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ABSTRACT

In this work, we describe a framework for solving spherical inverse imaging problems using posterior sampling for full uncertainty
quantification. Inverse imaging problems defined on the sphere arise in many fields, including seismology and cosmology, where
images are defined on the globe and the cosmic sphere, and are generally high-dimensional and computationally expensive. As
a result, sampling the posterior distribution of spherical imaging problems is a challenging task. Our framework leverages a
proximal Markov chain Monte Carlo (MCMC) algorithm to efficiently sample the high-dimensional space of spherical images
with a sparsity-promoting wavelet prior. We detail the modifications needed for the algorithm to be applied to spherical problems,
and give special consideration to the crucial forward modelling step, which contains computationally expensive spherical
harmonic transforms. By sampling the posterior, our framework allows for full and flexible uncertainty quantification, something
which is not possible with other methods based on, for example, convex optimization. We demonstrate our framework in practice
on full-sky cosmological mass-mapping and to the construction of phase velocity maps in global seismic tomography. We find that
our approach is potentially useful at moderate resolutions, such as those of interest in seismology. However, at high resolutions,
such as those required for astrophysical applications, the poor scaling of the complexity of spherical harmonic transforms severely
limits our method, which may be resolved with future GPU implementations. A new Python package, pxmcme, containing the

proximal MCMC sampler, measurement operators, wavelet transforms, and sparse priors are made publicly available.
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1 INTRODUCTION

Inverse problems on the sphere are common in many fields, from
astrophysics (e.g. Planck Collaboration I 2016; Jeftrey et al. 2021),
to geophysics (e.g. Ritsema et al. 2011; Chang et al. 2015) and more.
These tend to be high-dimensional and computationally challenging
imaging problems, increasingly so at high resolutions. Spherical
inverse problems are difficult to solve using posterior sampling
methods such as Markov chain Monte Carlo (MCMC), largely due
to the generally large number of parameters to sample and the high
computational cost of repeated evaluations of the forward problem
on the sphere. MCMC methods have grown in popularity in recent
decades (e.g. Mosegaard & Tarantola 1995; Lewis & Bridle 2002;
Malinverno 2002; Corless, King & Clowe 2009; Bodin et al. 2012;
Cai, Pereyra & McEwen 2018a), benefitting from their ability to
sample the full posterior probability density function (PDF), which
constitutes the solution of the inverse problem. This allows for
flexible calculation of any measure of uncertainty in the solution.
Furthermore, they can be used to solve non-linear inverse problems,
which are commonplace in, for example, geophysics (Malinverno
2002; Bodin et al. 2012; Ferreira et al. 2020). However, sampling
methods come at significant computational cost, for both solving
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the inverse problem and for model comparison, which is often
computationally infeasible. The simpler MCMC methods, such as
the Metropolis—Hastings (MH) algorithm, are known to struggle
in high-dimensional parameter spaces (e.g. Roberts & Rosenthal
1998; Neal 2012), such as those for spherical imaging problems.
The exponential increase in volume of the parameter space makes
MH unable to converge to a solution. Alternative gradient-based
methods such as the Hamiltonian Monte Carlo (HMC) (Duane
et al. 1987; Neal 2012) and the unadjusted Langevin algorithm
(ULA) (Roberts & Tweedie 1996) scale favourably compared to
the MH algorithm as the number of dimensions increases (Roberts &
Rosenthal 1998; Neal 2012). The caveat here is that these methods
can only be applied to smooth distributions, limiting the form of
prior information that can be used as regularization. Conversely,
nested sampling methods (Skilling 2006) can be used for non-
smooth problems. However, most nested sampling approaches cannot
scale to the high-dimensional settings of inverse problems without
gradient information. Proximal MCMC methods have recently been
developed (Pereyra 2016), leveraging proximal mappings to scale to
high dimensions and allow for non-smooth distributions. Proximal
mappings have also recently been used to scale nested sampling
methods to high-dimensional imaging problems (Cai, McEwen &
Pereyra 2022).

Compressed sensing (Donoho 2006; Candes et al. 2011) has
demonstrated that sparse signals can be accurately recovered from

© 2023 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

€20z Aieniga4 7z uo Jasn uopuoT abs|j0) Ausiaalun Aq 9¥ 1 2969/0Z/1/Z/a10nie/1sel/wod dno"olwapeoe//:sdiy Wolj papeojumo(]


http://orcid.org/0000-0001-6778-1399
mailto:augustin.marignier.14@ucl.ac.uk
https://creativecommons.org/licenses/by/4.0/

incomplete data, recovering both sharp and smooth image features
simultaneously from underdetermined systems (Loris et al. 2007;
Wallis, Wiaux & Mcewen 2017). As a result, sparse priors have been
widely adopted for solving inverse imaging problems, e.g. for radio
interferometry applications (Wiaux et al. 2009; Carrillo, McEwen &
Wiaux 2014; Pratley et al. 2017; Cai et al. 2018a; Cai, Pereyra &
McEwen 2018b), cosmological mass-mapping (Lanusse et al. 2016;
Price et al. 2020b), and have received some attention in seismic
tomography (Loris et al. 2007; Charléty et al. 2013). The prior
PDF (i.e. the distribution representing a prior beliefs to constrain
the inverse problem) often used to promote sparsity is the Laplace
distribution, which is non-differentiable and so cannot be used with
gradient-based sampling algorithms.

Current approaches to uncertainty quantification for high-
dimensional inverse problems with sparse a priori constraints exploit
results from information theory to derive approximate credible
regions from a single point estimate solution of the inverse problem
(Pereyra 2017; Cai et al. 2018b; Price et al. 2020b). The point
estimate solution can be obtained using convex optimisation (Cai
etal. 2018b; Price et al. 2020b), and thus this approach is much faster
than posterior sampling, particularly for high-resolution spherical
problems. However, this information theory-based approach can only
approximate credible regions. A sampling method, on the other hand,
will have the flexibility to calculate any measure of uncertainty, as
the samples represent a full probability distribution.

In this work, we provide a framework for solving inverse imaging
problems on the sphere using posterior sampling with sparsity-
promoting priors. For this, we leverage a proximal MCMC algorithm
(Pereyra 2016), which is a sampling scheme that uses proximal
mappings to efficiently sample high-dimensional parameter spaces.
Proximal mappings can be viewed as more general gradient operators
that can be used even on non-differentiable functions, allowing us
to use a Laplace prior to promote sparsity. In our framework, we
outline the modifications needed to the proximal MCMC algorithm
for spherical problems, with particular consideration given to the
spherical parameterization and forward operator. We then demon-
strate our framework in practice first on a common problem from the
field of global seismic tomography using both synthetic and real data,
and then on a low-resolution full-sky cosmological mass-mapping
example from simulation data.

This paper is structured as follows. Section 2 gives the necessary
mathematical background for Bayesian inference and representations
of spherical images. Section 3 outlines our framework for posterior
sampling of inverse problems on the sphere, with details of the
proximal MCMC algorithm that we use. Sections 4 and 5 contain our
illustrative examples from global seismic tomography and cosmo-
logical mass-mapping, respectively, and we conclude in Section 6.

2 MATHEMATICAL BACKGROUND

In this section, we provide the necessary mathematical background
for this work, including Bayesian inference for imaging, and har-
monic and wavelet representations of spherical images.

2.1 Bayesian inference for imaging

Consider some observed data d and model parameters m that are
related by some general, possibly non-linear, forward operator G, as

d = G(m)+n, 1)

where n represents observational noise. The aim of the inverse
problem is to infer m from d. This can be formulated in a Bayesian
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statistical framework by Bayes Theorem as

p(m|d) o p(d|m)p(m). 2

Here p(m|d) is known as the posterior PDF that encapsulates
knowledge of the model parameters m given data d and represents
the solution to the inverse problem (Tarantola and Valette 1982;
Mosegaard and Tarantola 1995). The likelihood function p(d|m),
assuming independent and identically distributed Gaussian noise
with known standard deviation o in the data, is given by

ld — G(m>||%>

202

p(d|m) ocexp (— 3)
Inverse problems are typically ill-posed and often require some form
of regularization in the form of prior knowledge about the model
parameters to further constrain the inverse problem. In the Bayesian
framework, this is represented by the prior PDF p(m), which can take
many forms. Common examples include the Uniform prior (Jaynes
2003), p(m) o constant; the Gaussian prior (Tarantola & Valette
1982; Golub, Hansen & O’Leary 1999), p(m) exp(—ullmll%);
and the Laplace prior (Donoho 2006; Candes et al. 2011), p(m)
exp(—pullm]|y), to promote sparsity. In these priors, || - ||, is the /-
norm and p is a parameter that captures the width of the distribution.
Henceforth, we use the Laplace prior as we wish to promote sparsity.
The constant of proportionality in equation 2 is known as the
Bayesian evidence. This is useful for comparing the physical model
(G) to alternative hypotheses, but may be ignored for inference about
model parameters m.

Solving the inverse problem by probabilistic sampling involves
sampling the posterior PDF p(m|d), most commonly using MCMC
algorithms. The simplest is the MH algorithm. MH proposes a new
sample from a proposal distribution, which has a certain probability
of being accepted. More sophisticated and better suited to high-
dimensional problems than MH are gradient-based methods, such
as the HMC and Langevin algorithms mentioned previously, which
use the gradients of the target PDF to more efficiently guide the
exploration of the parameter space. While the set of samples from
the posterior PDF represents the full solution of the inverse problem,
results are generally reported in terms of summary statistics, such as
the mean of the samples. The maximum a posteriori (MAP) solution,

m™MAP) — argmax p(m|d) )

is also a common choice; however, due to the randomness of
MCMC there is no guarantee of the MAP being found. The highest
posterior probability sample of the MCMC provides the closest
estimate of the MAP, but can still be relatively far from the true
MAP, particularly in higher dimensional spaces. Additionally, some
measure of uncertainty on individual model parameters can be
calculated from the posterior samples. We give further details of
this in the next section.

In inverse imaging problems, the model parameters m represent a
2D (or possibly 3D) image. MCMC can be used to sample either the
direct pixel values x of the image, or the coefficients & representing
the image in a particular basis. The forward operator G in equation 1
can be described as a (possibly non-linear) measurement operator
@ acting on the image x. In many physical situations, the image x
has a sparse representation in some basis, which can be exploited
to regularize the inverse problem. For some sparsifying basis ¥, we
have x = Wa, where « is the set of coefficients representing x in the
basis encoded in W. The model parameters m sampled by MCMC
are the coefficients «, and as such the forward operator is given by

G(a) = ®(Va). )
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For non-linear inverse problems, i.e. where @ is a non-linear
measurement operator, a common choice is to linearize via a Taylor
expansion around an initial guess model. While this usually leads
to acceptable results in weakly non-linear problems, linearization
errors and the need for a good initial guess model can lead to
artefacts in the recovered model. If the forward problem (equation 5)
is computationally fast, sampling methods are typically best for
strongly non-linear problems.

2.2 Harmonic representations of spherical images

We consider functions f(#, ¢) defined on the sphere 5 with colatitude
0 € [0, 7] and longitude ¢ € [0, 27r). The canonical orthogonal basis
functions for S? are the spherical harmonics

20+ 1 (€ —m)!
4t (€ +m)!

Yin (0, ¢) = P;"(cos 0)e™” ©6)
for non-negative integers ¢ and integers m < |£|, denoting angular
degree and angular order, respectively. As per the Condon-Shortley
phase convention, the associated Legendre functions P;"(x) include
a (— 1) phase factor, ensuring the conjugate symmetry relation

Yoom(0, ¢) = (=1)"Y,(0, ). O]

where * denotes complex conjugation. Any square integrable scalar
function on S? can be represented in the frequency domain by its
harmonic coefficients f;,, € C, obtained by projecting f onto the
spherical harmonic basis functions using the inner product (forward
spherical harmonic transform)

.flm = (fs Ylm> = /S; f(es d))yl*m(e’ ¢) sin 9d9d¢ (8)

The function f(6, ¢) can be recovered exactly from its spherical
harmonic coefficients (inverse spherical harmonic transform) by

e} ¢
FOH =" fun¥m(®, ). ©)
=0 m=—¢
This formalism can be generalized to spin-s fields (Newman &
Penrose 1966; Goldberg et al. 1967), common to astrophysical
spherical signals (McEwen et al. 2015a; Wallis et al. 2022), which
are characterized by local rotations x € [0, 271) in the tangent plane
at a point (0, ¢),

JF10,9) =" f(0,9) (10)

The spin-weight s of a function can be increased or decreased by ap-
plying the spin-raising or spin-lowering operators, d, 0, respectively.

g=—sin0 [ 24— Vsino (11
= —sin — 4+ ——— |sin*6,
00  sin6 d¢
_ 5 i 0
S=—sint0 (2 - % )sin'o 12
s (ae sin6 a¢>sm 12

Note how these operators are defined based on the spin of the function
to which they are applied. Using these operators, one can obtain the
spin-weighted spherical harmonics from the original scalar (spin-
0) spherical harmonics, which form an orthogonal basis for spin
functions on the sphere

0, £ <|s|
=9 x5
sYem(0, @) = o0 Yen (0, 9, 0=s=¢ (13)
(=1 V(0. ¢), —£<s<0
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As such, spin-s fields can easily be decomposed and reconstructed in
terms of spin spherical harmonics in a manner similar to equations 8
and 9.

In this work, we consider bandlimited signals, that is signals such
that f,, = 0,V € > L for some bandlimit L. We discretize spherical
signals according to the McEwen-Wiaux (MW) sampling theorem
(McEwen & Wiaux 2011). This equiangular sampling theorem has
theoretically exact and efficient spherical harmonic transforms and
requires fewer discrete points on the sphere than other sampling
theorems (e.g. Driscoll & Healy 1994; Gérski et al. 2005). It also
exploits a relationship between spin spherical harmonics and Wigner
functions (Goldberg et al. 1967; McEwen & Wiaux 2011) to avoid
repeated applications of spin-raising/lowering operators for fast spin
spherical harmonic transforms.

2.3 Wavelet representations of spherical images

For our sparsifying basis, we consider scale-discretized axisymmet-
ric wavelets (Wiaux et al. 2008; Leistedt et al. 2013; McEwen, Duras-
tanti & Wiaux 2018), i.e. the wavelets are azimuthally symmetric
when placed at the poles. There exist directional wavelets which vary
azimuthally (e.g. Wiaux et al. 2008; McEwen et al. 2015a, 2018) and
may be desirable in certain applications. However, such wavelets
require transforms on the rotation group SO(3), which are more
computationally expensive than transforms on 5> (McEwen et al.
2015b). The spherical wavelet transform is defined as the convolution
of fand the wavelets W/(6, ¢). Convolution on the sphere is defined
as the inner product of f with wavelets that have been rotated over the
surface of the sphere by some operator Ry, ¢, analogous to standard
convolution on the plane where the wavelet is laterally translated
over the image. As such, the wavelet coefficients WY’ e S? are
given by

WY (0, ) = (f, Ro.p¥’). (14)

The wavelets ¥/ cover a range of scales Jy <j <J, which extract the
highest frequency (high ¢ information of f). The lowest frequency
information (low ¢) is extracted by a scaling function Y'(6, ¢) in a
similar manner:

W0, )= (f. Re.pY). (15)

The wavelets and scaling function are defined on the harmonic line
such that the wavelets can be seen as narrow pass-band filters and the
scaling function is a low-pass filter that includes the zero frequency
component. For more details on choosing the width of the wavelets
on the harmonic line, we refer the interested reader to Leistedt
et al. (2013). The wavelets and scaling function are defined such
that they satisfy an admissibility condition, which allows f to be
decomposed and recovered exactly from its wavelet coefficients.
The reconstruction is given by

fO.¢)=>" /52 WO, ) (Ri.9) IO, $)sin0'do'dg’,  (16)
r

where T' € {Y, W}. Note that in practice, the spherical wavelet
transform is computed in harmonic space (Leistedt et al. 2013),
meaning the forward and inverse wavelet transforms (equations 14—
16) implicitly involve both a forward and an inverse spherical
harmonic transform (Wallis et al. 2017), which dominate the com-
putational complexity. The spherical harmonic and axisymmetric
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wavelet transforms used in this work are implemented in the packages
PYSSHT! and PYS2LET,? respectively.

3 FRAMEWORK FOR POSTERIOR SAMPLING
ON THE SPHERE

In this section, we outline our framework for sampling the posterior
of spherical inverse problems. We give the details of the high-
dimensional sampling algorithm we use and the modifications
necessary for the sphere. Extra consideration is given to the forward
operator, and finally we define a measure of uncertainty that can be
calculated from the posterior samples.

3.1 Proximal MCMC

3.1.1 Moreau—Yosida envelope and proximal mapping

The A-Moreau—Yosida envelope of some concave function A(x) is
given by (Moreau 1962; Bauschke & Combettes 2017)

K (x) = min{h(u) + [lu — x[3/Q21). (17

where A > 0. This is a smooth approximation of /2 with many desirable
properties. First, /* can be made arbitrarily close to i by making
small. Secondly, the minimizers of 4* are the same as the minimizers
of h. Thirdly, h* is continuously differentiable even if / is not. The
gradient of h* is given by

Vi*(x) = [(x — prox;(x))I/2, (18)
where proxj (x) is the proximal mapping of 4 (Moreau 1962)

proxz(x) = argmin{h(u) + ||lu — x||§/(2)»)}. (19)

Rewriting equation (18) as
prox;(x) = x — AVi*(x) (20)

is reminiscent of the standard first-order finite differences approxi-
mation A(xo + a) & h(xy) + ah (xo), which shows that prox}, may
be interpreted as a gradient step in h* with step size A. The key
property here is that the proximal map can be used to minimise #*
and, by extension, the non-differentiable / since they share the same
minimizers (Parikh & Boyd 2014). For an excellent introduction to
proximal mappings and algorithms, see Parikh & Boyd (2014) and
Combettes & Pesquet (2011).

3.1.2 Proximal Langevin algorithm

The proximal MCMC method developed by Pereyra (2016) is based
on Langevin MCMC (Roberts & Tweedie 1996), a gradient-based
sampling method, which we describe here. Consider a Langevin
diffusion process Y(¢) for 0 <t < T associated with a stationary PDF
7t. This process is given by the stochastic differential equation

dy () = %V log 7t[Y (¢)]dt + dW (1) (21)

for some Brownian motion W. We use the forward Euler discrete
time approximation with step size §

) ) 8 i i
mt) — g ® + EVIOgT[[m(')] + ng(l)’ (22)

Uhttps://github.com/astro-informatics/ssht
Zhtps://github.com/astro-informatics/s2let
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where m is the discretized Langevin diffusion and w® ~ A0, [).
This is the ULA (Roberts & Tweedie 1996). Under certain regularity
conditions, ULA produces samples that converge to an ergodic
measure close to 7t. A MH acceptance step can be added to remove
the approximation error, giving the Metropolis-Adjusted Langevin
Algorithm (Roberts & Tweedie 1996).

A well-known limitation of the Langevin and other gradient-based
sampling algorithms is that they require differentiable PDFs, which
is not the case for some popular priors such as the Laplace prior. A
proposed solution to this is to apply a Moreau-Yosida approximation
to the non-differentiable terms in the posterior PDFs (Pereyra 2016;
Cai et al. 2018a; Pereyra, Mieles & Zygalakis 2020). The posterior
PDF for our inverse problem (equation 2) is of the form 7t(m)
exp(—g(m) — f(m)), where g(m) = 2%’ ld — G(m)||% is our Gaus-
sian data fidelity and f(m) = p|m]|, is our non-differentiable
Laplacian prior. Applying a A-Moreau-Yosida approximation to the
prior, it then follows that the chain step for the Moreau-Yosida ULA
(MYULA) is given by

i 8 N8 .
mih = (1 - X) m + Xprox}[m(’)]

— 8V g[mD] + Vsw®. (23)

The tuning parameter § must be small for the forward Euler
approximation (equation 22) to converge, and Pereyra (2016) argued
that the optimal value for A is A = &/2. We describe how to
calculate the proximal mapping of our prior on the sphere (second
term equation 23) in the following subsection. If G is linear, the
gradient of the data fidelity is straightforward to calculate using the
adjoint

Vg =G (Gm —d)/c>. (24)

It is straightforward to modify equation 24 if the data errors
are characterized by a covariance matrix C rather than a sin-
gle standard deviation o. It is important to note here that for
spherical inverse problems, the forward operator G may include
spherical harmonic transforms, and thus the adjoint transforms
are also needed for equation 24. Further discussion about G in
the spherical setting is given later in this section. Algorithm 1
outlines the use of the MYULA chain in practice, highlight-
ing the key steps and equations. Again, an MH acceptance step
can be added (Pereyra 2016; Cai et al. 2018a); however, in
our experiments there was little improvement for the additional
computational cost.

Algorithm 1 MYULA on the sphere

INPUTS: observed datad, data errors o, initial sample m©®, i = 0,
N, Nin, Noum, quadrature weights ¢, §, A,
OUTPUTS: chain {m® :i =1, ..., N}
while i < N X Npin + Noun do
Calculate gradient of data fidelity (eq~??)
Calculate proximity map of prior (eq~??)
Calculate m“+ (eq~??)
if i > Nyym then
if mod(i, Npin) = O then
Save m“*1 to chain
end if
end if
i+=1
end while
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3.2 Modification for the sphere

We sample a set of spherical wavelet coefficients that are defined at
each point on the sphere (equation 14). The MW sampling theorem
is equiangular, and as such, we need to account for an overdensity
of sampling points near the poles when we calculate the proximal
mapping of our sparsity-promoting prior. Proximal operators are
generally calculated by a small convex optimization problem (Parikh
& Boyd 2014). Fortunately, there exist closed-form representations
for the proximal mapping of many common functions (Combettes
& Pesquet 2011), including the ¢;-norm we use in our prior. This is
crucial for MCMC methods where the proximal mapping needs to
be repeatedly computed. It can be shown that for f(m) = u|m|,

prox’; (m) = soft, ,(m) (25)

where soft,, is the soft thresholding operator with threshold Au
defined as (Combettes & Pesquet 2011)

0 if m; < Ap,

m; — iusgn(m;) if m; > Ap (26)

SOftA/L(mi) = {
where sgn(x) is the sign of x, and can be applied component-wise
to the components m; of m. To account for the spherical sampling
overdensity, a weighting must be applied to parameters m, which
takes the form of a diagonal matrix W of quadrature weights
(McEwen & Wiaux 2011) that vary with colatitude and bandlimit.
This can be seen as applying a component-wise prior on each of
the elements of m. The proximal mapping changes only in that the
threshold in equation 26 becomes Auw;, where w; is the ith diagonal
element of W.

3.3 The forward operator

A key consideration for any MCMC sampling algorithm is the
speed of the forward modelling step, i.e. making predictions of the
data d given an MCMC sample m. This is particularly important
for spherical problems where the forward operator G may contain
spherical harmonic transforms, which are, unfortunately, slow and
typically scale in complexity as O(L?) (McEwen & Wiaux 2011). As
discussed in Section 2, the spherical harmonic transforms are implicit
in the spherical wavelet transforms which form our sparsifying basis.
Expanding equation (5) to see this, to sample the spherical wavelet
coefficients in pixel space a we have in practice

G(a) = S~ 'WSa, 27

where S and S~! are the forward and inverse spherical harmonic
transforms (equations 8 and 9), respectively, and W is the spherical
wavelet transform in harmonic space (Leistedt et al. 2013; Wallis
et al. 2017). This is further complicated by the need for the adjoints
of these transforms (equation 24). These four spherical harmonic
transforms at each MCMC step immediately limits the bandlimits
L for which sampling the posterior may be feasible. For reference,
in our experiments, we performed dummy inversions at L = 64
and 128 with an identity measurement operator (® = I') which took
around 3 and 17 d, respectively, for 10® samples on a 2.5-GHz Intel
Xeon Platinum 8180M processor. While this may not be an issue
for applications where information exists at relatively low degrees,
for example in seismic tomography where maximum bandlimits are
typically around L = 40 (e.g. Ritsema et al. 2011; Chang et al.
2015), it will be impractical for applications where the bandlimits
of interest are higher (e.g. Price et al. 2020b). To avoid spherical
harmonic transforms in equation 27, one could instead sample the
spherical harmonic coefficients of &, provided one can reformulate
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the measurement operator ¢ appropriately. We note, however, that
it is possible that, as shown in the following section, the harmonic
measurement operator may be slower than the pixel space operator
even with spherical wavelet transforms. Further, it is conceivable
that, depending on how the measurement operator scales, the choice
of harmonic or pixel space will depend on the bandlimit L. In either
case, at least one spherical harmonic transform will be needed for the
prior, as there is no reason to expect the harmonic representation of
the wavelet coefficients to also be sparse. As such, spherical harmonic
transforms are unavoidable, and it is crucial that these are computed
as efficiently as possible, for example via repeated exploitation of fast
Fourier transforms as in McEwen & Wiaux (2011). This all highlights
the special consideration that must be given to the forward operator
for spherical inverse problems.

3.4 Spherical wavelet parameterization

As discussed in Section 2, our inverse problem is parameterized
using axisymmetric spherical wavelets (Wiaux et al. 2008; Leistedt
et al. 2013; McEwen et al. 2015a) to promote sparsity. We can
exploit the multiresolution character of these wavelets for further
computational savings. By construction, the wavelets at each scale j
each have different bandlimits k; = B/ * ! < L, where B is a wavelet
scale parameter (Leistedt et al. 2013). By using a sampling theorem,
the transforms at each spherical wavelet scale can be performed up
to their own bandlimit k;, and only the minimum number of samples
on the sphere at that bandlimit are needed. This multiresolution
transform gives a four to five times speed up of the spherical
wavelet transforms (Leistedt et al. 2013), and also dramatically
reduces the dimensionality of our parameter space, compared to a
full resolution transform where each wavelet scale is sampled at the
overall bandlimit L. As an example, for parameters L =32, B = 2,J,
= 2, the full resolution algorithm has 10080 wavelet coefficients,
compared to only 4676 for the multiresolution algorithm. While a
full assessment of how this affects the convergence speed of the
MCMC chain in terms of number of required steps is beyond the
scope of this paper, we found real-time speed-ups and significant
memory savings in our experiments.

3.5 Uncertainty quantification

By collecting samples from the posterior, we can calculate any
measure of uncertainty. For example, a common choice in Bayesian
statistics is the credible intervals [&;”, Ef] of the model parameters.
These intervals contain the values that can be taken by parameter m;
with probability (1 — «), for some chosen small o

p(m; €& ,§ 1ld)=1—«a (28)
The lower and upper interval limits are calculated as the 5 and
1 — 5 quantiles, respectively, of the posterior. We note that having
sampled the spherical wavelet coefficients, inverse spherical wavelet
transforms will be necessary to obtain an uncertainty map in real
space as opposed to wavelet space. This can be expensive for the
same reasons as previously discussed with respect to the forward
operator, although to a much lesser extent after burn-in and thinned
samples have been discarded. Of course, if the desired summary
statistic is linear in the model parameters (e.g. mean) then this can
be calculated in wavelet space and only requires a single spherical
wavelet transform. Importantly, in this way, we get uncertainties at
the pixel level when viewed in real space. As previously discussed,
current uncertainty quantification methods in similar contexts only
work on superpixels (Price et al. 2020a).
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4 SEISMOLOGICAL SURFACE WAVE PHASE
VELOCITY MAPS

The deep structures of the Earth’s interior are best illuminated from
seismic waves. Waves generated from earthquakes travel through
the Earth, interacting with the materials along the way. Inverting the
measurements of these waves recorded at seismic receivers, typically
located at the Earth’s surface, reveals the layers and structures in the
Earth (Rawlinson, Pozgay & Fishwick 2010). Depending on the
type and frequency of the waves, this can be done to image a range
of scales from local applications (e.g. imaging oil, gas, geothermal
fields) to global problems (e.g. imaging the whole Earth’s mantle,
down to ~2800 km depth). The seismic imaging the Earth’s interior
in three dimensions is known as seismic tomography.

In this section, we introduce the common problem in global
seismic tomography of building surface wave phase velocity maps,
which we use as an illustrative example. Being a 2D problem that can
be described by relatively simple theory, this is a natural example
of application that is well suited to illustrate our framework for
sampling the posterior for spherical inverse problems. The resolution
requirements in global seismic tomography are also much lower than
for full-sky mass-mapping, as discussed in the next section, typically
only requiring L < 40. This makes our method directly applicable to
this problem.

4.1 Surface wave phase velocity maps

Mapping the phase velocity of surface waves is a common problem in
seismic tomography (Trampert & Woodhouse 1995; Ekstrom, Tromp
& Larson 1997; Ekstrom 2011). Seismic surface waves generated
from earthquakes travel along the Earth’s surface. These waves are
dispersive in that their velocity depends on the wave period, with
different wave periods being sensitive to the structures at different
depths in the Earth’s interior (Dahlen & Tromp 1998). Phase velocity
maps show how the velocity of surface waves at a given period
varies due to lateral heterogeneities in the Earth’s composition and
temperature. Hence, creating these maps for waves of different
periods is often a first step towards building 3D models of the Earth’s
mantle (e.g. Durand, Debayle & Ricard 2015).

For a particular wave period, one can measure from a seismogram
the average phase velocity along the path that the wave has travelled
between a seismic source and receiver. Inverting measurements from
many crossing paths, that would ideally cover the Earth uniformly,
produces a phase velocity map. In practice, the distribution of
paths is determined by the locations of earthquakes, typically along
tectonic plate boundaries, and the locations of seismic stations
predominantly in the continents of the northern hemisphere, making
this an ill-posed inverse problem. On global scales, long-period (T
> 255s) phase velocity measurements are typically modelled using
linearized ray theory (an infinite frequency approximation analogous
to geometrical optics), also known as the great-circle approximation
(e.g. Woodhouse & Dziewonski 1984; Parisi & Ferreira 2016) and
inverted using least-squares algorithms (e.g. Tarantola & Valette
1982; Trampert & Woodhouse 1995; Ekstrom 2011; Durand et al.
2015). In this framework, the path travelled by the seismic wave is
assumed to correspond to the great circle between the source and
the receiver. The observed mean phase velocity anomaly (8¢/cy) for
a given source-receiver pair is given by the average of the phase
velocity field along the minor arc great circle S,

<80> 1 Sc
e\ _ f/—(e,zp)dS, (29)
Co A s Co
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where ¢ is the phase velocity value computed for a reference Earth
model, éc = ¢ — ¢y, with ¢ being the actual phase velocity, and A is
the length of path S.

Although there exist more complete theories describing phase
velocity anomalies, notably including non-linear and finite frequency
effects, recent studies have shown that the great-circle approximation
accurately predicts the phase of long-period fundamental mode
surface waves for current global tomography models (e.g. Parisi
& Ferreira 2016; Godfrey et al. 2019). Hence, in this study, we
focus on the great-circle approximation. For simplicity, we also only
invert for isotropic lateral variations in phase velocity. We note,
however, that our proximal MCMC approach can in principle handle
these additional physical parameters (e.g. anisotropy, the directional
dependence of wave velocity) with some slight modification.

4.2 Pixel space path integration

The common way to compute path integrals on the sphere (equa-
tion 29) is to rotate the coordinate system such that the path lies
along the equator, which is easily expressed in terms of Wigner-
D matrices and the spherical harmonic coefficients of the spherical
signal (Dahlen & Tromp 1998). For a data set with Npyns paths,
the measurement operator can be represented by a dense matrix
®;, € CVrns*L? acting on the spherical harmonic coefficients & €
C~*. For seismic data sets typically consisting of O(10°) paths, this
dense matrix multiplication can be quite slow. Our approach is to
instead measure the path integral directly on the pixelized sphere
using a sparse matrix @, € RNpts*Npixels | where each element of @),
is a weight representing the normalized distance each path travels
in a pixel. This effectively approximates the integral as a weighted
Riemann sum over the pixelized function x € RMixss. The adjoint
operator is trivially the transpose of ®,. The first step for our
numerical path integration is to find discrete geographical points
along the great circle minor arc between a source and a receiver
using spherical trigonometry. For the discretization, a sampling rate
of about 200 points per radian (3.5 points per degree) was generally
sufficient for this work. Each of the geographical points along the
path is then mapped to its nearest MW sampling point. This mapping
assigns a weight to each MW sampling point, which is given by

n,P
Wyp = 5
sA

where n,, is the number of geographical points on the path that are
closest to MW sampling point indexed in the 6 and ¢ directions by
t and p, respectively, s is the path sampling rate and A is the full
path length. This can easily be done for each path of the data set in
parallel to build the full measurement operator.

Fig. 1 compares the forward modelling time for both the harmonic
and pixel space path integrations, ®, and @,, respectively, for
bandlimits L € {20, 28, 32, 64} and a realistic set of ray paths
. Also shown are the times for the pixel space integration with
an additional spherical wavelet transform @,W, as required when
sampling wavelet coefficients (equation 5) instead of sampling the
image directly. Clearly integration in pixel space is much faster than
in harmonic space, even with the computational overhead of the
spherical wavelet transforms. Pixel space integration also scales
better to higher bandlimits. This is due to the extreme sparsity
(less than 2 per cent nonzero elements) of ®,, whereas ®; is
generally dense. Table 1 shows the mean percentage difference and
the relative squared error R2E = ||dyam — dopix ||% /|l dharm ||§ between
predictions made in harmonic space, dy,m, and in pixel space, dpy,
when performed on the ground truth map we use in our synthetic
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Figure 1. Time taken to perform the forward modelling in pixel space (red),
in pixel space with a spherical wavelet transform (green), and in harmonic
space (blue). The point for the harmonic approach at bandlimit L = 64 is
well beyond the vertical scale at around 0.2 s. Timings performed on a 2020
MacBook Pro with an Apple M1 processor.

Table 1. Accuracy of pixel space path integration.

Bandlimit L Mean difference (%) R2E

20 —0.01 2.14 x 1074
28 —0.02 1.52 x 1074
32 —0.02 1.34 x 1074
64 —0.01 5.64 x 1073

experiment (see Fig. 2 top). As can be expected, as the bandlimit
increases the error in the pixel space integration decreases. Crucially,
even at relatively low bandlimits the pixel space integration is
sufficiently accurate.

4.3 Results and discussion

In this section, we present the results of a synthetic test and real data
inversions. We use MYULA to sample the axisymmetric wavelet
coefficients & of the spherical image x, using the sparse measurement
operator described in the previous section.

4.3.1 Synthetic experiment

As a synthetic example, we use the global phase velocity model
GDMS2 (Ekstrom 2011) at a wave period of 7= 40 s as a ground
truth x. Surface waves of this period are mainly sensitive to Earth
structure at depths of around 100 km (Dahlen & Tromp 1998; Durand
etal. 2015), so the image (Fig. 2) shows well-known tectonic features
such as slow anomalies along spreading ridges (e.g. Ekstrom 2011).
The model is bandlimited to L = 28, corresponding to 3724 wavelet
coefficients using the multiresolution wavelet transform. We create
a synthetic data set d

d=®x +n, (30)

where ® is our pixel-space forward operator and n ~ N (0, o), where
o is the standard deviation of the predictions ®x to simulate noise in
observed data. ® is constructed using the same paths as those used
to originally build GDM52 (Ekstrom et al. 1997; Ekstrom 2011),
thereby ensuring a realistic and non-uniform spatial distribution of
the data. In this case, we have 179 657 paths. We use the signal-to-

noise ratio
llx1l2 ) G1)

SNR(x() = 201log, < i —xoll
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GDM?52 40s (Ekstrom 2011)
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Figure 2. Synthetic GDMS52 recovery experiment. Top panel: ground truth
from Ekstrom (2011). Middle panel: mean solution from proximal MCMC.
Bottom panel: difference between the truth and our solution. All the maps
show perturbations in phase velocity (§c/co) with respect to the reference
model PREM (Dziewonski & Anderson 1981). Green lines show the tectonic
plate boundaries (Bird 2003). The bottom panel shows the unnormalized pos-
terior probability throughout the MCMC chain, indicating that the sampling
has converged.
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Figure 3. Synthetic GDMS52 recovery experiment. Top panel: 95 per cent
credible interval range (equation 28) calculated on our MCMC samples in
image space (x) in units of percentage deviation from the reference value, as
in Fig. 2. Bottom panel: row sum of path matrix @ (unitless) representing the
density of rays in the data set.

and relative squared error

lld — ®xoll3
I3

to assess the reconstruction accuracy and predictive accuracy, respec-
tively, of our chosen point solution x, which in this case we choose
to be the post-burn mean mean of our MCMC samples. We perform
10° MCMC steps, saving every 500th sample. The first half of the
saved samples are discarded as a burn-in when calculating our mean
solution and uncertainty. This takes the sampling well beyond the
point of convergence, which we take to be the point where there is no
longer a significant change in posterior probability (see Fig. 2). This
inversion takes about 20 hours on a 2.5-GHz Intel Xeon Platinum
8180M processor. The tuning parameters are set to © = 500 and § =
107°. Fig. 2 shows the ground truth, the post-burn mean of our proxi-
mal MCMC samples and the difference between the two. Our solution
has an excellent data fit (R2E = 9.96 x 10~3) and model recovery
(SNR = 8.81 dB). Differences between the ground truth and our
mean solution are small on average (0.5 per cent) with some small-
scale blobs of larger differences. The majority of these blobs occur in
the southern hemisphere where data coverage is poorer (see Fig. 3).

We show the map of 95 per cent credible interval ranges as well
as a map showing the density of ray paths of our data set in Fig. 3.
Here, the uncertainty is calculated on the image space representation

R2E(x¢) = (32)
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of our solution (i.e. x). As can be expected, on the whole we find
lower uncertainties where we have a higher density of data in areas
such as eastern Asia and the western US. We also see much smaller
scale regions of higher uncertainty. Looking at the uncertainties in
wavelet space (i.e. &, which is sampled by the proximal MCMC)
in Fig. 4, it is clear that the smaller scale wavelet coefficients have
higher uncertainty. Thus, the patterns of differences between our
chosen point solution and the truth (Fig. 2) are captured by the
uncertainty of our sampled parameters.

4.3.2 Real data inversions

To demonstrate our method on real data, we invert the same data
that was used to build GDM52 (Ekstrom et al. 1997; Ekstrom 2011)
at wave periods T = 25,40, 75 s, which have a strong sensitivity to
about 100, 160 and 300 km depths, respectively (Dahlen & Tromp
1998; Durand et al. 2015). The results of these inversions are shown
in Fig. 5. The data sets at these wave periods consist of about 103 633,
179 657, and 286 302 paths, respectively. Again we use a bandlimit of
L = 28. For these inversions, we perform 750 000 chain steps, saving
every 500th sample and discarding the first 500 saved samples as
burn-in. This takes between 8 and 33 h, depending on the number
of ray paths, on a 2.5-GHz Intel Xeon Platinum 8180M processor.
The tuning parameter § is chosen on a case-by-case basis. Our mean
solutions show all the expected velocity anomalies, being very similar
to the GDMS52 phase velocity maps (Fig. 5, left-hand panel). For
example, the 7=25 s map (Fig. 5, top panel) shows a clear distinction
between the slow continents and the fast oceans. On the other hand,
the 7 = 40 s map (Fig. 5, middle panel) depicts a good correlation
between slow anomalies and plate boundaries, while the 7= 75 s
map (Fig. 5, bottom panel) shows deeper mantle signals, such as high
velocities associated with cratons. A notable difference with GDMS52
(Fig. 5, left-hand panel) is a north—south streak of fast velocities off
the coast of the western US seen at all wave periods. This is a well-
known artefact resulting from not modelling azimuthal anisotropy
(Forsyth 1975; Ekstrom 2011). This streak corresponds to a region
of high uncertainty in our solutions (Fig. 5, right-hand panel). Again,
the uncertainty maps correlate with ray density as expected.

We emphasize that the main purpose of this study is not to
build improved phase velocity maps, which can be constructed
quickly using, e.g. least-squares approaches (Tarantola & Valette
1982; Trampert & Woodhouse 1995), but rather to illustrate and
validate our framework for sampling the posterior of spherical inverse
problems with a useful, well-known first application. Hence, we do
not consider more sophisticated theoretical formulations, such as, e.g.
full ray theory (Ferreira & Woodhouse 2007), finite frequency theory
(Zhou et al. 2005), including anisotropic effects (Ekstrom 2011), etc.
Future work will focus on the application of the method to more-
sophisticated problems, such as, for example, depth inversions using
non-linear theory.

5 LOW-RESOLUTION COSMOLOGICAL
MASS-MAPPING

One of the predictions of Einstein’s theory of general relativity
was that the gravitational influence of massive objects will cause
light to bend around them (Einstein 1905). As a result, distant
objects often look distorted when observed by astronomers. This
is the phenomenon of gravitational lensing. Light from distant
stars and galaxies travels through the universe, bending around all
the mass along the way to Earth. Inverting measurements of the
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Figure 4. Synthetic GDMS52 recovery experiment. 95 per cent credible interval ranges of spherical wavelet coefficients at different scales. The range of the
colourbar is the same for all maps in units of percentage deviation from the reference value, as in Figs 2 and 3.

distortions in the images of the light source reveals the hidden masses
that the light passed by (e.g. Kaiser & Squires 1993), including
dark matter (Heavens 2009), producing so-called cosmological
mass maps.

In this section, we demonstrate our framework on the retrieval of
cosmological mass-maps from simulated data. This is a 2D problem
described by a simple linear forward model. We treat this as a simple
demonstration and perform the inversion at a much lower bandlimit
than would normally be required for cosmological mass-mapping.
Due to the poor scaling of the spherical wavelet transforms with L,
performing the millions of transforms required at L ~ O(10%) (Price
et al. 2020b; Wallis et al. 2022) would simply be too slow. However,
with future computational improvements to speed up the transforms
(e.g. by exploiting GPUs), our framework will be well-suited for this
particular problem.

5.1 Mass-mapping on the celestial sphere

Images of galaxies are typically distorted, as the light they emit gets
lensed by the mass between us and the source galaxies. Gravitational
lensing occurs regardless of the nature of the intervening mass,
and as such lensing is an excellent probe for dark matter (Heavens
2009). Mass-mapping maps the total density perturbation along a
line of sight between a source galaxy and the observer based on
measurements of the distortion of galaxy images. Up until recently,
lensing surveys only covered relatively small sky-fractions, so planar
approximations were made. As the area of coverage has increased
with newer surveys, planar approximations are no longer valid
(Wallis et al. 2022), resulting in mass-maps now being constructed
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on the sphere (e.g. Price et al. 2020b; Jeffrey et al. 2021; Wallis et al.
2022).

Gravitational lensing studies deal with two main fields: the
convergence field ¢k(0, ¢), which causes magnification of the
galaxy image; and the shear field ,y (0, ¢), which causes rotation
and stretching of the galaxy image (Dodelson 2017). Mass maps
reveal the convergence field ¢« (6, ¢), which can be shown to be
the integrated mass density along the line of sight (Bartelmann &
Schneider 2001). This is linearly related in spherical harmonic space
to the spin-2 shear field ,y (6, ¢), measured from observations of
galaxy shapes, by a linear kernel C, given by (Kaiser & Squires
1993; Wallis et al. 2022)

K, = -1 (€—|—2)!' 33)
e+l -2

Thus, our forward model, in this case, is given by ® = m, S7'K,S,
where K encodes the linear kernel above and m is a masking matrix
to account for areas on the sky without reliable data (e.g. the galactic
plane and ecliptic). .S and (.S denote the spin-2 and spin-0 spherical
harmonic transforms needed for to account for the spin symmetries
of the shear and convergence fields, respectively. From hereon in we
drop the spin subscripts for clarity. We note that in reality there exists
a degeneracy between y and «, and as a result the true observable
is not the shear but the reduced shear g = y/(1 — k). In the weak-
lensing regime, this non-linear effect is very small, so we ignore
it here. Accounting for non-linearities in our MCMC is possible,
provided the relevant gradients of the non-linear forward model can
be computed efficiently.
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Figure 5. Real data inversions. Phase velocity maps from GDM52 (Ekstrom 2011) (left-hand panel), mean proximal MCMC solutions from this study (middle
panel) and credible interval ranges (right-hand panel) for wave periods 25, 40, and 75 s (top to bottom panels). All the maps show perturbations in phase velocity
(8c/co) with respect to the reference model PREM (Dziewonski & Anderson 1981).

The choice of using sparsity promoting priors in this case is mo-
tivated by the need to recover non-Gaussian structures, particularly
at high ¢. These are created by non-linear structure growth of the
density field throughout the evolution of the Universe. Promoting
sparsity has been used previously (e.g. Leonard, Lanusse & Starck
2014; Lanusse et al. 2016; Price et al. 2020b; Starck et al. 2021)
to incorporate non-Gaussian structures, as have Wiener filters on a
Gaussian prior (e.g. Jeffrey et al. 2018),log-normal priors (e.g. Bohm
et al. 2017; Fiedorowicz et al. 2022) and physically informed power
spectrum priors (e.g. Porqueres et al. 2021).

A Bayesian sampling method for mass-mapping was recently
implemented by Fiedorowicz et al. (2022). They used HMC to
efficiently navigate the large parameter space with a log-normal
prior. In comparison with our framework, the log-normal prior is
differentiable, which allows the gradient-based HMC to be used,
with the exploitation of efficient autodifferentiation making this
computationally tractable. However, the log-normal prior makes
certain assumptions about the cosmological parameters, and thus the
mass maps produced by their method cannot be used for inference
about cosmology, without additional further work (Fiedorowicz et al.
2022). Our framework makes no such assumptions.

5.2 Results and discussion

As a synthetic example, we attempt to reconstruct a simulated mass
map from the Takahashi N-body simulation (Takahashiet al. 2017).3
Slices are provided at a range of redshifts, and we select redshift slice

3Data available at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytrac
ing/

16 corresponding to z ~ 1. This slice is bandlimited at L = 64, giving
our ground truth mass map, to which we apply a basic Galactic plane
and ecliptic mask.

Synthetic shear data is generated by applying the measurement
operator @ to the ground truth map. The noise in weak-lensing
surveys depends on the number of galaxy counts per unit area and
the variance of the intrinsic ellipticity distribution o, ~ 0.37. We
choose an overall number density of galaxies per arcmin?, Nga1, and
add zero-mean Gaussian noise to the synthetic data, with the variance
of the noise given by

) o?
- % 34
Oy o (34)

where 7 is the colatitude index, and n, is the expected number of
galaxies in a pixel at colatitude ¢ given the overall number density
ngy. This dependence on colatitude comes from the equiangular
nature of the MW sampling theorem (McEwen & Wiaux 2011).

When reporting the SNR, R2E summary statistics and our solution
maps, we use a slightly larger mask than what was applied to the
synthetic shear data. This is to remove leakage artefacts that occur
around the edge of the mask due to the sudden lack of data and also
wavelets that have support both inside and outside the mask. At the
high resolutions typically of interest for mass-mapping, this leakage
will be minimal.

Maps of the ground truth, mean of our MCMC samples, the
difference between them and our measured uncertainty are shown in
Fig. 6. For this inversion, we perform 12.5 x 10° chain steps, saving
every 500th sample and using the last 3000 samples for our results,
taking about 4 d on a 2.5-GHz Intel Xeon Platinum 8§180M processor.
The step-size parameter 6 is chosen to be 1072, the largest value that
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Figure 6. Results of a simple mass-mapping example where the ground truth is known. Top left-hand panel: ground truth simulation from Takahashiet al.
(2017). Top right-hand panel: Mean of the proximal MCMC samples. Bottom left-hand panel: difference between the top two maps. Bottom right-hand panel:
95 per cent credible interval range obtained from proximal MCMC. A Galactic plane and ecliptic mask are show in all maps except the uncertainty map, which,

as expected, shows high uncertainty in these regions.

allows a stable Euler approximation of the Langevin diffusion. The
regularization parameter u is chosen to be 5 x 10°, to constrain
the wavelet coefficients to the appropriate order of magnitude. At
this resolution (L = 64), there are 18 916 wavelet coefficients to be
sampled. The mean solution has an SNR of 7.83 dB and an R2E of
0.1. The uncertainty map, measured as the range of the 95 per cent
credible intervals (equation 28) show, as expected, high uncertainty
within the masked regions where the solution is not constrained by
any data.

While we obtain encouraging results here with a good recon-
struction and physically reasonable pixel-level uncertainties, for this
method to be adopted in full-sky mass mapping, computational
advances are needed in the implementation of the spherical harmonic
and wavelet transforms such that the scaling with L is not as
severe. Currently, the complexity scaling of the spherical harmonic
transforms is O(L?) (McEwen & Wiaux 2011), and dominates
over the efficient harmonic space wavelet transform (Leistedt et al.
2013) discussed in Section 2. With at least two spherical harmonic
transforms per iteration of MYULA, current implementations will
not allow for the desired L ~ O(10%) bandlimits. New efforts
implementing these transforms on GPUs should go a significant
way towards pushing our method to higher resolutions. Further
theoretical advances for the representation of spherical signals could
also lead to computational savings (e.g. Ocampo, Price & McEwen
2022).
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6 CONCLUSIONS

In this paper, we have presented a general framework for posterior
sampling of inverse problems on the sphere with sparsity promoting
priors that allows for flexible uncertainty quantification and extends
naturally to non-linear problems. We demonstrated the potential
applicability of this method to both astrophysical and geophysical
problems. As with all MCMC methods, the suitability of this method
depends on the time taken to take the next chain sample, particu-
larly in relation to the forward modelling step. The computational
complexity of transforms on the sphere mean that this framework
is generally feasible for problems of low to moderate resolution
(roughly L < 64), such as those commonly considered in global seis-
mic tomography. At higher resolutions, as needed for full-sky mass-
mapping, posterior sampling quickly becomes intractable largely
due to the poor scaling of spherical harmonic transforms present in
the forward operator. In either case, special consideration must be
given to the forward operator and whether it should be formulated in
harmonic or pixel space, and also if its adjoint is known. A harmonic
formulation would avoid repeated spherical harmonic transforms, but
these savings could be lost on the measurement operator. Making use
of a more efficient proximal algorithm based on a stochastic Runge—
Kutta approximation of the Langevin equation (Pereyra et al. 2020)
could be a promising way forward for higher resolution spherical
inverse problems. This algorithm is more complex but converges to a
solution much faster than the Euler approximation algorithm used in
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this work, thereby potentially requiring fewer spherical harmonic
transforms. Additionally, faster implementations of the spherical
harmonic transform leveraging GPUs would immediately increase
the potential of our method.

The examples shown in this work are largely illustrative, as
simplifications have been made. In the mass-mapping example,
the bandlimit is much lower than the angular orders at which the
convergence spectrum has the most power due to the computational
restrictions imposed by the spherical harmonic transforms. We also
have not fully considered the effect of reduced shear. Nonetheless,
ongoing work to implement the spherical harmonic and wavelet
transforms on accelerators (GPUs) provide a route to scale to higher
resolutions, making our framework is a promising addition to other
recent methods for obtaining mass-maps with uncertainties (e.g.
Price et al. 2020b; Fiedorowicz et al. 2022). For the surface wave
tomography example, we have used the great circle approximation
and not accounted for anisotropic effects, in which case a least-
squares approach is fast and efficient. None the less, our results
demonstrate the feasibility of our framework methods on global
scale tomographic inverse problems. In this case, the more commonly
used harmonic formulation of the forward problem proved to be too
slow, and we were able to reformulate it in pixel space such that it
was much faster, even with the computational overhead of spherical
wavelet transforms. Further, the uncertainties calculated from our
posterior samples make physical sense, being correlated with the
distribution of data. Bayesian methods in seismic tomography
on large-to-global scales have largely been used for independent
1D inversions (e.g. Shapiro & Ritzwoller 2002; Khan, Boschi &
Connolly 2011; Ravenna & Lebedev 2017), although new advances
in gradient-based or variational methods (e.g. Fichtner, Zunino &
Gebraad 2018; Gebraad, Boehm & Fichtner 2020; Zhang & Curtis
2020; Zhao, Curtis & Zhang 2022) are promising for 2D and 3D
probabilistic tomography. Our framework is a further contribution to
this advance in methodology, with the novelty of being able to use a
non-differentiable prior.
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DATA AVAILABILITY

We provide a new Python package, pxmcmc* that contains imple-
mentations of the proximal MCMC algorithms used in this work as
well as the measurement operators, wavelet transforms and priors
with their proximal mappings. The code is designed to be flexible,
with base classes that will allow users to implement their own forward
(measurement and transform) operators and priors. The proximal
MCMC algorithms implemented are themselves not restricted to
spherical problems, as the spherical aspects of the inversions appear
in the likelihood and prior proximal calculations. We also provide
scripts and data to reproduce the synthetic experiment described in
this paper. MCMC chains for the real data inversions are available
from the authors upon request. The discretization of great circle paths
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is implemented in our Python code greatcirclepaths,’ which
is publicly available.
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