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A B S T R A C T 

In this work, we describe a framework for solving spherical inverse imaging problems using posterior sampling for full uncertainty 

quantification. Inverse imaging problems defined on the sphere arise in many fields, including seismology and cosmology, where 
images are defined on the globe and the cosmic sphere, and are generally high-dimensional and computationally e xpensiv e. As 
a result, sampling the posterior distribution of spherical imaging problems is a challenging task. Our frame work le verages a 
proximal Markov chain Monte Carlo (MCMC) algorithm to efficiently sample the high-dimensional space of spherical images 
with a sparsity-promoting wavelet prior. We detail the modifications needed for the algorithm to be applied to spherical problems, 
and give special consideration to the crucial forward modelling step, which contains computationally e xpensiv e spherical 
harmonic transforms. By sampling the posterior, our framework allows for full and flexible uncertainty quantification, something 

which is not possible with other methods based on, for example, convex optimization. We demonstrate our framework in practice 
on full-sky cosmological mass-mapping and to the construction of phase velocity maps in global seismic tomography. We find that 
our approach is potentially useful at moderate resolutions, such as those of interest in seismology. Ho we ver, at high resolutions, 
such as those required for astrophysical applications, the poor scaling of the complexity of spherical harmonic transforms severely 

limits our method, which may be resolved with future GPU implementations. A new Python package, pxmcmc , containing the 
proximal MCMC sampler, measurement operators, wavelet transforms, and sparse priors are made publicly available. 

Key words: Data Methods – Bayesian – Mass-Mapping – Seismic Tomography. 
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 I N T RO D U C T I O N  

nverse problems on the sphere are common in many fields, from
strophysics (e.g. Planck Collaboration I 2016 ; Jeffrey et al. 2021 ),
o geophysics (e.g. Ritsema et al. 2011 ; Chang et al. 2015 ) and more.
hese tend to be high-dimensional and computationally challenging

maging problems, increasingly so at high resolutions. Spherical
nverse problems are difficult to solve using posterior sampling
ethods such as Markov chain Monte Carlo (MCMC), largely due

o the generally large number of parameters to sample and the high
omputational cost of repeated e v aluations of the forward problem
n the sphere. MCMC methods have grown in popularity in recent
ecades (e.g. Mosegaard & Tarantola 1995 ; Lewis & Bridle 2002 ;
alinverno 2002 ; Corless, King & Clowe 2009 ; Bodin et al. 2012 ;
ai, Pereyra & McEwen 2018a ), benefitting from their ability to

ample the full posterior probability density function (PDF), which
onstitutes the solution of the inverse problem. This allows for
exible calculation of any measure of uncertainty in the solution.
urthermore, they can be used to solve non-linear inverse problems,
hich are commonplace in, for example, geophysics (Malinverno
002 ; Bodin et al. 2012 ; Ferreira et al. 2020 ). Ho we ver, sampling
ethods come at significant computational cost, for both solving
 E-mail: augustin.marignier.14@ucl.ac.uk 
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he inverse problem and for model comparison, which is often
omputationally infeasible. The simpler MCMC methods, such as
he Metropolis–Hastings (MH) algorithm, are known to struggle
n high-dimensional parameter spaces (e.g. Roberts & Rosenthal
998 ; Neal 2012 ), such as those for spherical imaging problems.
he exponential increase in volume of the parameter space makes
H unable to converge to a solution. Alternative gradient-based
ethods such as the Hamiltonian Monte Carlo (HMC) (Duane

t al. 1987 ; Neal 2012 ) and the unadjusted Langevin algorithm
ULA) (Roberts & Tweedie 1996 ) scale fa v ourably compared to
he MH algorithm as the number of dimensions increases (Roberts &
osenthal 1998 ; Neal 2012 ). The caveat here is that these methods
an only be applied to smooth distributions, limiting the form of
rior information that can be used as re gularization. Conv ersely,
ested sampling methods (Skilling 2006 ) can be used for non-
mooth problems. Ho we ver, most nested sampling approaches cannot
cale to the high-dimensional settings of inverse problems without
radient information. Proximal MCMC methods have recently been
ev eloped (Pere yra 2016 ), lev eraging proximal mappings to scale to
igh dimensions and allow for non-smooth distributions. Proximal
appings have also recently been used to scale nested sampling
ethods to high-dimensional imaging problems (Cai, McEwen &
ereyra 2022 ). 
Compressed sensing (Donoho 2006 ; Cand ̀es et al. 2011 ) has

emonstrated that sparse signals can be accurately reco v ered from
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ncomplete data, reco v ering both sharp and smooth image features 
imultaneously from underdetermined systems (Loris et al. 2007 ; 
allis, Wiaux & Mcewen 2017 ). As a result, sparse priors have been
idely adopted for solving inverse imaging problems, e.g. for radio 

nterferometry applications (Wiaux et al. 2009 ; Carrillo, McEwen & 

iaux 2014 ; Pratley et al. 2017 ; Cai et al. 2018a ; Cai, Pereyra &
cEwen 2018b ), cosmological mass-mapping (Lanusse et al. 2016 ; 

rice et al. 2020b ), and hav e receiv ed some attention in seismic
omography (Loris et al. 2007 ; Charl ́ety et al. 2013 ). The prior
DF (i.e. the distribution representing a prior beliefs to constrain 

he inverse problem) often used to promote sparsity is the Laplace 
istribution, which is non-differentiable and so cannot be used with 
radient-based sampling algorithms. 
Current approaches to uncertainty quantification for high- 

imensional inverse problems with sparse a priori constraints exploit 
esults from information theory to derive approximate credible 
egions from a single point estimate solution of the inverse problem 

Pereyra 2017 ; Cai et al. 2018b ; Price et al. 2020b ). The point
stimate solution can be obtained using conv e x optimisation (Cai
t al. 2018b ; Price et al. 2020b ), and thus this approach is much faster
han posterior sampling, particularly for high-resolution spherical 
roblems. Ho we ver, this information theory-based approach can only 
pproximate credible regions. A sampling method, on the other hand, 
ill have the flexibility to calculate any measure of uncertainty, as

he samples represent a full probability distribution. 
In this work, we provide a framework for solving inverse imaging 

roblems on the sphere using posterior sampling with sparsity- 
romoting priors. For this, we leverage a proximal MCMC algorithm 

Pereyra 2016 ), which is a sampling scheme that uses proximal 
appings to efficiently sample high-dimensional parameter spaces. 
roximal mappings can be viewed as more general gradient operators 

hat can be used even on non-differentiable functions, allowing us 
o use a Laplace prior to promote sparsity. In our framework, we
utline the modifications needed to the proximal MCMC algorithm 

or spherical problems, with particular consideration given to the 
pherical parameterization and forward operator. We then demon- 
trate our framework in practice first on a common problem from the
eld of global seismic tomography using both synthetic and real data, 
nd then on a low-resolution full-sky cosmological mass-mapping 
xample from simulation data. 

This paper is structured as follows. Section 2 gives the necessary 
athematical background for Bayesian inference and representations 

f spherical images. Section 3 outlines our framework for posterior 
ampling of inverse problems on the sphere, with details of the 
roximal MCMC algorithm that we use. Sections 4 and 5 contain our
llustrativ e e xamples from global seismic tomography and cosmo- 
ogical mass-mapping, respectively, and we conclude in Section 6 . 

 MA  T H E M A  T I C A L  B  AC K G R  O U N D  

n this section, we provide the necessary mathematical background 
or this work, including Bayesian inference for imaging, and har- 
onic and wavelet representations of spherical images. 

.1 Bayesian inference for imaging 

onsider some observed data d and model parameters m that are 
elated by some general, possibly non-linear, forward operator G , as 

 = G ( m ) + n , (1) 

here n represents observational noise. The aim of the inverse 
roblem is to infer m from d . This can be formulated in a Bayesian
tatistical framework by Bayes Theorem as 

( m | d ) ∝ p( d | m ) p( m ) . (2) 

ere p( m | d ) is known as the posterior PDF that encapsulates
nowledge of the model parameters m given data d and represents 
he solution to the inverse problem (Tarantola and Valette 1982 ;

osegaard and Tarantola 1995 ). The likelihood function p( d | m ), 
ssuming independent and identically distributed Gaussian noise 
ith known standard deviation σ in the data, is given by 

( d | m ) ∝ exp 

(
−‖ d − G ( m ) ‖ 2 2 

2 σ 2 

)
. (3) 

nverse problems are typically ill-posed and often require some form 

f regularization in the form of prior knowledge about the model
arameters to further constrain the inverse problem. In the Bayesian 
ramework, this is represented by the prior PDF p( m ), which can take
any forms. Common examples include the Uniform prior (Jaynes 

003 ), p( m ) ∝ constant ; the Gaussian prior (Tarantola & Valette
982 ; Golub, Hansen & O’Leary 1999 ), p( m ) ∝ exp ( −μ‖ m ‖ 2 2 );
nd the Laplace prior (Donoho 2006 ; Cand ̀es et al. 2011 ), p( m ) ∝
xp ( −μ‖ m ‖ 1 ), to promote sparsity. In these priors, ‖ · ‖ p is the l p -
orm and μ is a parameter that captures the width of the distribution.
enceforth, we use the Laplace prior as we wish to promote sparsity.
he constant of proportionality in equation 2 is known as the
ayesian evidence. This is useful for comparing the physical model 
 G ) to alternative hypotheses, but may be ignored for inference about
odel parameters m . 
Solving the inverse problem by probabilistic sampling involves 

ampling the posterior PDF p( m | d ), most commonly using MCMC
lgorithms. The simplest is the MH algorithm. MH proposes a new
ample from a proposal distribution, which has a certain probability 
f being accepted. More sophisticated and better suited to high- 
imensional problems than MH are gradient-based methods, such 
s the HMC and Langevin algorithms mentioned previously, which 
se the gradients of the target PDF to more efficiently guide the
xploration of the parameter space. While the set of samples from
he posterior PDF represents the full solution of the inverse problem,
esults are generally reported in terms of summary statistics, such as
he mean of the samples. The maximum a posteriori (MAP) solution, 

 

(MAP) = argmax 
m 

p( m | d ) (4) 

s also a common choice; ho we ver, due to the randomness of
CMC there is no guarantee of the MAP being found. The highest

osterior probability sample of the MCMC provides the closest 
stimate of the MAP, but can still be relatively far from the true
AP, particularly in higher dimensional spaces. Additionally, some 
easure of uncertainty on individual model parameters can be 

alculated from the posterior samples. We give further details of 
his in the next section. 

In inverse imaging problems, the model parameters m represent a 
D (or possibly 3D) image. MCMC can be used to sample either the
irect pixel values x of the image, or the coefficients α representing 
he image in a particular basis. The forward operator G in equation 1
an be described as a (possibly non-linear) measurement operator 
 acting on the image x . In many physical situations, the image x 

as a sparse representation in some basis, which can be exploited
o regularize the inverse problem. For some sparsifying basis � , we
ave x = � α, where α is the set of coefficients representing x in the
asis encoded in � . The model parameters m sampled by MCMC
re the coefficients α, and as such the forward operator is given by 

G ( α) = � ( � α) . (5) 
RASTAI 2, 20–32 (2023) 



22 A. Marignier et al. 

R

F  

m  

e  

t  

e  

a  

i  

s

2

W  

θ  

f

Y

f  

d  

p  

a

Y

w  

f  

h  

s  

s

f

T  

h

f

T  

P  

s  

a  

a

s

T  

p  

ð

ð

N  

t  

s  

0  

f

s

A  

t  

a
 

t  

s  

(  

t  

r  

t  

e  

f  

r  

s

2

F  

r  

t  

w  

a  

m  

r  

c  

2  

o  

a  

s  

c  

o
g

W

T  

h  

i  

s

W

T  

s  

s  

c  

o  

e  

t  

d  

T

f

w  

t  

m
1  

h  

p  

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/2/1/20/6967146 by U

niversity C
ollege London user on 27 February 2023
 or non-linear inv erse problems, i.e. where � is a non-linear
easurement operator, a common choice is to linearize via a Taylor

xpansion around an initial guess model. While this usually leads
o acceptable results in weakly non-linear problems, linearization
rrors and the need for a good initial guess model can lead to
rtefacts in the reco v ered model. If the forward problem (equation 5 )
s computationally fast, sampling methods are typically best for
trongly non-linear problems. 

.2 Harmonic r epr esentations of spherical images 

e consider functions f ( θ , φ) defined on the sphere S 

2 with colatitude
∈ [0, π] and longitude φ ∈ [0, 2 π). The canonical orthogonal basis

unctions for S 

2 are the spherical harmonics 

 lm 

( θ, φ) = 

√ 

2 � + 1 

4 π

( � − m )! 

( � + m )! 
P 

m 

� ( cos θ )e imφ (6) 

or non-ne gativ e inte gers � and inte gers m ≤ | � | , denoting angular
egree and angular order, respectively. As per the Condon-Shortley
hase convention, the associated Legendre functions P 

m 

� ( x) include
 ( − 1) m phase factor, ensuring the conjugate symmetry relation 

 �, −m 

( θ, φ) = ( −1) m Y 

∗
�m 

( θ, φ) , (7) 

here ∗ denotes complex conjugation. Any square integrable scalar
unction on S 

2 can be represented in the frequency domain by its
armonic coefficients f lm 

∈ C , obtained by projecting f onto the
pherical harmonic basis functions using the inner product (forward
pherical harmonic transform) 

 lm 

= 〈 f , Y �m 

〉 = 

∫ 
S 2 

f ( θ, φ) Y 

∗
�m 

( θ, φ) sin θd θd φ. (8) 

he function f ( θ , φ) can be reco v ered e xactly from its spherical
armonic coefficients (inverse spherical harmonic transform) by 

 ( θ, φ) = 

∞ ∑ 

� = 0 

� ∑ 

m =−� 

f �m 

Y �m 

( θ, φ) . (9) 

his formalism can be generalized to spin- s fields (Newman &
enrose 1966 ; Goldberg et al. 1967 ), common to astrophysical
pherical signals (McEwen et al. 2015a ; Wallis et al. 2022 ), which
re characterized by local rotations χ ∈ [0, 2 π) in the tangent plane
t a point ( θ , φ), 

 

f ′ ( θ, φ) = e −i s χ
s f ( θ, φ) (10) 

he spin-weight s of a function can be increased or decreased by ap-
lying the spin-raising or spin-lowering operators, ð , ð , respectively.

 ≡ − sin s θ

(
∂ 

∂θ
+ 

i 

sin θ

∂ 

∂φ

)
sin −s θ, (11) 

 ≡ − sin −s θ

(
∂ 

∂θ
− i 

sin θ

∂ 

∂φ

)
sin s θ. (12) 

ote how these operators are defined based on the spin of the function
o which they are applied. Using these operators, one can obtain the
pin-weighted spherical harmonics from the original scalar (spin-
) spherical harmonics, which form an orthogonal basis for spin
unctions on the sphere 

 

Y �m 

( θ, φ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 , � < | s| √ 

( � −s)! 
( � + s)! ð 

s Y �m 

( θ, φ) , 0 ≤ s ≤ � √ 

( � + s)! 
( � −s)! ( −1) s ð 

−s 
Y �m 

( θ, φ) , −� ≤ s ≤ 0 

(13) 
ASTAI 2, 20–32 (2023) 
s such, spin- s fields can easily be decomposed and reconstructed in
erms of spin spherical harmonics in a manner similar to equations 8
nd 9 . 

In this work, we consider bandlimited signals, that is signals such
hat s f � m = 0, ∀ � ≥ L for some bandlimit L . We discretize spherical
ignals according to the McEwen-Wiaux (MW) sampling theorem
McEwen & Wiaux 2011 ). This equiangular sampling theorem has
heoretically exact and efficient spherical harmonic transforms and
equires fewer discrete points on the sphere than other sampling
heorems (e.g. Driscoll & Healy 1994 ; G ́orski et al. 2005 ). It also
xploits a relationship between spin spherical harmonics and Wigner
unctions (Goldberg et al. 1967 ; McEwen & Wiaux 2011 ) to a v oid
epeated applications of spin-raising/lowering operators for fast spin
pherical harmonic transforms. 

.3 Wavelet r epr esentations of spherical images 

or our sparsifying basis, we consider scale-discretized axisymmet-
ic wavelets (Wiaux et al. 2008 ; Leistedt et al. 2013 ; McEwen, Duras-
anti & Wiaux 2018 ), i.e. the wavelets are azimuthally symmetric
hen placed at the poles. There exist directional wavelets which vary

zimuthally (e.g. Wiaux et al. 2008 ; McEwen et al. 2015a , 2018 ) and
ay be desirable in certain applications. Ho we v er, such wav elets

equire transforms on the rotation group SO(3), which are more
omputationally e xpensiv e than transforms on S 

2 (McEwen et al.
015b ). The spherical wavelet transform is defined as the convolution
f f and the wavelets 
 

j ( θ , φ). Convolution on the sphere is defined
s the inner product of f with wavelets that have been rotated over the
urface of the sphere by some operator R ( θ,φ) , analogous to standard
onvolution on the plane where the wavelet is laterally translated
 v er the image. As such, the wavelet coefficients W 


 

j ∈ S 

2 are 
iven by 

 


 

j 

( θ, φ) = 〈 f , R ( θ,φ) 
 

j 〉 . (14) 

he wavelets 
 

j cover a range of scales J 0 ≤ j ≤ J , which extract the
ighest frequency (high � information of f ). The lowest frequency
nformation (low � ) is extracted by a scaling function ϒ( θ , φ) in a
imilar manner: 

 

ϒ ( θ, φ) = 〈 f , R ( θ,φ) ϒ〉 . (15) 

he wavelets and scaling function are defined on the harmonic line
uch that the wavelets can be seen as narrow pass-band filters and the
caling function is a low-pass filter that includes the zero frequency
omponent. For more details on choosing the width of the wavelets
n the harmonic line, we refer the interested reader to Leistedt
t al. ( 2013 ). The wavelets and scaling function are defined such
hat they satisfy an admissibility condition, which allows f to be
ecomposed and reco v ered e xactly from its wavelet coefficients.
he reconstruction is given by 

 ( θ, φ) = 

∑ 

� 

∫ 
S 2 

W 

� ( θ ′ , φ′ )( R ( θ ′ ,φ′ ) �)( θ, φ) sin θ ′ d θ ′ d φ′ , (16) 

here � ∈ { ϒ , 
 

j } . Note that in practice, the spherical wavelet
ransform is computed in harmonic space (Leistedt et al. 2013 ),
eaning the forward and inverse wavelet transforms (equations 14 –

6 ) implicitly involve both a forward and an inverse spherical
armonic transform (Wallis et al. 2017 ), which dominate the com-
utational complexity. The spherical harmonic and axisymmetric
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avelet transforms used in this work are implemented in the packages 
YSSHT 1 and PYS2LET , 2 respectively. 

 F R A M E WO R K  F O R  POSTERIOR  SAMPLING  

N  T H E  SP HER E  

n this section, we outline our framework for sampling the posterior
f spherical inverse problems. We give the details of the high- 
imensional sampling algorithm we use and the modifications 
ecessary for the sphere. Extra consideration is given to the forward 
perator, and finally we define a measure of uncertainty that can be
alculated from the posterior samples. 

.1 Proximal MCMC 

.1.1 Moreau–Yosida envelope and proximal mapping 

he λ-Moreau–Yosida envelope of some concave function h ( x ) is
iven by (Moreau 1962 ; Bauschke & Combettes 2017 ) 

 

λ( x ) = min 
u 

{ h ( u ) + ‖ u − x ‖ 2 2 / (2 λ) } , (17) 

here λ> 0. This is a smooth approximation of h with many desirable
roperties. First, h λ can be made arbitrarily close to h by making λ
mall. Secondly, the minimizers of h λ are the same as the minimizers
f h . Thirdly, h λ is continuously differentiable even if h is not. The
radient of h λ is given by 

h 

λ( x ) = [( x − prox λh ( x ))] /λ, (18) 

here prox λh ( x ) is the proximal mapping of h (Moreau 1962 ) 

rox λh ( x ) = argmin 
u 

{ h ( u ) + ‖ u − x ‖ 2 2 / (2 λ) } . (19) 

ewriting equation (18) as 

rox λh ( x ) = x − λ∇h 

λ( x ) (20) 

s reminiscent of the standard first-order finite differences approxi- 
ation h ( x 0 + a ) ≈ h ( x 0 ) + ah 

′ 
( x 0 ), which shows that prox λh may

e interpreted as a gradient step in h λ with step size λ. The key
roperty here is that the proximal map can be used to minimise h λ

nd, by extension, the non-differentiable h since they share the same 
inimizers (Parikh & Boyd 2014 ). For an excellent introduction to 

roximal mappings and algorithms, see Parikh & Boyd ( 2014 ) and
ombettes & Pesquet ( 2011 ). 

.1.2 Proximal Langevin algorithm 

he proximal MCMC method developed by Pereyra ( 2016 ) is based
n Langevin MCMC (Roberts & Tweedie 1996 ), a gradient-based 
ampling method, which we describe here. Consider a Langevin 
iffusion process Y ( t ) for 0 ≤ t ≤ T associated with a stationary PDF
. This process is given by the stochastic differential equation 

 Y ( t) = 

1 

2 
∇ log π[ Y ( t)] d t + d W ( t) (21) 

or some Brownian motion W . We use the forward Euler discrete
ime approximation with step size δ

 

( i+ 1) = m 

( i) + 

δ

2 
∇ log π[ m 

( i) ] + 

√ 

δw 

( i) , (22) 
 ht tps://github.com/ast ro-informatics/ssht 
 ht tps://github.com/ast ro-informatics/s2let 
here m is the discretized Langevin diffusion and w 

( i) ∼ N (0 , I ).
his is the ULA (Roberts & Tweedie 1996 ). Under certain regularity
onditions, ULA produces samples that converge to an ergodic 
easure close to π. A MH acceptance step can be added to remo v e

he approximation error, giving the Metropolis-Adjusted Langevin 
lgorithm (Roberts & Tweedie 1996 ). 
A well-known limitation of the Langevin and other gradient-based 

ampling algorithms is that they require differentiable PDFs, which 
s not the case for some popular priors such as the Laplace prior. A
roposed solution to this is to apply a Moreau-Yosida approximation 
o the non-differentiable terms in the posterior PDFs (Pereyra 2016 ;
ai et al. 2018a ; Pereyra, Mieles & Zygalakis 2020 ). The posterior
DF for our inverse problem (equation 2 ) is of the form π( m ) ∝
xp ( −g( m ) − f ( m )), where g( m ) = 

1 
2 σ 2 ‖ d − G ( m ) ‖ 2 2 is our Gaus-

ian data fidelity and f ( m ) = μ‖ m ‖ 1 is our non-differentiable
aplacian prior. Applying a λ-Moreau-Yosida approximation to the 
rior, it then follows that the chain step for the Moreau-Yosida ULA
MYULA) is given by 

 

( i+ 1) = 

(
1 − δ

λ

)
m 

( i) + 

δ

λ
prox λf [ m 

( i) ] 

− δ∇g [ m 

( i) ] + 

√ 

δw 

( i) . (23) 

he tuning parameter δ must be small for the forward Euler 
pproximation (equation 22 ) to converge, and Pereyra ( 2016 ) argued
hat the optimal value for λ is λ = δ/2. We describe how to
alculate the proximal mapping of our prior on the sphere (second
erm equation 23 ) in the following subsection. If G is linear, the
radient of the data fidelity is straightforward to calculate using the 
djoint 

g = G 

† ( G m − d ) /σ 2 . (24) 

t is straightforward to modify equation 24 if the data errors
re characterized by a covariance matrix C rather than a sin- 
le standard deviation σ . It is important to note here that for
pherical inverse problems, the forward operator G may include 
pherical harmonic transforms, and thus the adjoint transforms 
re also needed for equation 24 . Further discussion about G in
he spherical setting is given later in this section. Algorithm 1
utlines the use of the MYULA chain in practice, highlight- 
ng the key steps and equations. Again, an MH acceptance step
an be added (Pereyra 2016 ; Cai et al. 2018a ); ho we ver, in
ur experiments there was little improvement for the additional 
omputational cost. 

lgorithm 1 MYULA on the sphere 

INPUTS : observed data d , data errors σ , initial sample m 

(0) , i = 0,
N , N thin , N burn , quadrature weights q , δ, λ, μ
OUTPUTS : chain { m 

( i) : i = 1 , ..., N} 
while i < N × N thin + N burn do 

Calculate gradient of data fidelity (eq ∼?? ) 
Calculate proximity map of prior (eq ∼?? ) 
Calculate m 

( i+ 1) (eq ∼?? ) 
if i > N burn then 

if mod ( i, N thin ) = 0 then 

Save m 

( i+ 1) to chain 
end if 

end if
i + = 1 

end while 
RASTAI 2, 20–32 (2023) 
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.2 Modification for the sphere 

e sample a set of spherical wavelet coefficients that are defined at
ach point on the sphere (equation 14 ). The MW sampling theorem
s equiangular, and as such, we need to account for an o v erdensity
f sampling points near the poles when we calculate the proximal
apping of our sparsity-promoting prior. Proximal operators are

enerally calculated by a small conv e x optimization problem (Parikh
 Boyd 2014 ). Fortunately, there exist closed-form representations

or the proximal mapping of many common functions (Combettes
 Pesquet 2011 ), including the � 1 -norm we use in our prior. This is

rucial for MCMC methods where the proximal mapping needs to
e repeatedly computed. It can be shown that for f ( m ) = μ‖ m ‖ 1 , 
rox λf ( m ) = soft λμ( m ) (25) 

here soft λμ is the soft thresholding operator with threshold λμ

efined as (Combettes & Pesquet 2011 ) 

oft λμ( m i ) = 

{
0 if m i ≤ λμ, 

m i − λμsgn ( m i ) if m i > λμ
(26) 

here sgn( x ) is the sign of x , and can be applied component-wise
o the components m i of m . To account for the spherical sampling
 v erdensity, a weighting must be applied to parameters m , which
akes the form of a diagonal matrix W of quadrature weights
McEwen & Wiaux 2011 ) that vary with colatitude and bandlimit.
his can be seen as applying a component-wise prior on each of

he elements of m . The proximal mapping changes only in that the
hreshold in equation 26 becomes λμw i , where w i is the i th diagonal
lement of W . 

.3 The forward operator 

 key consideration for any MCMC sampling algorithm is the
peed of the forward modelling step, i.e. making predictions of the
ata d given an MCMC sample m . This is particularly important
or spherical problems where the forward operator G may contain
pherical harmonic transforms, which are, unfortunately, slow and
ypically scale in complexity as O( L 

3 ) (McEwen & Wiaux 2011 ). As
iscussed in Section 2 , the spherical harmonic transforms are implicit
n the spherical wavelet transforms which form our sparsifying basis.
xpanding equation (5) to see this, to sample the spherical wavelet
oefficients in pixel space α we have in practice 

G ( α) = � S 

−1 WS α, (27) 

here S and S 

−1 are the forward and inverse spherical harmonic
ransforms (equations 8 and 9 ), respectively, and W is the spherical
avelet transform in harmonic space (Leistedt et al. 2013 ; Wallis

t al. 2017 ). This is further complicated by the need for the adjoints
f these transforms (equation 24 ). These four spherical harmonic
ransforms at each MCMC step immediately limits the bandlimits
 for which sampling the posterior may be feasible. For reference,

n our experiments, we performed dummy inversions at L = 64
nd 128 with an identity measurement operator ( � = I ) which took
round 3 and 17 d, respectively, for 10 6 samples on a 2.5-GHz Intel
eon Platinum 8180M processor. While this may not be an issue

or applications where information exists at relati vely lo w degrees,
or example in seismic tomography where maximum bandlimits are
ypically around L = 40 (e.g. Ritsema et al. 2011 ; Chang et al.
015 ), it will be impractical for applications where the bandlimits
f interest are higher (e.g. Price et al. 2020b ). To a v oid spherical
armonic transforms in equation 27 , one could instead sample the
pherical harmonic coefficients of α, provided one can reformulate
ASTAI 2, 20–32 (2023) 
he measurement operator � appropriately. We note, ho we ver, that
t is possible that, as shown in the following section, the harmonic
easurement operator may be slower than the pixel space operator

ven with spherical wavelet transforms. Further, it is concei v able
hat, depending on how the measurement operator scales, the choice
f harmonic or pixel space will depend on the bandlimit L . In either
ase, at least one spherical harmonic transform will be needed for the
rior, as there is no reason to expect the harmonic representation of
he wavelet coefficients to also be sparse. As such, spherical harmonic
ransforms are una v oidable, and it is crucial that these are computed
s efficiently as possible, for example via repeated exploitation of fast
ourier transforms as in McEwen & Wiaux ( 2011 ). This all highlights

he special consideration that must be given to the forward operator
or spherical inverse problems. 

.4 Spherical wavelet parameterization 

s discussed in Section 2 , our inverse problem is parameterized
sing axisymmetric spherical wavelets (Wiaux et al. 2008 ; Leistedt
t al. 2013 ; McEwen et al. 2015a ) to promote sparsity. We can
xploit the multiresolution character of these wavelets for further
omputational savings. By construction, the wavelets at each scale j
ach have different bandlimits k j = B 

j + 1 ≤ L , where B is a wavelet
cale parameter (Leistedt et al. 2013 ). By using a sampling theorem,
he transforms at each spherical wavelet scale can be performed up
o their own bandlimit k j , and only the minimum number of samples
n the sphere at that bandlimit are needed. This multiresolution
ransform gives a four to five times speed up of the spherical
avelet transforms (Leistedt et al. 2013 ), and also dramatically

educes the dimensionality of our parameter space, compared to a
ull resolution transform where each wavelet scale is sampled at the
 v erall bandlimit L . As an example, for parameters L = 32, B = 2, J 0 
 2, the full resolution algorithm has 10 080 wavelet coefficients,

ompared to only 4676 for the multiresolution algorithm. While a
ull assessment of how this affects the convergence speed of the

CMC chain in terms of number of required steps is beyond the
cope of this paper, we found real-time speed-ups and significant
emory savings in our experiments. 

.5 Uncertainty quantification 

y collecting samples from the posterior, we can calculate any
easure of uncertainty. For example, a common choice in Bayesian

tatistics is the credible intervals [ ξ−
i , ξ

+ 

i ] of the model parameters.
hese intervals contain the values that can be taken by parameter m i 

ith probability (1 − α), for some chosen small α

( m i ∈ [ ξ−
i , ξ

+ 

i ] | d ) = 1 − α (28) 

he lower and upper interval limits are calculated as the α
2 and

 − α
2 quantiles, respectively, of the posterior. We note that having

ampled the spherical wav elet coefficients, inv erse spherical wav elet
ransforms will be necessary to obtain an uncertainty map in real
pace as opposed to wavelet space. This can be e xpensiv e for the
ame reasons as previously discussed with respect to the forward
perator, although to a much lesser extent after burn-in and thinned
amples have been discarded. Of course, if the desired summary
tatistic is linear in the model parameters (e.g. mean) then this can
e calculated in wavelet space and only requires a single spherical
avelet transform. Importantly, in this way, we get uncertainties at

he pix el lev el when viewed in real space. As previously discussed,
urrent uncertainty quantification methods in similar contexts only
ork on superpixels (Price et al. 2020a ). 
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 SEISMOLOGICAL  SURFAC E  WAV E  PHASE  

ELOCITY  MAPS  

he deep structures of the Earth’s interior are best illuminated from
eismic wa ves. Wa ves generated from earthquakes travel through 
he Earth, interacting with the materials along the way. Inverting the 

easurements of these waves recorded at seismic receivers, typically 
ocated at the Earth’s surface, reveals the layers and structures in the
arth (Rawlinson, Pozgay & Fishwick 2010 ). Depending on the 

ype and frequency of the waves, this can be done to image a range
f scales from local applications (e.g. imaging oil, gas, geothermal 
elds) to global problems (e.g. imaging the whole Earth’s mantle, 
own to ∼2800 km depth). The seismic imaging the Earth’s interior 
n three dimensions is known as seismic tomography. 

In this section, we introduce the common problem in global 
eismic tomography of building surface wave phase velocity maps, 
hich we use as an illustrative example. Being a 2D problem that can
e described by relatively simple theory, this is a natural example 
f application that is well suited to illustrate our framework for
ampling the posterior for spherical inverse problems. The resolution 
equirements in global seismic tomography are also much lower than 
or full-sky mass-mapping, as discussed in the next section, typically 
nly requiring L ≤ 40. This makes our method directly applicable to 
his problem. 

.1 Surface wave phase velocity maps 

apping the phase velocity of surface waves is a common problem in
eismic tomography (Trampert & Woodhouse 1995 ; Ekstr ̈om, Tromp 
 Larson 1997 ; Ekstr ̈om 2011 ). Seismic surface waves generated

rom earthquakes travel along the Earth’s surface. These waves are 
ispersive in that their velocity depends on the wave period, with 
ifferent wave periods being sensitive to the structures at different 
epths in the Earth’s interior (Dahlen & Tromp 1998 ). Phase velocity
aps sho w ho w the velocity of surface waves at a given period

aries due to lateral heterogeneities in the Earth’s composition and 
emperature. Hence, creating these maps for waves of different 
eriods is often a first step towards building 3D models of the Earth’s
antle (e.g. Durand, Debayle & Ricard 2015 ). 
For a particular wave period, one can measure from a seismogram

he average phase velocity along the path that the wave has travelled
etween a seismic source and receiv er. Inv erting measurements from
any crossing paths, that would ideally cover the Earth uniformly, 

roduces a phase velocity map. In practice, the distribution of 
aths is determined by the locations of earthquakes, typically along 
ectonic plate boundaries, and the locations of seismic stations 
redominantly in the continents of the northern hemisphere, making 
his an ill-posed inverse problem. On global scales, long-period ( T
 25 s) phase velocity measurements are typically modelled using 

inearized ray theory (an infinite frequency approximation analogous 
o geometrical optics), also known as the great-circle approximation 
e.g. Woodhouse & Dziewonski 1984 ; Parisi & Ferreira 2016 ) and
nverted using least-squares algorithms (e.g. Tarantola & Valette 
982 ; Trampert & Woodhouse 1995 ; Ekstr ̈om 2011 ; Durand et al.
015 ). In this framework, the path travelled by the seismic wave is
ssumed to correspond to the great circle between the source and 
he receiver. The observed mean phase velocity anomaly 〈 δc / c 0 〉 for
 gi ven source-recei ver pair is given by the average of the phase
elocity field along the minor arc great circle S , 〈
δc 

c 0 

〉
= 

1 

� 

∫ 
S 

δc 

c 0 
( θ, φ)d S , (29) 
w  
here c 0 is the phase velocity value computed for a reference Earth
odel, δc = c − c 0 , with c being the actual phase velocity, and � is

he length of path S . 
Although there exist more complete theories describing phase 

elocity anomalies, notably including non-linear and finite frequency 
ffects, recent studies have shown that the great-circle approximation 
ccurately predicts the phase of long-period fundamental mode 
urf ace w aves for current global tomography models (e.g. Parisi
 Ferreira 2016 ; Godfrey et al. 2019 ). Hence, in this study, we

ocus on the great-circle approximation. For simplicity, we also only 
nvert for isotropic lateral variations in phase velocity. We note, 
o we ver, that our proximal MCMC approach can in principle handle
hese additional physical parameters (e.g. anisotropy, the directional 
ependence of wave velocity) with some slight modification. 

.2 Pixel space path integration 

he common way to compute path integrals on the sphere (equa-
ion 29 ) is to rotate the coordinate system such that the path lies
long the equator, which is easily expressed in terms of Wigner-
 matrices and the spherical harmonic coefficients of the spherical 

ignal (Dahlen & Tromp 1998 ). For a data set with N paths paths,
he measurement operator can be represented by a dense matrix 
 h ∈ C 

N paths ×L 2 acting on the spherical harmonic coefficients ˆ x ∈ 

 

L 2 . For seismic data sets typically consisting of O(10 5 ) paths, this
ense matrix multiplication can be quite slow. Our approach is to
nstead measure the path integral directly on the pixelized sphere 
sing a sparse matrix � p ∈ R 

N paths ×N pixels , where each element of � p 

s a weight representing the normalized distance each path travels 
n a pixel. This ef fecti vely approximates the integral as a weighted
iemann sum o v er the pix elized function x ∈ R 

N pixels . The adjoint
perator is trivially the transpose of � p . The first step for our
umerical path integration is to find discrete geographical points 
long the great circle minor arc between a source and a receiver
sing spherical trigonometry. For the discretization, a sampling rate 
f about 200 points per radian (3.5 points per degree) was generally
ufficient for this work. Each of the geographical points along the
ath is then mapped to its nearest MW sampling point. This mapping
ssigns a weight to each MW sampling point, which is given by 

 tp = 

n tp 

s� 

, 

here n tp is the number of geographical points on the path that are
losest to MW sampling point inde x ed in the θ and φ directions by
 and p , respectively, s is the path sampling rate and � is the full
ath length. This can easily be done for each path of the data set in
arallel to build the full measurement operator. 
Fig. 1 compares the forward modelling time for both the harmonic

nd pixel space path integrations, � h and � p , respectively, for 
andlimits L ∈ { 20, 28, 32, 64 } and a realistic set of ray paths
 Also shown are the times for the pixel space integration with
n additional spherical wavelet transform � p � , as required when 
ampling wavelet coefficients (equation 5 ) instead of sampling the 
mage directly. Clearly integration in pixel space is much faster than
n harmonic space, even with the computational o v erhead of the
pherical wavelet transforms. Pixel space integration also scales 
etter to higher bandlimits. This is due to the extreme sparsity
less than 2 per cent nonzero elements) of � p , whereas � h is
enerally dense. Table 1 shows the mean percentage difference and 
he relative squared error R2E = ‖ d harm 

− d pix ‖ 2 2 / ‖ d harm 

‖ 2 2 between
redictions made in harmonic space, d harm 

, and in pixel space, d pix ,
hen performed on the ground truth map we use in our synthetic
RASTAI 2, 20–32 (2023) 
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R

Figure 1. Time taken to perform the forward modelling in pixel space (red), 
in pixel space with a spherical wavelet transform (green), and in harmonic 
space (blue). The point for the harmonic approach at bandlimit L = 64 is 
well beyond the vertical scale at around 0.2 s. Timings performed on a 2020 
MacBook Pro with an Apple M1 processor. 

Table 1. Accuracy of pixel space path integration. 

Bandlimit L Mean difference (%) R2E 

20 −0.01 2.14 × 10 −4 

28 −0.02 1.52 × 10 −4 

32 −0.02 1.34 × 10 −4 

64 −0.01 5.64 × 10 −5 
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Figure 2. Synthetic GDM52 reco v ery e xperiment. Top panel: ground truth 
from Ekstr ̈om ( 2011 ). Middle panel: mean solution from proximal MCMC. 
Bottom panel: difference between the truth and our solution. All the maps 
show perturbations in phase velocity ( δc / c 0 ) with respect to the reference 
model PREM (Dziewonski & Anderson 1981 ). Green lines show the tectonic 
plate boundaries (Bird 2003 ). The bottom panel shows the unnormalized pos- 
terior probability throughout the MCMC chain, indicating that the sampling 
has converged. 
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xperiment (see Fig. 2 top). As can be expected, as the bandlimit
ncreases the error in the pixel space integration decreases. Crucially,
 ven at relati vely lo w bandlimits the pixel space integration is
ufficiently accurate. 

.3 Results and discussion 

n this section, we present the results of a synthetic test and real data
nversions. We use MYULA to sample the axisymmetric wavelet
oefficients α of the spherical image x , using the sparse measurement
perator described in the previous section. 

.3.1 Synthetic experiment 

s a synthetic example, we use the global phase velocity model
DM52 (Ekstr ̈om 2011 ) at a wave period of T = 40 s as a ground

ruth x . Surf ace w av es of this period are mainly sensitiv e to Earth
tructure at depths of around 100 km (Dahlen & Tromp 1998 ; Durand
t al. 2015 ), so the image (Fig. 2 ) shows well-known tectonic features
uch as slow anomalies along spreading ridges (e.g. Ekstr ̈om 2011 ).
he model is bandlimited to L = 28, corresponding to 3724 wavelet
oefficients using the multiresolution wavelet transform. We create
 synthetic data set d 

d = �x + n , (30) 

here � is our pixel-space forward operator and n ∼ N (0 , σ ), where
is the standard deviation of the predictions �x to simulate noise in

bserved data. � is constructed using the same paths as those used
o originally build GDM52 (Ekstr ̈om et al. 1997 ; Ekstr ̈om 2011 ),
hereby ensuring a realistic and non-uniform spatial distribution of
he data. In this case, we have 1 79 657 paths. We use the signal-to-
oise ratio 

NR ( x 0 ) = 20 log 10 

( ‖ x ‖ 2 
‖ x − x 0 ‖ 2 

)
(31) 
ASTAI 2, 20–32 (2023) 
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Figure 3. Synthetic GDM52 reco v ery e xperiment. Top panel: 95 per cent 
credible interval range (equation 28 ) calculated on our MCMC samples in 
image space ( x ) in units of percentage deviation from the reference value, as 
in Fig. 2 . Bottom panel: row sum of path matrix � (unitless) representing the 
density of rays in the data set. 
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nd relative squared error 

2E ( x 0 ) = 

‖ d − � x 0 ‖ 2 2 

‖ d ‖ 2 2 

(32) 

o assess the reconstruction accuracy and predictive accuracy, respec- 
ively, of our chosen point solution x 0 , which in this case we choose
o be the post-burn mean mean of our MCMC samples. We perform
0 6 MCMC steps, saving every 500th sample. The first half of the
aved samples are discarded as a burn-in when calculating our mean 
olution and uncertainty. This takes the sampling well beyond the 
oint of convergence, which we take to be the point where there is no
onger a significant change in posterior probability (see Fig. 2 ). This
nversion takes about 20 hours on a 2.5-GHz Intel Xeon Platinum 

180M processor. The tuning parameters are set to μ = 500 and δ =
0 −6 . Fig. 2 shows the ground truth, the post-burn mean of our proxi-
al MCMC samples and the difference between the two. Our solution 

as an excellent data fit (R2E = 9.96 × 10 −3 ) and model reco v ery
SNR = 8.81 dB). Differences between the ground truth and our 
ean solution are small on average (0.5 per cent) with some small-

cale blobs of larger differences. The majority of these blobs occur in
he southern hemisphere where data co v erage is poorer (see Fig. 3 ). 

We show the map of 95 per cent credible interval ranges as well
s a map showing the density of ray paths of our data set in Fig. 3 .
ere, the uncertainty is calculated on the image space representation 
f our solution (i.e. x ). As can be expected, on the whole we find
ower uncertainties where we have a higher density of data in areas
uch as eastern Asia and the western US. We also see much smaller
cale regions of higher uncertainty. Looking at the uncertainties in 
avelet space (i.e. α, which is sampled by the proximal MCMC)

n Fig. 4 , it is clear that the smaller scale wavelet coefficients have
igher uncertainty. Thus, the patterns of differences between our 
hosen point solution and the truth (Fig. 2 ) are captured by the
ncertainty of our sampled parameters. 

.3.2 Real data inversions 

o demonstrate our method on real data, we invert the same data
hat was used to build GDM52 (Ekstr ̈om et al. 1997 ; Ekstr ̈om 2011 )
t wave periods T = 25, 40, 75 s, which have a strong sensitivity to
bout 100, 160 and 300 km depths, respectively (Dahlen & Tromp
998 ; Durand et al. 2015 ). The results of these inversions are shown
n Fig. 5 . The data sets at these wave periods consist of about 103 633,
79 657, and 286 302 paths, respectively. Again we use a bandlimit of
 = 28. For these inversions, we perform 750 000 chain steps, saving
very 500th sample and discarding the first 500 saved samples as
urn-in. This takes between 8 and 33 h, depending on the number
f ray paths, on a 2.5-GHz Intel Xeon Platinum 8180M processor.
he tuning parameter δ is chosen on a case-by-case basis. Our mean
olutions show all the expected velocity anomalies, being very similar 
o the GDM52 phase velocity maps (Fig. 5 , left-hand panel). For
xample, the T = 25 s map (Fig. 5 , top panel) shows a clear distinction
etween the slow continents and the fast oceans. On the other hand,
he T = 40 s map (Fig. 5 , middle panel) depicts a good correlation
etween slow anomalies and plate boundaries, while the T = 75 s
ap (Fig. 5 , bottom panel) shows deeper mantle signals, such as high

elocities associated with cratons. A notable difference with GDM52 
Fig. 5 , left-hand panel) is a north–south streak of fast velocities off
he coast of the western US seen at all wave periods. This is a well-
nown artefact resulting from not modelling azimuthal anisotropy 
Forsyth 1975 ; Ekstr ̈om 2011 ). This streak corresponds to a region
f high uncertainty in our solutions (Fig. 5 , right-hand panel). Again,
he uncertainty maps correlate with ray density as expected. 

We emphasize that the main purpose of this study is not to
uild impro v ed phase v elocity maps, which can be constructed
uickly using, e.g. least-squares approaches (Tarantola & Valette 
982 ; Trampert & Woodhouse 1995 ), but rather to illustrate and
alidate our framework for sampling the posterior of spherical inverse 
roblems with a useful, well-known first application. Hence, we do 
ot consider more sophisticated theoretical formulations, such as, e.g. 
ull ray theory (Ferreira & Woodhouse 2007 ), finite frequency theory
Zhou et al. 2005 ), including anisotropic effects (Ekstr ̈om 2011 ), etc.
uture work will focus on the application of the method to more-
ophisticated problems, such as, for example, depth inversions using 
on-linear theory. 

 LOW-RESOLUTI ON  C O S M O L O G I C A L  

ASS-MAPPING  

ne of the predictions of Einstein’s theory of general relativity 
as that the gravitational influence of massive objects will cause 

ight to bend around them (Einstein 1905 ). As a result, distant
bjects often look distorted when observed by astronomers. This 
s the phenomenon of gravitational lensing. Light from distant 
tars and galaxies travels through the universe, bending around all 
he mass along the way to Earth. Inverting measurements of the
RASTAI 2, 20–32 (2023) 
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R

Figure 4. Synthetic GDM52 reco v ery e xperiment. 95 per cent credible interval ranges of spherical wavelet coefficients at different scales. The range of the 
colourbar is the same for all maps in units of percentage deviation from the reference value, as in Figs 2 and 3 . 
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istortions in the images of the light source reveals the hidden masses
hat the light passed by (e.g. Kaiser & Squires 1993 ), including
ark matter (Heavens 2009 ), producing so-called cosmological 
ass maps. 
In this section, we demonstrate our framework on the retrieval of

osmological mass-maps from simulated data. This is a 2D problem
escribed by a simple linear forward model. We treat this as a simple
emonstration and perform the inversion at a much lower bandlimit
han would normally be required for cosmological mass-mapping.
ue to the poor scaling of the spherical wavelet transforms with L ,
erforming the millions of transforms required at L ∼ O(10 3 ) (Price
t al. 2020b ; Wallis et al. 2022 ) would simply be too slo w. Ho we ver,
ith future computational impro v ements to speed up the transforms

e.g. by exploiting GPUs), our framework will be well-suited for this
articular problem. 

.1 Mass-mapping on the celestial sphere 

mages of galaxies are typically distorted, as the light they emit gets
ensed by the mass between us and the source galaxies. Gravitational
ensing occurs regardless of the nature of the intervening mass,
nd as such lensing is an excellent probe for dark matter (Heavens
009 ). Mass-mapping maps the total density perturbation along a
ine of sight between a source galaxy and the observer based on
easurements of the distortion of galaxy images. Up until recently,

ensing surv e ys only co v ered relativ ely small sk y-fractions, so planar
pproximations were made. As the area of co v erage has increased
ith newer surv e ys, planar approximations are no longer valid

Wallis et al. 2022 ), resulting in mass-maps now being constructed
ASTAI 2, 20–32 (2023) 
n the sphere (e.g. Price et al. 2020b ; Jeffrey et al. 2021 ; Wallis et al.
022 ). 
Gravitational lensing studies deal with two main fields: the

onvergence field 0 κ( θ , φ), which causes magnification of the
alaxy image; and the shear field 2 γ ( θ , φ), which causes rotation
nd stretching of the galaxy image (Dodelson 2017 ). Mass maps
eveal the convergence field 0 κ( θ , φ), which can be shown to be
he integrated mass density along the line of sight (Bartelmann &
chneider 2001 ). This is linearly related in spherical harmonic space

o the spin-2 shear field 2 γ ( θ , φ), measured from observations of
alaxy shapes, by a linear kernel K � given by (Kaiser & Squires
993 ; Wallis et al. 2022 ) 

 � = 

−1 

� ( � + 1) 

√ 

( � + 2)! 

( � − 2)! 
. (33) 

hus, our forward model, in this case, is given by � = m 2 S 
−1 K 0 S ,

here K encodes the linear kernel abo v e and m is a masking matrix
o account for areas on the sky without reliable data (e.g. the galactic
lane and ecliptic). 2 S and 0 S denote the spin-2 and spin-0 spherical
armonic transforms needed for to account for the spin symmetries
f the shear and convergence fields, respectively. From hereon in we
rop the spin subscripts for clarity. We note that in reality there exists
 de generac y between γ and κ , and as a result the true observable
s not the shear but the reduced shear g = γ /(1 − κ). In the weak-
ensing regime, this non-linear effect is very small, so we ignore
t here. Accounting for non-linearities in our MCMC is possible,
rovided the rele v ant gradients of the non-linear forward model can
e computed efficiently. 
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Figure 5. Real data inv ersions. Phase v elocity maps from GDM52 (Ekstr ̈om 2011 ) (left-hand panel), mean proximal MCMC solutions from this study (middle 
panel) and credible interval ranges (right-hand panel) for wave periods 25, 40, and 75 s (top to bottom panels). All the maps show perturbations in phase velocity 
( δc / c 0 ) with respect to the reference model PREM (Dziewonski & Anderson 1981 ). 
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The choice of using sparsity promoting priors in this case is mo-
i v ated by the need to reco v er non-Gaussian structures, particularly
t high � . These are created by non-linear structure growth of the
ensity field throughout the evolution of the Universe. Promoting 
parsity has been used previously (e.g. Leonard, Lanusse & Starck 
014 ; Lanusse et al. 2016 ; Price et al. 2020b ; Starck et al. 2021 )
o incorporate non-Gaussian structures, as have Wiener filters on a 
aussian prior (e.g. Jeffrey et al. 2018 ),log-normal priors (e.g. B ̈ohm

t al. 2017 ; Fiedorowicz et al. 2022 ) and physically informed power
pectrum priors (e.g. Porqueres et al. 2021 ). 

A Bayesian sampling method for mass-mapping was recently 
mplemented by Fiedorowicz et al. ( 2022 ). They used HMC to
fficiently navigate the large parameter space with a log-normal 
rior. In comparison with our framework, the log-normal prior is 
if ferentiable, which allo ws the gradient-based HMC to be used, 
ith the exploitation of efficient autodifferentiation making this 

omputationally tractable. Ho we ver, the log-normal prior makes 
ertain assumptions about the cosmological parameters, and thus the 
ass maps produced by their method cannot be used for inference 

bout cosmology, without additional further work (Fiedorowicz et al. 
022 ). Our framework makes no such assumptions. 

.2 Results and discussion 

s a synthetic example, we attempt to reconstruct a simulated mass
ap from the Takahashi N -body simulation (Takahashiet al. 2017 ). 3 

lices are provided at a range of redshifts, and we select redshift slice
 Data available at http:// cosmo.phys.hirosaki-u.ac.jp/ takahasi/allsky r aytr ac 
ng/

F  

e  

t  

T  
6 corresponding to z ∼ 1. This slice is bandlimited at L = 64, giving
ur ground truth mass map, to which we apply a basic Galactic plane
nd ecliptic mask. 

Synthetic shear data is generated by applying the measurement 
perator � to the ground truth map. The noise in weak-lensing 
urv e ys depends on the number of galaxy counts per unit area and
he variance of the intrinsic ellipticity distribution σ e ∼ 0.37. We 
hoose an o v erall number density of galaxies per arcmin 2 , n gal , and
dd zero-mean Gaussian noise to the synthetic data, with the variance
f the noise given by 

2 
t = 

σ 2 
e √ 

2 n t 
, (34) 

here t is the colatitude index, and n t is the expected number of
alaxies in a pixel at colatitude t given the overall number density
 gal . This dependence on colatitude comes from the equiangular 
ature of the MW sampling theorem (McEwen & Wiaux 2011 ). 
When reporting the SNR, R2E summary statistics and our solution 
aps, we use a slightly larger mask than what was applied to the

ynthetic shear data. This is to remo v e leakage artefacts that occur
round the edge of the mask due to the sudden lack of data and also
a velets that ha ve support both inside and outside the mask. At the
igh resolutions typically of interest for mass-mapping, this leakage 
ill be minimal. 
Maps of the ground truth, mean of our MCMC samples, the

ifference between them and our measured uncertainty are shown in 
ig. 6 . For this inversion, we perform 12.5 × 10 6 chain steps, saving
very 500th sample and using the last 3000 samples for our results,
aking about 4 d on a 2.5-GHz Intel Xeon Platinum 8180M processor.
he step-size parameter δ is chosen to be 10 −9 , the largest value that
RASTAI 2, 20–32 (2023) 
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R

Figure 6. Results of a simple mass-mapping example where the ground truth is known. Top left-hand panel: ground truth simulation from Takahashiet al. 
( 2017 ). Top right-hand panel: Mean of the proximal MCMC samples. Bottom left-hand panel: difference between the top two maps. Bottom right-hand panel: 
95 per cent credible interval range obtained from proximal MCMC. A Galactic plane and ecliptic mask are show in all maps except the uncertainty map, which, 
as expected, shows high uncertainty in these regions. 

a  

r  

t  

t  

s  

0  

c  

w  

a
 

s  

m  

a  

a  

s  

t  

o  

2  

t  

n  

i  

w  

t  

a  

2

6

I  

s  

p  

n  

a  

p  

d  

l  

c  

i  

(  

m  

m  

d  

t  

g  

h  

f  

t  

o
K  

c  

i  

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/2/1/20/6967146 by U

niversity C
ollege London user on 27 February 2023
llows a stable Euler approximation of the Langevin diffusion. The
egularization parameter μ is chosen to be 5 × 10 5 , to constrain
he wavelet coefficients to the appropriate order of magnitude. At
his resolution ( L = 64), there are 18 916 wavelet coefficients to be
ampled. The mean solution has an SNR of 7.83 dB and an R2E of
.1. The uncertainty map, measured as the range of the 95 per cent
redible intervals (equation 28 ) show, as expected, high uncertainty
ithin the masked regions where the solution is not constrained by

ny data. 
While we obtain encouraging results here with a good recon-

truction and physically reasonable pix el-lev el uncertainties, for this
ethod to be adopted in full-sky mass mapping, computational

dvances are needed in the implementation of the spherical harmonic
nd wavelet transforms such that the scaling with L is not as
ev ere. Currently, the comple xity scaling of the spherical harmonic
ransforms is O( L 

3 ) (McEwen & Wiaux 2011 ), and dominates
 v er the efficient harmonic space wavelet transform (Leistedt et al.
013 ) discussed in Section 2 . With at least two spherical harmonic
ransforms per iteration of MYULA, current implementations will
ot allow for the desired L ∼ O(10 3 ) bandlimits. Ne w ef forts
mplementing these transforms on GPUs should go a significant
 ay tow ards pushing our method to higher resolutions. Further

heoretical advances for the representation of spherical signals could
lso lead to computational savings (e.g. Ocampo, Price & McEwen
022 ). 
ASTAI 2, 20–32 (2023) 

s  
 C O N C L U S I O N S  

n this paper, we have presented a general framework for posterior
ampling of inverse problems on the sphere with sparsity promoting
riors that allows for flexible uncertainty quantification and extends
aturally to non-linear problems. We demonstrated the potential
pplicability of this method to both astrophysical and geophysical
roblems. As with all MCMC methods, the suitability of this method
epends on the time taken to take the next chain sample, particu-
arly in relation to the forward modelling step. The computational
omplexity of transforms on the sphere mean that this framework
s generally feasible for problems of low to moderate resolution
roughly L ≤ 64), such as those commonly considered in global seis-
ic tomography. At higher resolutions, as needed for full-sky mass-
apping, posterior sampling quickly becomes intractable largely

ue to the poor scaling of spherical harmonic transforms present in
he forward operator. In either case, special consideration must be
iven to the forward operator and whether it should be formulated in
armonic or pixel space, and also if its adjoint is known. A harmonic
ormulation would a v oid repeated spherical harmonic transforms, but
hese savings could be lost on the measurement operator. Making use
f a more efficient proximal algorithm based on a stochastic Runge–
utta approximation of the Langevin equation (Pereyra et al. 2020 )

ould be a promising w ay forw ard for higher resolution spherical
nverse problems. This algorithm is more complex but converges to a
olution much faster than the Euler approximation algorithm used in
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his work, thereby potentially requiring fewer spherical harmonic 
ransforms. Additionally, faster implementations of the spherical 
armonic transform leveraging GPUs would immediately increase 
he potential of our method. 

The examples shown in this work are largely illustrative, as 
implifications have been made. In the mass-mapping example, 
he bandlimit is much lower than the angular orders at which the
onvergence spectrum has the most power due to the computational 
estrictions imposed by the spherical harmonic transforms. We also 
ave not fully considered the effect of reduced shear. Nonetheless, 
ngoing work to implement the spherical harmonic and wavelet 
ransforms on accelerators (GPUs) provide a route to scale to higher 
esolutions, making our framework is a promising addition to other 
ecent methods for obtaining mass-maps with uncertainties (e.g. 
rice et al. 2020b ; Fiedorowicz et al. 2022 ). For the surface wave

omography example, we have used the great circle approximation 
nd not accounted for anisotropic effects, in which case a least-
quares approach is fast and efficient. None the less, our results
emonstrate the feasibility of our framework methods on global 
cale tomographic inverse problems. In this case, the more commonly 
sed harmonic formulation of the forward problem pro v ed to be too
low, and we were able to reformulate it in pixel space such that it
as much faster, even with the computational overhead of spherical 
avelet transforms. Further, the uncertainties calculated from our 
osterior samples make physical sense, being correlated with the 
istribution of data. Bayesian methods in seismic tomography 
n large-to-global scales have largely been used for independent 
D inversions (e.g. Shapiro & Ritzwoller 2002 ; Khan, Boschi & 

onnolly 2011 ; Ravenna & Lebedev 2017 ), although new advances 
n gradient-based or variational methods (e.g. Fichtner, Zunino & 

ebraad 2018 ; Gebraad, Boehm & Fichtner 2020 ; Zhang & Curtis
020 ; Zhao, Curtis & Zhang 2022 ) are promising for 2D and 3D
robabilistic tomography. Our framework is a further contribution to 
his advance in methodology, with the no v elty of being able to use a
on-differentiable prior. 
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ATA  AVA ILA BILITY  

e provide a new Python package, pxmcmc 4 that contains imple- 
entations of the proximal MCMC algorithms used in this work as
ell as the measurement operators, wavelet transforms and priors 
ith their proximal mappings. The code is designed to be flexible, 
ith base classes that will allow users to implement their own forward

measurement and transform) operators and priors. The proximal 
CMC algorithms implemented are themselves not restricted to 

pherical problems, as the spherical aspects of the inversions appear 
n the likelihood and prior proximal calculations. We also provide 
cripts and data to reproduce the synthetic experiment described in 
his paper. MCMC chains for the real data inversions are available 
rom the authors upon request. The discretization of great circle paths 
 https://github.com/auggiemar ignier /pxmcmc 5
s implemented in our Python code greatcirclepaths , 5 which 
s publicly available. 
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