values of the relative humidity behind the insulation obtained by starting with the best 
combination and varying one material at a time within each cluster. The scatter plots show the correlation between each parameter and 

the 𝝌𝑹𝑯,𝒃𝒊
𝟐 -index value. 

4 Conclusion 

This paper presents a calibration and sensitivity analysis on a DELPHIN model based on a case study in 
Settequerce (Bolzano – Italy). The first research question concerns the reliability of the hygrothermal simulation 
and how far the numerical model can represent reality. A monitored system has been installed to collect data on 
the climate conditions (internal and external), together with temperature and relative humidity values within 
the cross-section. Based on this data, a methodology is implemented to find a combination of materials within 
the database that reduce the difference between the relative humidity values under the insulation obtained as 
the output of the numerical model and the values recorded by the sensors. Therefore, starting from the best 
combination of materials, a sensitivity analysis is carried out with the aim of finding the parameters that are the 
most influential in the numerical model. The methodology presented in this study aims to provide support to 
designers during the creation of a numerical model. Measuring the parameters that have the greatest impact in 
the hygrothermal simulation could help to obtain a more reliable model. Since laboratory tests can be expensive 
and time-consuming, knowing this information might suggest to the designers which parameters they should 
spend more effort on.  

The results have shown that excellent agreement can be obtained between the monitored data and the 
simulation outcome. The relative humidity curves under the insulation obtained as output fall entirely within the 
area of the uncertainty of the monitored data. From analyzing all the curves obtained with all tested 
combinations, it can be stated that a reliable simulation could be achieved by selecting representative materials 
from the database of the software. 

The possibility of exploiting comparison data obtained from in-situ monitoring allowed a calibrated model 
to be obtained, which is used for sensitivity analysis and finally validated. Due to its high computational 
efficiency, the Morris method has been used. It allows for the identification of relevant inputs, even when, as in 
this case, the model has a lot of parameters and is therefore computationally burdensome. In general, the input 
values referring to material parameters are more influential in comparison to the coefficients of the boundary 
conditions of which only ℎ𝑒𝑥𝑡 and 𝛼𝑠𝑜𝑙  have a slight influence. In the analyzed wall, the greater uncertainty about 
the historical plaster combined with its position within the wall makes this material the most influential in the 
model. In particular, the thermal conductivity of the old plaster plays an important role. A lower lambda value 
makes the wall more insulated from the outside and, therefore, thus warmer. This implies a lower value of 
relative humidity under the insulation and, therefore, less moisture accumulation. 

This methodology allowed to identify a ranking of the influence of the input parameters for the numerical 
model of the specific case study. It is necessary to highlight that the results depend on the case analyzed and in 
particular: 

• The cross-section composition. 

• The geographical location of the case study. 



  
 

• The level of knowledge of the parameters to be provided as input to the numerical model. 
However, this work proposed a robust methodology that could easily be applied to other case studies. 

Further results could be obtained and then categorized according to the materials found in the cross-section, the 
climate zone in which the building is located and the level of knowledge of the input parameters. Reproducing 
other results using this methodology could certainly produce useful findings for designers who use hygrothermal 
simulations. In particular, it could direct the designer to perform specific tests to obtain information on one input 
parameter. Furthermore, more studies on similar buildings could validate what has been obtained. 

Nomenclature: 

Parameter Description Unit 

ℎ𝑒𝑥𝑡 Heat coupling coefficients with the outside [W/m2K] 
ℎ𝑖𝑛𝑡 Heat coupling coefficients with the inside [W/m2K] 
𝐶𝑣𝑜𝑙 Volumetric heat capacity [kJ/m3K] 

𝐷𝑣,𝑎𝑖𝑟 Vapor diffusivity in free air [m2/s] 
𝑇𝑖,𝑚𝑜𝑛 Temperature recorded by the sensors [°C] 

𝑐𝑝 Specific heat capacity [J/kgK] 
𝑘𝑙 Liquid conductivity [s] 
𝑘𝑣 Vapor conductivity [s] 
𝑝𝑎 Partial air pressure in gas phase [Pa] 
𝐴𝑤 Water uptake coefficient [kg/m2s1/2] 
𝛼𝑠𝑜𝑙 Solar radiation absorption coefficient [-] 
𝛽𝑒𝑥𝑡 Vapor exchange coefficients with the outside [s/m] 
𝛽𝑖𝑛𝑡 Vapor exchange coefficients with the inside [s/m] 
𝜃𝑒𝑓𝑓 Moisture content at effective saturation [m3/m3] 

𝜃𝑙 Volumetric moisture content  [m3/m3] 
𝜇𝑑𝑟𝑦 Water vapor diffusion resistance factor [-] 
𝜃80 Moisture content at a relative humidity of 80% [m3/m3] 

𝜆𝑑𝑟𝑦 Thermal conductivity [W/mK] 
𝐾 Water permeability [s] 

𝑅𝐻𝑖,𝑚𝑜𝑛 Relative humidity recorded by the sensors [%] 
𝑅𝑎𝑖𝑛 𝑐𝑜𝑒𝑓𝑓. Rain exposure coefficient [-] 

𝑇 Temperature [K] 
𝑏 Approximation factor [-] 
𝑔 Gravity constant [m/s2] 
𝑗 Mass or heat flow [kg/m2s] or [W/m2] 

𝑝𝑙 Liquid (capillary) water pressure [Pa] 
𝑝𝑣 Partial water vapor pressure in gas phase [Pa] 
𝑥 Coordinate [m] 
𝜆 Thermal conductivity [W/mK] 
𝜌 Density [kg/m3] 
𝜑 Relative humidity [%] 
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