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Approaches to Selecting ‘‘Time Zero’’

in External Control Arms with Multiple
Potential Entry Points: A Simulation

Study of 8 Approaches

Anthony J. Hatswell , Kevin Deighton, Julia Thornton Snider,

M. Alan Brookhart, Imi Faghmous, and Anik R. Patel

Background. When including data from an external control arm to estimate comparative effectiveness, there is a
methodological choice of when to set ‘‘time zero,’’ the point at which a patient would be eligible/enrolled in a con-
temporary study. Where patients receive multiple lines of eligible therapy and thus alternative points could be
selected, this issue is complex. Methods. A simulation study was conducted in which patients received multiple prior
lines of therapy before entering either cohort. The results from the control and intervention data sets are compared
using 8 methods for selecting time zero. The base-case comparison was set up to be biased against the intervention
(which is generally received later), with methods compared in their ability to estimate the true intervention effective-
ness. We further investigate the impact of key study attributes (such as sample size) and degree of overlap in time-
varying covariates (such as prior lines of therapy) on study results. Results. Of the 8 methods, 5 (all lines, random
line, systematically selecting groups based on mean absolute error, root mean square error, or propensity scores)
showed good performance in accounting for differences between the line at which patients were included. The first
eligible line can be statistically inefficient in some situations. All lines (with censoring) cannot be used for survival
outcomes. The last eligible line cannot be recommended. Conclusions. Multiple methods are available for selecting
the most appropriate time zero from an external control arm. Based on the simulation, we demonstrate that some
methods frequently perform poorly, with several viable methods remaining. In selecting between the viable methods,
analysts should consider the context of their analysis and justify the approach selected.

Highlights

� There are multiple methods available from which an analyst may select ‘‘time zero’’ in an external control
cohort.

� This simulation study demonstrates that some methods perform poorly but most are viable options,
depending on context and the degree of overlap in time zero across cohorts.

� Careful thought and clear justification should be used when selecting the strategy for a study.
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Introduction

The use of external cohorts in regulatory or health tech-
nology assessment submissions is becoming increasingly
common in the United States and Europe. A recent sys-
tematic review identified 43 occasions in which nonran-
domized study designs using external controls were
included in applications to US or EU regulatory authori-
ties, most of which were met with approval.1 Data from
external comparator groups can come from a variety of
sources and be used to augment clinical trials, particu-
larly uncontrolled studies (which are often single-arm
trials) when a comparison group is not feasible.

When data are taken from an external source for com-
parison with a clinical trial, the aim is to replicate the
conditions of a randomized study as closely as possible.2

Systematically attempting to do so is known as the ‘‘tar-
get trial’’ approach3 and involves selecting patients at the
point where treatment decisions are being made, includ-
ing enrolling them in the trial, should they have been
available.4 The classical example of this design is the com-
parative new user design,5 which emulates a parallel-group
randomized trial. A complexity exists, however, in which
patients could be included at various points, that is, they
would have been eligible for entry to the trial at several dis-
crete time points (as opposed to only a single point). This
is known in the literature as defining ‘‘time zero,’’ the
‘‘index date,’’ or ‘‘anchor date’’ for patients1,3,6,7; here, we
suggest the term ‘‘time zero’’ as the most appropriate and
widely used term. An example of the problem is given in
Hernán and Robins3 with the case of women older than
50 years of age receiving hormone therapy, who would be
eligible at age 50, 51, 52, and so forth.

This issue is of particular importance in situations in
which outcome risk changes depending on which poten-
tial time zero is selected; for example, in cancer patients,

prognosis generally deteriorates by treatment line.8–12 Con-
sequently, any imbalance in the number of prior lines of
therapy in a cross-trial comparison is likely to induce bias.
Selection of eligible intervals should also be done to avoid
immortal person time13 and other kinds of selection bias,14

where enrollment and assignment to different treatment
groups depend on events that occur after the start of
follow-up. For example, immortal person time occurs
when patients have to survive some initial period of follow-
up before they can be classified as being treated.13,15 In
oncology, the absence of later lines of therapy is likely indi-
cative of poor outcomes (e.g., death), with outcomes (such
as response rates) likely correlated within patients.7

Selecting an appropriate time zero is an issue we recently
faced when determining the comparative effectiveness of
the chimeric antigen receptor T-cell (CAR T) therapy axi-
cabtagene ciloleucel (Yescarta, Kite, a Gilead Company) in
follicular lymphoma (FL)16 and was the motivation for
completing this study. FL is an incurable disease that can
recur many times within a patient’s lifetime,17 with the
prognosis worsening with each passing line of therapy.12

For the pivotal single-arm ZUMA-5 study, the experimen-
tal nature of the intervention meant that patients had to
have received a minimum of 2 prior lines of therapy (the
final sample had a mean of 3.6 and maximum of 9 prior
lines16). To estimate comparative outcomes, an external
control arm was constructed based on electronic medical
records pooled with historical clinical trial data. Because of
the length of time over which patients could have been
included in this study, a higher proportion of earlier lines
were observed, with patients generally having multiple can-
didate time zeros, at which point they would have fulfilled
the entry criteria for the axicabtagene ciloleucel study, with
an example shown in Figure 1.

In this article, we present a simulation study to add to
the existing conceptual discussions for defining time zero.
First, we lay out the design of the simulation, which is
intended to capture the salient characteristics of the occa-
sions when external controls are frequently used, namely,
uncontrolled studies in oncology.18 We then present the
various approaches available to the analyst for selecting
time zero, including established and novel methods,
before presenting the results of the study comparing the
performance of the different methods under a range of
scenarios when coupled with methods to account for
confounding (i.e., propensity scoring).

Methods

Simulation Study Design

The setup of the simulation study was designed to mimic
an external control following patients through multiple
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lines of therapy and an intervention study conducted at
later lines of therapy on average. Patient characteristics
are sampled at the incidence of a patient’s disease (i.e.,
line 1) and deteriorate with each line of therapy received,
with each successive line also assumed to have reduced
effectiveness ceteris paribus, as seen in many cancers.

To implement the study design, patients were deemed
to have 8 characteristics (6 observable characteristics and
2 unobservable characteristics) affecting outcomes, each
sampled from (independent) normal distributions, with the
resulting value used to sample time-to-event outcomes from
exponential distributions for time to progression and overall
survival (OS), the shorter of these times then being used for
progression-free survival (PFS). If a patient’s first outcome
was death, this time was recorded, whereas if it was progres-
sion, they moved to the next treatment line with a further set
of time-to-event outcomes sampled. Patient characteristics
were set to, on average, deteriorate each treatment line
according to sampling from normal distributions (Figure 1).
If a treatment line was deemed to be the intervention, expo-
nential distributions with longer time-to-event outcomes were
used for that line, after which they would revert to having
outcomes sampled as in the external control arm. Outcomes
were also set to worsen, ceteris paribus, as the number of
prior lines a patient had received increased (Figure 2).

Starting treatment lines were drawn from a binomial
distribution with 6 trials and a probability of 1/3 in the
external control and 2/3 in the intervention arm (and thus

a resulting mean difference of 2 lines). This difference in
starting line leads to a bias against the intervention as
patients will begin treatment later in the pathway. Impli-
citly, this means that in a naı̈ve comparison intervention,
patients will have less favorable characteristics and thus
have a worse prognosis. Within the data set, patients are
then assumed to be followed up for 60 mo (external con-
trol) or 37 mo (intervention) before administrative cen-
soring occurs. All censoring is assumed to occur at the
same point so as not to introduce randomness into esti-
mates of restricted mean survival time (RMST), which
was estimated at 36 mo. A diagrammatical representa-
tion of the study is provided in Figure 1, with inputs pre-
sented mathematically in Table 1.

In the simulation, 3 data sets were constructed: the exter-
nal control data set, the intervention data set, and a ‘‘true
control’’ data set. The true control data set was a facsimile
of the intervention data set to the point patients received the
intervention, at which point they instead receive the control
outcomes. This allows the calculation of outcomes in a set
of identical patients (i.e., a true counterfactual of the same
patients). Methods are then applied with the aim of estimat-
ing the effect of the intervention by comparing outcomes
observed in the external control and intervention samples.

Methods for Comparison

In the simulation, 8 methods for setting time zero were
implemented and used to estimate the intervention
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Control pa�ent

LoT 3

LoT 3

Eligibility �me
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LoT 1
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(Interven�on)
LoT 5

LoT 5

POTENTIAL INDEX 
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INDEX DATE
Interven�on pa�ent

Period not included in study

Follow-up period

Censor

Death

Figure 1 Stylized diagram of line selection options.
Abbreviations: LoT, Line of Therapy; FEL, First Eligible Line; LEL, Last Eligible Line.
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effectiveness in each run. This estimated value was then
compared with the results when using the values derived
from the true control (i.e., those observed when calculat-
ing the effect size in the group of identical patients). Each
of the methods investigated in the study for defining time
zero in the external control arm are outlined below.

First eligible line. In accordance with guidance from var-
ious sources, this approach includes patient records at
the first new line of therapy after meeting the eligibility
criteria for the intervention study. For a study using ret-
rospective electronic medical record data with passive
qualification of patients into the study, this will generally
lead to an overrepresentation of earlier lines of treat-
ment, whereas for a prospective study, this may not be
the case because of more intentional decisions on patient
qualification for the study, including number of treat-
ments failed. In the case of limited overlap in the number
of prior lines of therapy between groups, we anticipate
this approach to be statistically inefficient, although it
should be noted that it has been used previously.19,20

Last eligible line. This approach includes patient records
at their last eligible line of recorded therapy. This
approach has been used in empirical work,21 but con-
cerns have been raised about the selection bias that it
may induce in the external control group, since records
are selected with the knowledge that they are the last
lines of therapy received by patients and therefore more
likely to end with a poor outcome.7

Inclusion of all lines (cloning patients who have multiple
lines of treatment). This approach is discussed by

Hernán and Robins3 and involves setting the unit of
analysis to individual lines of treatment, rather than indi-
vidual patients, resulting in patients with multiple lines
being included multiple times in the analysis. Although
this approach is likely to increase statistical power, a
group-based robust variance estimator must be used to
estimate standard errors to address within-patient corre-
lation of outcomes (for example, response rates).

Inclusion of all lines but censoring survival after progres-
sion. This approach is a modification of the above
approach, whereby OS is censored at the point of pro-
gression between treatment lines. This modification
changes the estimand but avoids having deaths attributa-
ble to multiple treatment lines observed on the same
patient, an issue that superficially appears problematic.

Use of a random line of treatment. This approach is sug-
gested by Hernán and Robins,3 which involves randomly
selecting 1 line per patient in situations in which multiple
eligible lines are available. The target population will
reflect patients being treated in later lines than a ‘‘first
eligible line’’ approach. This approach was discussed at
length by Backenroth22 with published examples also
available.23,24

Rebalancing the external control arm to minimize the
mean absolute error in the number of prior lines of therapy
between data sets. This is a modification of the random
line approach, whereby 1 line is selected per patient but
with the objective of minimizing the difference in the
number of prior lines between the external control and
intervention data sets. This was implemented by taking
30 samples of random lines, calculating the mean abso-
lute error in the percentage of patients at each line
between the intervention and sampled external control
lines, then choosing the data set with the lowest value.

Rebalancing the external control arm to minimize the root
mean squared error in the number of prior lines of therapy
between data sets. This is a modification of the above
approach using root mean squared error (RMSE), which
penalizes large mismatches in line distribution more
harshly.

Using propensity score matching to identify the best match-
ing line for each treated patient (allowing patients to be
matched only once). Propensity scores are widely used in
medicine to control confounding. Here, the propensity
score is the probability that a given patient would be in

Step 1: 1 … 8 sampled from independent normal distribu�ons

Step 2: ∑ 1 … 8 used as inputs for Time To Progression (TTP) and 
Overall Survival (OS) equa�ons, with the minimum value 
used as the ‘event’ for Progression Free Survival

Step 3: If a pa�ent progressed (rather than died), decrease 
1 … 4, 7 according to values sampled from independent 

normal distribu�ons

Step 4: Repeat steps 1:3 un�l a pa�ent dies, or progresses on Line 
8 (at which point they are censored)

Where represents characteris�c for pa�ent 

Figure 2 Diagrammatical representation of the data-
generation process for patient outcomes.
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the trial versus the external control population. The pro-
pensity score is used to match eligible lines from the
external control data to the nearest treated patient line
using custom R code. The custom code uses a loop to
select the nearest score (from all patients and lines) to a
randomly selected treatment patient. After each match,
that control patient (and all of their unmatched lines) are
removed from the matchable pool, meaning each treated
patient received a 1:1 match, but no control patients were
matched more than once.

Each method was applied with and without the appli-
cation of standardized mortality ratio (SMR) propensity
score weighting.25 This was calculated using a propensity
score estimated from the 6 observable patient character-
istics and the line of therapy as covariates. SMR weights
were then applied whereby treated patients were given a
weight of 1, whereas weights for external control patients
were defined as the ratio of the estimated propensity
score to 1 minus the estimated propensity score.26 By
using SMR weighting, we explicitly targeted the effec-
tiveness of the intervention in the population represented
in the intervention study. This provided a common refer-
ence population for all analyses. The provision of both
unadjusted and adjusted results, however, does allow for
understanding whether the results of an accurate com-
parison are due to the method used for setting time zero.

Scenario Analyses

To ensure that the results of the study are generalizable,
a large number of scenario analyses was conducted,
which included varying the patient numbers, simulation
setup, outcomes observed, and the effect of subsequent
lines of therapy. The changes made in each scenario
analysis are presented in Table 2.

Outcomes Presented

The aim of the methods used is to retrieve the true inter-
vention effectiveness when presented with an external
control data set that has treatment lines biased toward
earlier lines of therapy, with correspondingly better
patient characteristics and outcomes. To do this, multi-
ple estimates of effectiveness were calculated including
the ratio of RMST at 3 y and a hazard ratio (HR) esti-
mated from a Cox model.

The RMST is particularly useful in the presence of
nonproportional hazards,27 whereas the Cox model is
frequently used in clinical studies. For each outcome, the
RMSE is presented, along with the bias, for which the
Monte Carlo standard error (MCSE) is also presented as
a measure of variance within the results. In addition, 2
further metrics are presented for the Cox model: the cov-
erage probability (the percentage of scenarios that con-
tain the true value) and the error at the 95th percentile

Table 1 Parameters Used for the Implementation of the Simulation Study

Parameter Base-Case Value

Number of patients sampled External control: 500
Intervention: 750

Starting line of therapy Control: Binomial probability= 1
3
, size= 6

� �
Intervention: Binomial probability= 2

3
, size= 6

� �
Patient characteristics (n = 8) at line 1 Both arms: Truncatednormal n= 8,mean= 140, s:d:= 20, lower = 100ð Þ
Change in patient characteristics each line Characteristics 1–3: normal mean=� 6, s:d:= 5,ð Þ

Characteristics 4–8: normal mean= 0, s:d:= 5,ð Þ
Deterioration applied by line Applied to characteristic 8 (unobserved): normal mean=� 9, s:d:= 5,ð Þ
Time to progression

Control: Exponential 3+ 1
4

P8
i= 1

xi

� �

Intervention: Exponential 3+ 1
2

P8
i= 1

xi

� �

Where xi is the vector of i characteristics for patient j
Overall survival

Control: Exponential 3+ 1
3

P8
i= 1

xi

� �

Intervention: Exponential 3+ 3
4

P8
i= 1

xi

� �

Where xi is the vector of i characteristics for patient j
Administrative censoring External control: 60 mo

Intervention: 37 mo

s.d., standard deviation.
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(as a measure of the likely maximum error). All results
are presented for both PFS and OS, before, and after
SMR weighting is applied.

Implementation and Software

To understand the performance of each method, a large
(n = 50,000) number of patients were simulated for each
data set (external control, intervention, and then the true

control) to understand the ‘‘true’’ results against which
simulations would be judged. In each run, a sample of
patients were then taken from the external control and
intervention data sets (1000 and 750 in the base case) to
which all methods of selecting time zero were applied.
This process was repeated 5000 times per scenario, in line
with the approach of Morris et al.28

All analyses were performed in R version 4.1.2.29

Table 2 Scenario Analyses and Resulting Findings

Number Scenario Setup Findings

1 Number of patients sampled doubled in both arms Results are consistent with the base case, although
errors and coverage probabilities improve for all
viable methods

2 Number of patients sampled halved in both arms Errors are generally increased; however, no method
appears disproportionately affected

3 Number of active patients halved Errors are generally increased; however, no method
appears disproportionately affected

4 Administrative censoring time halved to 18 mo No meaningful changes in results
5 Starting health of patients increased in both arms

(+12.5% at baseline)
No meaningful changes in results

6 Starting health of patients increased in the intervention
only; +12.5% at baseline

Due to the (biased) comparison, naı̈ve results are
generally worse; however, post-SMR results are
similar to the base case

7 More effective intervention; sampled times multiplied
by 1.25

Slight improvements in coverage probabilities

8 More effective control; sum of patient characteristics
multiplied by 1.25 before sampling

Slight increases in errors

9 Longer OS for both control and intervention, i.e., effect
of OS reduced; sum of patient characteristics divided
by 0.75 before sampling, i.e., a condition in which
death is less common

OS results more uncertain for all comparisons

10 Different survival model for all time-to-event outcomes;
Weibull with shape 1.25

No meaningful changes, estimates generally slightly
worse

11 Different survival model for the intervention time to
event estimates; Weibull with shape 1.25

Slight improvements in estimation of PFS, worsening
of OS, likely driven by fewer observed events

12 Disease with a low death rate simulated; risk of the
control set to that of the intervention, with sampled
overall survival time multiplied by 10

PFS estimates improved for all estimates

13 Effect of health loss by treatment line doubled Naı̈ve estimates more inaccurate, with no meaningful
changes after SMR weighting

14 Only 2 potential lines of treatment Errors reduced, first eligible line in particular
benefitting

15 Bigger imbalance between starting treatment lines;
probability increased from 2/3 to 9/10 for intervention

Relative worsening of naı̈ve errors, as well as post-
SMR weighting errors for first eligible line. Relative
improvements for random and rebalance approaches

16 No imbalance in treatment lines; control rate
probability set equal to that of the intervention (2/3)

Relative improvement of naı̈ve comparisons, and first
eligible line; more uncertain estimates of overall
survival differences

17 Intervention has no effect; all time to events set equal
to that of control

All viable methods demonstrating low levels of error,
with the bias present in last eligible line and all lines
with censoring clear

18 Unbiased comparison; all starting lines and
effectiveness calculations for the intervention set
equal to the control

All viable methods demonstrating low levels of error,
with the bias present in last eligible line particularly
apparent

OS, overall survival; PFS, progression-free survival; SMR, standardized mortality ratio.
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Results

Simulation and Base-Case Results

In the simulation, external control patients entered the
study at an earlier line of therapy than intervention
patients did, which created an inherent bias in patient
characteristics in favor of the control, thereby reducing
the observed benefit of the intervention. This is shown
visually in the panels included in Figure 3 for PFS and
OS across all methods for run 5000 of the base case, with
base-case results provided in Table 3. Looking at PFS
outcomes without the application of SMR weighting
demonstrates substantial bias for all methods except for
the use of propensity scoring to match similar patients.
This underlines that statistical methods to account for
confounding are required, regardless of the approach
taken toward defining time zero.

Although the application of SMR weighting improved
estimates, with most demonstrating good performance, it
is immediately apparent that 2 methods, last eligible line
and all lines (censoring) are biased: last eligible line in all
outcomes and all lines (censoring) in OS outcomes. This
finding was consistent in all simulations and scenario
analyses, and thus renders these methods as nonviable.
Given their poor performance and bias, the results of
these 2 methods in simulations are not discussed further.

In terms of the remaining methods, the larger bias in
the unweighted first eligible line approach was largely
ameliorated by the application of SMR weighting.
Although there were differences in the point estimates of
the mean error and bias that exceeded that of the MCSE
(i.e., differences beyond that seen in variability between
samples), these differences did not appear meaningful
between methods, given the simulated nature of the data.
For example, when estimating PFS with the application
of SMR weights, the bias in the Cox HR ranged from
0.005 to 0.013 across all methods, with the coverage
probability of being 94.1% to 96.0%.

Although these findings of similarity between meth-
ods hold for both PFS and OS, there are differences that
should be discussed, namely, that the first eligible line
shows the potential for higher levels of error, as shown
by its 95th percentile error being the highest of all viable
methods for both PFS and OS. The other finding worth
noting would be that the coverage probability for OS is
notably lower for most methods. This is likely as a result
of fewer observed events but should be considered.

Scenario Analysis Results

Scenario analysis setups and main findings are presented
in Table 2, with distributions of the error in the ratio of

RMST for OS presented in Figure 4. Full tabulated
results are available as supplementary material. The
results show that as patient numbers are varied in sce-
nario analyses (scenarios 1–3), similar results are seen to
those of the base case. As would be expected, simula-
tions with increased patient numbers perform better
but without any method deviating from this pattern.
This is similar with a shorter follow-up time (scenario
4), where differences are seen due to less data being
available, but no method appeared better (or worse)
under such circumstances.

Changing the setup of the simulation study regarding
patient characteristics (scenarios 5 and 6) and the rela-
tionship between characteristics and outcomes (scenarios
7–11) again resulted in differences in the magnitude of
findings, without affecting the findings themselves. Nota-
bly, all viable methods were able to account for bias in
observed patient characteristics (scenario 6) after the
application of SMR weighting. Findings were also not
dependent on the survival modeling approach, with Wei-
bull models used in scenarios 10 and 11 not affecting the
results.

Changing the simulation to accommodate different
types of disease (scenarios 12–14) resulted in only minor
changes to results. Scenario 12 was designed to mimic a
disease having little/no mortality impact allowing all
methods still to be used for estimation of PFS. Similarly,
scenarios 13 and 14 explored the impact of treatment
lines, with the main finding being that with only 2 lines,
first eligible line generally improved, whereas with a large
gap between overlapping treatment lines, first eligible
line performed poorly, with relative gains for methods
than explicitly aim to rebalance.

Structural tests of methods were performed in scenar-
ios 16–18 and demonstrated methods to be unbiased.
These tests included no difference in treatment lines in
scenario 16, an inert intervention in scenario 17, and a
fully unbiased scenario in scenario 18. Overall, these
scenarios demonstrated that after SMR weighting, treat-
ment effects (or the lack thereof) were correctly identi-
fied, without bias being introduced that might lead to
type I errors (failing to reject the null hypothesis).

Discussion

Main Findings

This simulation study explored several approaches for
selecting time zero when comparing a single-arm trial to
an external control cohort with an imbalance in the num-
ber of prior therapies between data sets. The number of
prior therapies could predict both prognosis and the

Hatswell et al. 899



severity of covariates that deteriorate over time, which
makes appropriate balance of this variable between
cohorts essential when conducting comparative effective-
ness studies.

Our main findings demonstrate that several methods
for generating estimates in time-to-event outcomes have
similar (low) levels of bias and precision, with limited evi-
dence for a single superior approach. However, both

Figure 3 Example of each method applied to a single run of the simulation for progression-free survival and overall survival,
with and without standardized mortality ratio weighting.
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approaches of last eligible line and the selection of all
lines with censoring of OS on progression resulted in dis-
tributions of estimates that substantially deviated from
our target. A key finding was that application of SMR
weighting was essential in supporting the methods used
for the selection of time zero, which highlights the impor-
tance of this additional consideration, namely, the use of
a method to balance between groups. Following this
step, multiple choices of selecting time zero could be sup-
ported, which would otherwise not be the case.

In making a selection between these methods, exten-
sive scenario analyses indicate that the first eligible line
approach may be suitable only in situations in which the
external control and intervention data sets are similar or
the sample sizes are large or similarly matched, due to
lower statistical efficiency. Using multiple records per
patient, in which death could be attributed to multiple
treatment lines in the same patient, did not result in bias,
and indeed frequently produced numerically superior
estimates. Selecting a single random eligible line for the
external control cohort also compared well with no clear
bias or inaccuracy. This finding was consistent regardless
of whether this process was repeated to minimize mean
absolute error (MAE)/mean squared error (MSE) or per-
formed only once. Nevertheless, repeated random sam-
pling to minimize MAE/MSE may offer a degree of
reassurance against a ‘‘bad draw’’ in the selection of a
single random line, as can be seen in the values of 95th
percentile of error. That multiple methods showed simi-
lar outcomes means that a case could be made depending
on the context in which they are to be used. This includes
the broader considerations of ease of explanation, per-
ceived differences between studies, or compatibility with
other methods that are also required for analysis (such
as multiple imputation). The contribution of this study is
therefore to present the methods that we know to be
available and to identify those that should be seen as an
option set from which the analyst may select. We do this
based not only on theoretical advantages but also simu-
lated data.

The bias that we found in the last eligible line
approach is in agreement with the results of Suissa,7 who
found inflated mortality rates in the control group in
such a design, suggesting strong selection bias. When we
censored OS on disease progression, we observed esti-
mates that deviated substantially from our benchmark.
By artificially censoring patients on progression, we
essentially changed the target of estimation. In this anal-
ysis, follow-up continues only on patients who have not
progressed, and they are increasingly up-weighted over
time to stand in for the patients who have progressed. As
such, we were implicitly estimating the effectiveness of

the intervention in a population for which progression
could not occur; by artificially censoring patients on pro-
gression, we likely introduce bias from dependent censor-
ing, because those who progress are different from those
who do not. This estimator is also not of clinical rele-
vance because progression cannot be universally pre-
vented. An alternative approach would be to treat
progression as a competing event, which would estimate
the effectiveness of the intervention on death before pro-
gression. Where this issue did not occur was in scenario
12, in which survival was exogenous to the disease pro-
cess, as might be seen in conditions such as migraine,
psoriasis, and constipation. In this case, the censoring
was not linked to outcome, with the method performing
similarly to others. As we seldom fully understand dis-
ease processes, however, we would still recommend cau-
tion if suggesting this approach.

Limitations

The findings of the study were robust to extensive sce-
nario analyses that were conducted varying parameters
individually and jointly around the themes of differences
in simulation setup, type of survival model used for
simulation, and degree of bias (including no bias), in
comparisons. A limitation, however, remains that there
are further scenarios (and potentially even methods) that
could be included. There are also many different deci-
sions that could have been (legitimately) made regarding
the setup of the study that may have affected the find-
ings. The simulation has also revolved mainly around
oncology products, whereas the methods available have
wider applicability. Other simulation setups for different
settings may therefore also be valuable.

The main limitation of the work, however, is the reli-
ance on simulated data. Although unavoidable (in a need
to have a known ‘‘truth’’ to compare against), this does
mean that we would caution against overinterpretation
of absolute results, for example, concluding one method
to be superior due to lower RMSE, or bias—as it is
entirely possible these small differences are an artifact of
the simulation process. For these reasons, we would
encourage further work, ideally in real data sets such as
large randomized controlled trials from which samples
could be taken and the methods compared.

Conclusions

Given the results of the simulation presented, analysts
may wish to consider a variety of factors (including avail-
able sample size and degree of imbalance) in choosing an
appropriate method for selecting time zero in external
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cohorts. We would suggest that these include interpret-
ability (where random line is perhaps the easiest to
understand and propensity score matching or including
all lines the most complex), statistical power, and intero-
perability with other techniques that may be required.

Beyond which method is used to set time zero, further
justification should also be provided for any individual
analysis, including (but not limited to) a demonstration
of why each characteristic is selected for balancing, the
degree of overlap between studies, histograms of weights,
and effective sample sizes.

Ultimately, this study highlights a subset of methodol-
ogies with acceptable bias in the estimation of time-to-
event outcomes that may be used for the selection of time
zero in external control cohorts.
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