
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Roger Villanueva,
Institute of Marine Sciences, (CSIC),
Spain

REVIEWED BY

Jaruwat Nabhitabhata,
Prince of Songkla University, Thailand
Catalina Perales-Raya,
Centro Oceanográfico de Canarias
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Cephalopod research remains limited by the inability to culture species under

laboratory conditions for multiple generations to provide continuous access to

animals at all stages of the life cycle. Here, we describe a multi-generational

laboratory culture system for two emerging cephalopod models: the

hummingbird or Berry’s bobtail squid, Euprymna berryi Sasaki, 1929, and

Morse’s bobtail squid, Euprymna morsei Verrill, 1881, which are primarily

found off mainland Japan. E. berryi wild adults were spawned and raised to

the third filial generation, and E. morseiwild adults were spawned and raised to

the second filial generation in a closed system at 20°C. We report growth and

survivorship data for a cohort of 30 individuals across the first generation raised

in captivity. E. berryi and E. morsei grew exponentially during the first 90 and 60

days post-hatching, respectively. Survivorship at the first spawning event for E.

berryi and E. morseiwas 90% and 77%. E. berryi and E. morsei females spawned

after days 112 and 71 days post-hatching, respectively. We describe the life

history of each species and how to distinguish sexes. We discuss the challenges

of cephalopod culture and how culturing these species address

those problems.
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Introduction

Cephalopods are widely recognized as the most behaviorally

complex invertebrates, attracting attention in the fields of

neuroscience, development, and evolution (O’Brien et al.,

2018). They have unique characteristics, including adaptive

camouflage (Chiao et al., 2015), efficient motor control relative

to other mollusks (Levy et al., 2017), and high levels of RNA

editing (Liscovitch-Brauer et al., 2017) and transposon activity

(Albertin et al., 2015). Furthermore, their capacity to perform

complex tasks resembling that of some vertebrate species

promoted their inclusion in European Union legislation for

animal experimentation and welfare under Directive 2010/63/

EU at the same level as vertebrate organisms (European

Parliament and Council of the European Union, 2010; Sykes

et al., 2012; Smith et al., 2013; Fiorito et al., 2015).

The study of cephalopod development and evolution is a

growing area of research that has led to increasing demand for

embryos and animals at all stages of their life cycle (Lee et al.,

2003; Peyer et al., 2014; Koenig et al., 2016; Navet et al., 2017;

Tarazona et al., 2019). While for many purposes wild-caught

animals can be studied, and hatchings raised to juvenile or later
Frontiers in Marine Science 02
stages in the laboratory, multigenerational cultures have only

been initiated for some cephalopods including octopus (Iglesias

et al., 2004; Rosas et al., 2014; Vidal et al., 2014; Maldonado et al.,

2019; Grearson et al., 2021), sepioids (Minton et al., 2001; Walsh

et al., 2002; Nabhitabhata, 2014), sepiolids (Boletzky et al., 1971;

Nabhitabhata et al., 2005; Jones and Richardson, 2010;

Nabhitabhata and Nishiguchi, 2014; Sanchez et al., 2019), and

the myopsid squid Sepioteuthis lessoniana (Forsythe et al., 1994).

Large-scale multigenerational cephalopod culture systems are

not only a necessity for forward genetics but is also desirable for

targeted approaches like CRISPR-Cas genome editing (Jinek

et al., 2012; Doudna and Charpentier, 2014). In cephalopods,

gene knockouts by genome editing have been accomplished in

the progeny of wild-caught Doryteuthis pealeii (Crawford et al.,

2020). Multigenerational cultures will thus help to move forward

the field of development and evolution on cephalopods.

In general, each cephalopod species has unique biological

characteristics, morphology, and lifestyle that determine which

phenomena can be readily studied, as well as disadvantages in

terms of difficulty of culture conditions and difficulty of

maintenance (Figure 1). For example, cephalopods generally

have a high metabolism and food conversion rate but limited fat
FIGURE 1

Advantageous Culture Traits of Several Cephalopod Models. Comparison of cephalopod species previously used in laboratory experiments.
“Lifecycle closed” refers to a species being cultured across at least one generation. An animal is considered capable of group rearing if minimal
aggression and cannibalism is observed, and the stress of group rearing prevents successful culturing efforts. “Multiple spawner” indicates
normal multiple spawning events completed by one female. “Precocious offspring” refers to hatchling behaviors similar to adults (including
predation). “Small at maturity” refers to an animal with a dorsal mantle length less than 6 cm. Some cephalopod species have evolved a light
organ that is bioluminescent. The tree is based on results published by Anderson and Lindgren (2020).
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reserves, requiring frequent feeding (Iglesias et al., 2014; Vidal

et al., 2014). Physically larger species such as Sepia officinalis,

Sepioteuthis lessoniana, and Octopus vulgaris therefore require

correspondingly large aquaria and amounts of food which

rapidly become impractical for many laboratory budgets

without dedicated marine facilities. Furthermore, most

cephalopods are active visual hunters that prefer live prey,

which can be costly and labor intensive to provide (Villanueva

et al., 2017). Moreover, many cephalopods have evolved different

ranges of sociality, with most of the octopus species being

solitary and many squids performing group-like behaviors

(Sugimoto et al., 2013; Iglesias et al., 2014). Some species may

even practice cannibalism (Ibáñez and Keyl, 2010), preventing

the culture of more than single animals per tank. Cephalopods

that are relatively small at maturity, avoid cannibalism, and are

not entirely solitary therefore have advantages for small-scale

laboratory culture.

Reproductive (Rocha et al., 2001) and life history traits,

including early mode of life (Boyle, 2005; Villanueva et al., 2016),

vary among cephalopod species. For most cephalopods, the diet

during their early life in their natural habitats is still unknown,

limiting the selection of suitable prey to raise them. Some

cephalopods lay only very few eggs, e.g., Eumandya parva

(Sanchez et al., 2019), and others can produce hundreds or

thousands of immature planktonic paralarvae with high

mortality, e.g., Octopus vulgaris (Villanueva, 1995), and whose

size is too tiny to feed with standard prey in laboratory settings.

Bobtail squid from the subfamily Sepiolinae, i.e., sepiolida

clade (Anderson and Lindgren, 2020), are a group of nocturnal

cephalopods with relatively small size, correspondingly limited

nutritional requirements, short life span, benthopelagic early

mode of life, and ability to live at high densities without

cannibalism. Female bobtail squid can also mate several times

with different males and store spermatangia for around two

months for future spawning (Squires et al., 2013; Drerup et al.,

2020). These characteristics make them suitable for laboratory

culture and a potential model organism for developmental,

physiological, behavioral, and genetic assays. Their small size

is also ideal for advanced imaging (Kerbl et al., 2013).

Thanks to the pioneering efforts of McFall-Ngai and Ruby

(Boettcher and Ruby, 1990; Montgomery and McFall-Ngai,

1994; Boettcher et al., 1996; Ruby, 1996; Ruby and Lee, 1998;

McFall-Ngai, 1999), the Hawaiian bobtail squid Euprymna

scolopes Berry 1913 has been widely adopted as a model for

bacterial-metazoan symbiosis in which luminescent Allivibrio

fischeri colonize the light organ of these and related species

(Boettcher et al., 1996; McFall-Ngai, 1999; McFall-Ngai, 2014).

These efforts fostered studies of bobtail squid diversity (Jones

et al., 2006) and development (Lee et al., 2003) both

morphologically (Lee et al., 2009b) and at the molecular level

(Callaerts et al., 2002; Hartmann et al., 2003; Lee et al., 2003;

Sanchez et al., 2021). The genome of E. scolopes (Belcaid et al.,
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2019) has become a reference to study other species in the

Euprymna clade (Heath-Heckman and Nishiguchi, 2021;

Schmidbaur et al., 2022). Many bobtail squid have also been

investigated in studies of associative learning, behavior, and the

heritability of personality and fitness traits (Steer et al., 2004;

Sinn and Moltschaniwskyj, 2005; Sinn et al., 2006; Sinn et al.,

2008; Zepeda et al., 2017). Despite these advantages, a

disadvantage of E. scolopes for multigenerational culture is the

high mortality of its larval stage (Lee et al., 2009b).

Two species of bobtail squid that are abundant in mainland

Japanese waters have the potential to become laboratory models:

the hummingbird or Berry’s bobtail Euprymna berryi Sasaki,

1929, and Morse’s bobtail Euprymna morsei Verrill, 1881

(Figures 2A–G). The distribution of these sympatric species

extends from Japanese waters southward along the coast of

China and westward into the Indian Ocean (Raj and Kalyani,

1971; Okutani and Horita, 1987; Reid and Jereb, 2005; Sundaram

and Sreeram, 2008). The spawning season for E. berryi is late

April to July in Aichi, Japan (Choe, 1966a), and March and

December in Taiwan (Huang, 2006). Adults of E. berryi have

been found from April to June in the southern and the Pacific

Ocean side of mainland Japan swimming near the water surface

at night, while adults have been found as deep as 60 m on the

Pacific side of mainland Japan. In a trawl survey off Nobeoka Bay

in Miyazaki prefecture, Toriyama et al. found a relatively similar

amount of E. morsei across the year with the highest catch from

April to June and the lowest from January to March (Toriyama

et al., 1970). However, some trawl surveys could have confused

both species due to their very similar morphology. Although

most fishermen do not discriminate between the two species,

they are distinguished by several morphological differences as

well as molecular markers (Sanchez et al., 2019). E. morsei

(mantle length ≤ 4 cm) is considerably smaller than E. berryi

(mantle length ≤ 5cm) (Reid and Jereb, 2005). E. morsei males

have enlarged suckers on the ventral sucker rows of arms II, III,

and IV, whereas E. berryi have enlarged suckers on both dorsal

and ventral sucker rows of arms II and IV (Okutani and Horita,

1987; Norman and Lu, 1997). E. morsei have chromatophores on

the dorsal surface of the fins, while E. berryi have

chromatophores on both dorsal and ventral surfaces (Okutani

and Horita, 1987). Finally, the tentacular suckers in E. morsei

have a cylindrical shape but in E. berryi resemble a smoking pipe

(Okutani and Horita, 1987; Reid and Jereb, 2005; Huang, 2006).

Several previous studies described culturing attempts of E.

berryi, E. morsei, and other members of the genus Euprymna

(Supplementary Table 1). E. berryi was reared for two months

(Choe, 1966a), and E. morsei was raised to reproductive maturity

(Ikeda et al., 2003). Euprymna scolopes was successfully raised to

the second generation (Hanlon et al., 1997). Several species of

Sepiola and Euprymna have been cultured to the second

generation (Boletzky et al., 1971; Jones and Richardson, 2010;

Sanchez et al., 2019). Further, Euprymna tasmanica and
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Euprymna hyllebergi have been cultured to the third generation

(Nabhitabhata et al., 2005; Nabhitabhata and Nishiguchi, 2014).

Here we report our efforts to develop multigenerational

cultures of E. berryi and E. morsei. We closed the lifecycle of

both species in a recirculating aquaculture system and measured
Frontiers in Marine Science 04
growth and survivorship for thirty individuals of each species

under the same aquarium conditions. This work, along with the

development of genomic resources for E. berryi (Gavriouchkina

et al., 2022), provides a foundation for the future development of

E. berryi and E. morsei as laboratory model organisms.
A B

D E

F G

C

FIGURE 2

E berryi and E morsei at different life stages. (A) Egg clutches of E berryi (left) and E morsei (right). Scale bar is 5 cm. (B) E berryi at one day post-
hatching (dph). Scale bar is 1 mm. (C) E morsei at one dph. Scale bar is 1mm. (D) Mature E berryi at 130 dph. Scale bar is 1 cm. (E) Mature E
morsei at 70 dph. Scale bar is 1 cm. (F) E berryi mating. The male (on the right) grasps the female from the ventral side to engage mating. (G) E
morsei mating. The smaller male on the right grasps the female from the ventral side to engage mating.
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Materials and methods

Broodstock collection

Both E. berryi and E. morsei were obtained from vendors or

from wild collections in southern mainland Japan. Adults are

available from vendors seasonally. Adults survived long-distance

shipping with commercial couriers using oxygen-saturated

seawater and styrofoam-insulated packaging. Adult females of

E. berryi and E. morsei were collected fromMie prefecture, Japan

from February to June with a set net, and transported using

overnight shipping services. Animals were individually packed

in 15 L round-bottom transparent 3 mm plastic bags containing

5-7 L of oxygen saturated filtered seawater with excess volume

filled with pure oxygen and shipped in expanded polystyrene

foam boxes similar to E. scolopes (Hanlon et al., 1997; Cecere and

Miyashiro, 2022). Transit time until arrival in the lab was less

than 48 h. Upon arriving in Okinawa, animals were acclimated

to the temperature (20°C or 23°C) and salinity (~35 gL -1 i.e.,

parts per thousand) of our culture system. Adults from each

species were housed separately. Upon spawning, eggs were

removed to two-liter tanks like previous methods (Sanchez

et al., 2019). Recently spawned eggs – within the first ten days

post spawning - were shipped internationally within 72 h using

similar methods to shipping adults apart from using 5 L bags

containing 1.5-2 L oxygen saturated filtered seawater. To prevent

widespread fouling, eggs were monitored on a daily basis and

nonviable eggs removed. Hatchlings were housed in two liter

tanks for approximately the first month after hatching.
Culture system

The tank system assembled for culturing bobtail squids is a

closed tank system that consists of a 200 L filter tank, five 70 L tanks

(60 cm x 35 cm x 35 cm), five 2 L tanks (20 cm x 13 cm x 13 cm),

two protein skimmers, an ultraviolet sterilizer, and contains filtered

natural seawater from the OIST Seragaki Marine Science Station

(Supplementary Figure 1). Flow rate for larger tanks is 4.5 to 5 L

min-1, and 160 to 180 ml min-1 for smaller tanks. Cleaning and

partial exchange of 10% seawater are performed daily, and larger

50% water changes are performed biweekly. Water temperature

from 2017 to February 2018 was maintained at 23°C with a chiller

and heater and thereafter maintained at 20°C. All measurements

were taken from animals kept at 20°C. The following water

parameters were maintained between the ranges and monitored

daily: salinity - 33 to 37 gL-1, pH - 8.2 to 8.4. The following

parameters were measured at least weekly nitrate - 0 to 20 mg L-1,

i.e., parts per million (ppm), nitrite - 0 to 0.5 mg L-1 (ppm),

ammonia (NH3/NH4) - 0 to 0.25 mg L-1 (ppm).

Artificial plants, coral rubble, and PVC pieces were added to

tanks to provide egg laying substrate and refuge. Beach sand
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autoclaved and rinsed in reverse osmosis-treated water before

introducing into aquaria. Enough substrate was given to allow

the animals to bury completely. Without any burying substrate,

skin lesions can form on the ventral side of the animal from

friction with the aquarium floor. Aquaria were spot cleaned daily

with siphons. The use of coarse sand collected from beaches or

from vendors is adequate to allow the animal refuge while

remaining easy to siphon.

Blue light-emitting diodes (450 nm wavelength) were used to

create twelve hour light-twelve hour dark diurnal cycles in the

laboratory. The photoperiod was shifted similarly to previous

methods (Franklin et al., 2014) so “night” begins at noon local

time to facilitate feeding and experimentation. We used red

light-emitting diodes (665 nm) to observe and feed animals

during “night” when they were most active.
Feeding and maintenance conditions

Animals were fed ad libitum, with new shrimp added once

daily. From hatching to 40 dph (days post-hatching), both

species were fed mysids (Neomysis spp.). Mysids were

maintained in a separate tank and fed Artemia sp. nauplii

once a day prior to being fed to hatchlings. After 40 dph, both

species were fed glass shrimp (Palamonetes spp.), and the

freshwater marsh shrimp-Caridina spp.

Both species were also trained to consume cut frozen shrimp

(e.g., black tiger prawn) upon reaching maturity.

Frozen shrimp were thawed and cut before presenting to a

squid with forceps and moved to simulate living prey. Afterward,

contact was made between frozen food and the inner portion of

the squid’s arms until the squid either showed signs of stress or

voluntarily grasped the frozen food (Supplementary Video 1).

After approximately one week of continuous training, squids

could attack falling frozen food spontaneously.

In ongoing culture we provide adequate space, refugia, and

burying substrate to minimize stress. Adults are kept in a ratio at

or greater than 1:1 males to females. Our heuristic for

determining appropriate space is to ensure each animal has at

least two mantle lengths distance between animals. For our tank

dimensions (approximately 70 L, 60 cm x 35 cm x 35 cm and

water height of 31 cm), we do not exceed eight fully mature E.

berryi individuals per tank (eight squids per 2,100 cm2
floor area,

65,100 cm3 water volume). Assuming a maximum potential

mantle length of 6 cm at maturity (Okutani and Horita, 1987),

each animal is therefore given a cube of water that is 12 cm on

each side, equivalent to 1700 cm3. E. morsei reaches a smaller

size at maturity, with a dorsal mantle length (DML) less than 4

cm (Okutani and Horita, 1987; Reid and Jereb, 2005), and

therefore can be kept at higher densities than E. berryi. To

avoid reproductive attempts and aggression from males, females

can be separated from males after mating. We have not observed
frontiersin.org
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any overt changes in behavior when adults of either species

are isolated.
Survivorship and growth rate

Thirty F1 hatchlings of E. berryi and E. morsei were isolated

on the first day after hatching and reared to monitor their

survivorship and growth rate. To measure growth rate, wet

weight (WW, g) and DML (mm) were measured in five

randomly selected individuals approximately every 10 d to

maturity to prevent additional stress due to handling. We

measured only five individuals each to minimize handling

stress on the cohorts. Squid were placed in a transparent

reservoir containing aquarium water atop graph paper and

imaged using an Olympus TG-5 camera. The FIJI variant of

ImageJ (Schindelin et al., 2012) was used for image calibration

and DML measurement. All data is expressed as Mean ± SD.

Survivorship was calculated (Leverich and Levin, 1979) as the

percentage of surviving individuals, I(t) by:

I(t) = 100
Ns(t)
No

� �

Where Ns(t) is the number of survivors at time t and No is

the initial cohort size.

At 115 dph, eleven E. berryi were removed from the study

due to lack of space and prey items, and Nowas then adjusted

from 30 to 19 for E. berryi. All 27 surviving E. berryi were first

removed from the aquaria, then eight of each males and females

were selected and placed back in the aquaria. The animals

selected were the first animals to be collected. The other 11 E.

berryi were removed and euthanized via overdose to the

anesthetic ethanol (Abbo et al., 2021). Animals were immersed

in a bath of 1% ethanol in filtered seawater. Over a period of

thirty minutes, ethanol was gradually introduced until reaching a

final concentration of 5% followed by mechanical destruction of

the brain (Fiorito et al., 2015; Abbo et al., 2021).
Observations

Behavioral observations of E. berryi were made visually from

March 2017 to May 2020. E. morsei observations were from

March 2018 to May 2020. Both species were cultured during that

time for other experiments.
Results

Culture

We cultured E. berryi and E. morsei under conditions similar

to those used for other bobtail squid (Hanlon et al., 1997;
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Nabhitabhata et al., 2005; Jones and Richardson, 2010;

Sanchez et al., 2019) (Methods). We spawned wild-caught

adults of both species and cultured E. berryi to the third filial

generation and E. morsei to the second filial generation. Growth

rate and survivorship were tracked for the first filial

generation (Figure 3).
Egg masses

Both E. berryi and E. morsei were collected during the

Japanese spring season and we observed mating and spawning

of wild-caught adults in the laboratory. We shipped recently

spawned eggs internationally and they hatched and were raised

without overt abnormalities. Both species laid a large number of

eggs per clutch, usually exceeding 200 eggs for E. berryi and 100

eggs for E. morsei (Figure 2A). Wild-caught E. berryi laid an

average of 235 ± 75.8 eggs per clutch (n=7), while wild-caught E.

morsei laid 153 ± 26.5 eggs per clutch (n=4). Eggs are

encapsulated within a jelly coat and laid individually in a

clutch. The jelly coat of eggs of both species have an orange

tint due to a dye secreted by the maternal accessory nidamental

gland. Non-viable eggs have an opaque white appearance.

The period between spawning events for wild E. berryi at

20°C was 6.7 ± 2.7 d (n=18) and was not recorded for E. morsei.

Both species demonstrated intermittent terminal spawning and

spawned separate clutches continually once reaching sexual

maturity (Figure 3A). On one occasion one isolated wild-

caught female E berryi laid 9 fertilized clutches over a period

of 59 d without any additional mating in the laboratory

(presumably using stored spermatangia). E. berryi was

observed to live longer in captivity after capture than E. morsei

and benefited from more spawning events. E. berryi has higher

survivorship and fecundity than E. morsei (Figure 3).

We observed no physical or behavioral abnormalities in

sequential generations; however, survivorship of later

generations of E. berryi and E. morsei immediately after

hatching was noticeably reduced for some clutches. On some

occasions, we observed eggs laid outside of the jelly coat and

some clutches with many unfertilized eggs.
Growth

Growth of E. berryi and E. morsei, measured by WW or DML,

was approximately exponential for the first 90 and 60 dph (Table 1)

before reaching species-specific plateaus by 80 and 140 dph,

respectively (Figures 3B, C).

We observed a large range of both DML andWWat later stages

inbothE. berryi andE.morsei (Figures 3B,C).AverageE. berryiWW

andDMLwere 17.32±3.82 g and32.14± 4.90mmformales (n=16),

and 23.06 ± 4.90 g and 36.26 ± 3.67mm for females (n=14). Average

E.morseiWWandDMLwere 1.41 ± 0.15 g and 11.45 ± 1.24mm for
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males (n=6), and3.70±0.42gand18.95±2.20mmfor females (n=6).

The average female E. berryi weighed 1.33 times larger than males

and were 1.13 times longer. The average female E. morsei weighed

2.63 times larger than males and were 1.65 times longer.
Survivorship

Survivorship was 93% for E. berryi and 80% for E. morsei for

the first 30 days after hatching (Figure 3A). Survivorship was

stable until shortly after spawning began. Thereafter,
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survivorship declined steadily from ~101 dph in E. morsei and

~148 dph in E. berryi. The oldest E. berryi and E. morsei in our

laboratory culture were males and lived 265 dph and 169 dph,

respectively. E. berryi outlived E. morsei and took longer to reach

spawning age by 42 dph.
Mating and spawning

Sexual maturity was noted when males became aggressive

towards conspecifics. No courtship behavior was observed in
A

B

D

C

FIGURE 3

Survivorship, growth rate, and developmental timelines for E berryi and E morsei. (A) Survivorship for each species. For each species, initial
population size was 30 individuals. The asterisk (*) represents an artificial reduction in total population size for E berryi from 30 to 19 individuals
due to limited tank space. Arrows indicate the first spawning event for each species. (B) Growth rate comparing wet weight (g) to dph on semi-
log scale. (C) Growth rate comparing dorsal mantle length (mm) to age on semi-log scale. (D) Comparison of the lifecycle and time between
developmental landmarks of both E berryi and E morsei.
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either species. Aggression appeared similar to mating, i.e., a male

would assault, grapple, and possibly bite a conspecific. At 20°C

this was first observed at 90 dph in E. berryi and 70 dph in E.

morsei. During mating the female is first attacked by the male

and the male attempts to grab the ventral head of the female, i.e.,

the male-to-female neck position. The male maintains control of

the female and inserts the hectocotylus holding spermatophores

into the mantle of the female (Figures 2F, G).

Spawning events began shortly after the night cycle began.

Females spawned on the substrate provided including the tank

walls, PVC pipes, rocks, and on imitation plants. As described

above, for both species, the female laid each egg individually as

part of a large clutch (Supplementary Video 2). Spawning began

at night and continued into the day. Females have been observed

laying eggs cooperatively on the same substrate simultaneously.

Females typically consumed less prey one day before spawning.

Females repeatedly laid egg clutches every few days until

reaching a late senescent life stage (Figure 3A). Some

individuals spawned within three days of shipment. Mature E.

berryi females were observed spawning fertilized clutches

repeatedly over a period of 100 days at 20°C. No parental care

was observed in either species. Egg clutch morphology was

different for both species. E. morsei eggs were more densely

packed in a clutch, whereas E. berryi eggs were more spaced

out (Figure 2A).
Sexual dimorphism

Sexual dimorphism was visually evident at 100 dph for

E. berryi and 70 dph for E. morsei. The sex of the animal can

be determined by its side profile, size, suckers, and the

morphology of the first left-arm (Supplementary Figure 2).

Males are smaller than females for both species. The size

difference is more pronounced in E. morsei than E. berryi. The

side mantle profile in males is sharper in males than in females

(Supplementary Figures 2A, B). Fully mature females generally

have a bulbous mantle, because of the presence of oocytes in

their ovaries, and can be distinguished from males visually in a

minimally invasive manner. Males of both species can further be

distinguished from females by observing the first arm pair

(Supplementary Figure 2C). Males have a modified first left
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opposing arm and curls slightly outward. Males of both

species have large suckers on some rows of certain arms and

modified suckers on the hectocotylus (Supplementary

Figure 2D), whose patterns can be used to discriminate species

of Euprymna (Norman and Lu, 1997). Females have uniform

sucker sizes. Female first arms and suckers (Supplementary

Figure 2E) are indistinguishable from one another (Norman

and Lu, 1997).
Senescence

Males of both species generally outlived females and

displayed similar signs of senescence. Characteristics of early

senescence include nonfunctional and faded chromatophores,

greater susceptibility to infections, and loss of appetite. Signs of

later stages of senescence include complete cessation of eating

and burying, loss of equi l ibr ium, and continuous

labored ventilation.
Discussion

Two promising cephalopod model
organisms

The utility and prominence of E. scolopes as a model

cephalopod species was discussed by Lee et al. (2009c) who

also suggested that, as genomic information becomes available

for different cephalopod species, the availability of broodstock

and embryos becomes a primary factor in choosing a model

system. Here we have explored the culturing of two related

Japanese bobtail squid species, E. berryi Sasaki, 1929, and E.

morsei Verrill, 1881. We find that E. berryi and E. morsei have

comparable life cycles in captivity to E. scolopes (Hanlon et al.,

1997), E. hyllebergi (Nabhitabhata et al., 2005), E. tasmanica

(Nabhitabhata and Nishiguchi, 2014), E. parva, and E. brenneri

(Sanchez et al., 2019) (Table 2). Both E. berryi and E. morsei can

be raised in laboratory settings and are intermittent terminal

spawners, spawning repeatedly once reaching sexual maturity

(Figure 3A). They are therefore well-suited for evo-devo studies,
TABLE 1 Exponential growth curve equations for E. berryi 0-90 days post hatching (dph) and E. morsei 0-60 dph.

Exponential growth curve from 0 to 90 dph a T R2

E. berryi WW (g) = a ed/T 0.015 g 14.8 d 0.984

E. berryi DML (mm) = a ed/T 2.31 mm 42.6 d 0.977

Exponential growth curve from 0 to 60 dph

E. morsei WW (g) = a ed/T 0.0054 g 10.85 d 0.985

E. morsei DML (mm) = a ed/T 1.70 mm 33.2 d 0.991
frontiersi
a is the growth parameter either wet weight (WW, g) or dorsal mantle length (DML, mm), T is time (d), R2 is the coeffient of determination.
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physiological assays, behavioral assays, laboratory culture, and

have the potential to be used for gene editing (Crawford et al.,

2020). E. berryi has higher survivorship and fecundity than what

is reported for other sepiolids including E. morsei, E. scolopes

(Hanlon et al., 1997), and S. atlantica (Jones and Richardson,

2010). These characteristics are crucial for establishing genetic

lines with mutations that potentially decrease fitness.
Broodstock

Adult wild E. berryi and E. morsei can both be shipped using

commercial couriers from their native range in southern

mainland, with oxygen-saturated seawater and styrofoam-

insulated packaging as described for E. scolopes (Cecere and

Miyashiro, 2022), and acclimate well to aquarium conditions. E.

berryi and E. morsei are usually caught using a set net round 30m

deep, although both species have been collected with dip nets at

night near the surface. E. berryi is also caught from the shore by

recreational fishermen, and by commercial fishermen by

trawling for sale to fish markets. An existing commercial

fishery is potentially useful to obtain large numbers of

specimens either living, for seeding propagation in captivity or

studying behavior, or dead animals for morphological

comparisons, isotope analysis, and population genetics.

Because E. morsei is a relatively smaller cephalopod, this

species is less familiar to the fishing community, which

hinders the collection of wild specimens. E. morsei is also

similar in size to the adult forms of the sympatric species

Lusepiola birostrata and Eumandya parva making

identification challenging for nonexperts (Takayama and

Okutani, 1992; Bello, 2020). Differences in egg clutch

morphology have been used to distinguish sympatric species
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(Sanchez et al., 2019), and can aid in identifying and collecting

eggs in the field.

Proper care of sepiolid eggs is necessary to prevent fouling

and maintain high hatching rates (Lee et al., 2009a). Females of

E. scolopes host bacterial consortium in their accessory

nidamental gland that is secreted to eggs during spawning to

protect them from predation (Kerwin et al., 2019). We indirectly

observed the same feature of E. berryi and E. morsei; specifically,

we noted orange-dyed accessory nidamental glands, whose

pigments are generated from carotenoids produced by

symbiotic bacterial communities (Pichon et al., 2005). Eggs

can be kept in incubating tanks with constant water flow in

dark conditions to further inhibit microbial growth (Choe,

1966a). Our eggs were maintained at constant conditions with

minimal disturbance as failure to do so can cause premature

hatching and decreased survivorship (Hanlon et al., 1997).

The stocking density and male:female ratio are important to

consider in cephalopod culture. Crowding has been shown to

induce stress and decrease fecundity in Sepia officinalis (Forsythe

et al., 2002), Sepioteuthis lessoniana (LaRoe, 1971; Boal and

Gonzalez, 1998) and Euprymna scolopes (Hanlon et al., 1997). As

most bobtail squid adopt benthic lifestyles quickly (Table 2), the

ratio of animals to floor area is also relevant. A low male:female

ratio can reduce stress from mating events and prevent forced

copulation. We achieved mating and spawning with a low (1:1-

1:2) male to female ratio though it is preferable to separate males

from females as males become aggressive, similar to E. tasmanica

(Nabhitabhata and Nishiguchi, 2014).

Few studies exist on the effects of inbreeding depression on

cephalopod culture. Sepia officinalis grown for seven consecutive

generations developed decreased fertility in later generations,

and the seventh generation failed to produce viable offspring

(Forsythe et al., 1994). There are also accounts of a decreased size
TABLE 2 Comparison of life cycle and culture traits of cultured Euprymna spp.

Species E. berryia E. morseia E. scolopesb E. tasmanicac E. hyllebergiid E. brennerie E. parvae

Known distribution West Pacific, East
Indian Oceans

West Pacific, East
Indian Oceans

Central
Pacific/Hawaii

South
Indopacific/
Australia

East Indian
Ocean/Thailand

West Pacific
Ocean/Okinawa

West Pacific
Ocean/East Asia

Temperature (°C) 20 20 23 20 28 24 24

Clutch size (eggs) 137-362 121-175 50 - 250 25-500 108-464 – 47

Embryonic
Phase (d)

28 29 20 29 14 – 22

Survivorship - First
30 days

93% 80% 73% – – – –

Hatchling behavior Benthic Benthic Planktonic Benthic Planktonic Planktonic Benthic

Exponential
Growth Phase (d)

90 60 83 44 30 – –

First Mating
Behavior (d)

90 70 61 60 66 83 –

Lifecycle (d) 139 99 80 – 80 – 90

Max Lifespan (d) 265 169 139 – 125 99 –
(a - this study; b - Hanlon et al., 1997; c - Nabhitabhata and Nishiguchi, 2014; d - Nabhitabhata et al., 2005; e - Sanchez et al., 2019).
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at maturity for cephalopods cultured to multiple generations

(Iglesias et al., 2014). Thus, maintaining the genetic diversity of a

colony, by careful interbreeding of separate subpopulations, or

the introduction of new alleles by the steady addition of wild

animals to the culture, may be necessary to support healthy

laboratory colonies. Euprymna hyllebergi and Euprymna

tasmanica were cultured for three generations without the

introduction of wild-caught specimens. Growth rates were

similar across generations and no obvious abnormalities

relating to inbreeding were observed (Nabhitabhata and

Nishiguchi, 2014). No physical or behavioral abnormalities

were observed in both species in sequentially cultured

generations; however, sometimes survivorship immediately

after hatching was noticeably reduced for some clutches due to

some unknown phenomenon similarly reported in E. scolopes

(Hanlon et al., 1997). Additionally, rare clutches contained many

unfertilized eggs and aberrant jelly coats, and more work should

be done to understand and improve these traits. Based on our

findings, it should be feasible to maintain a culture of both E.

berryi and E. morsei for several generations. Genetic diversity

can be maintained by introducing wild caught individuals

seasonally (February to June) when vendors in Japan are able

to supply additional animals.
Prey and hunting

Activity patterns were similar to what is described for other

Euprymna species (Hanlon et al., 1997; Nabhitabhata et al., 2005;

Nabhitabhata and Nishiguchi, 2014; Sanchez et al., 2019; Drerup

et al., 2020) and animals became active at “night” - emerging

from the substrate and discarding the sand coat for hunting and

mating. During the “day”, animals bury themselves under the

sandy substrate for shelter and to avoid predators (Hanlon et al.,

1997; Rodrigues et al., 2010; Drerup et al., 2020). An alternating

12 hour light-dark cycle is sufficient to mimic natural diurnal

cycles (Franklin et al., 2014). As for other Euprymna, E. berryi

and E. morsei cover their body, head, and arms with sand but

leave their eyes exposed (Nabhitabhata et al., 2005; Hanlon and

Messenger, 2018; Sanchez et al., 2019; Drerup et al., 2020).

While adults can be fed frozen shrimp, hatchlings and

juveniles require live food, similar to other Euprymna spp.

(Choe, 1966b; Hanlon et al., 1997; Ikeda et al., 2003;

Nabhitabhata and Nishiguchi, 2014; Sanchez et al., 2019). To

feed hatchlings of either species, mysids can be collected from

inshore locations and reared on a diet of Artemia spp. (Lussier

et al., 1988). Hatchlings of both species attacked adult mysids

often larger than themselves similar to other species of

Euprymna (Okutani and Horita, 1987; Hanlon et al., 1997;

Nabhitabhata et al., 2005; Sanchez et al., 2019). While adults

were taught to spontaneously grasp frozen prey, they would

sometimes ignore non-moving prey. Fully mature adult females
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consumed more food relative to adult males possibly due to

ongoing egg production.
Hatchling behavior

For both E. berryi and E.morsei, hatching from an egg clutch

occurs over a period of several days. E. berryi settled and

established a benthic lifestyle shortly after hatching in

agreement with (Choe, 1966a) and similar to Euprymna

tasmanica (Nabhitabhata and Nishiguchi, 2014) and

Eumandya parva (Sanchez et al., 2019). E. berryi and E. morsei

exhibited a brief nektobenthic paralarval stage similar to what is

described for Euprymna hyllebergi (Nabhitabhata et al., 2005)

and unlike hatchling behavior of Euprymna scolopes, Eumandya

pardalota, and Euprymna brenneri (Hanlon et al., 1997; Sanchez

et al., 2019) which displayed surface swimming phototaxic

paralarval stages the first month after hatching (Table 2). In

our culture, E. berryi and E. morsei could consume prey within

24 hours after hatching, two days earlier than previously

reported for E. berryi (Choe, 1966a).
Growth and sexual dimorphism

E. berryi and E. morsei followed similar growth patterns to

other Euprymna spp., including early growth stages of E. scolopes

(Hanlon et al., 1997) and E. hyllebergi (Nabhitabhata et al., 2005)

(Table 2). For comparison, E. scolopes raised at 23°C experienced

exponential growth from hatchling to 83 dph (Hanlon et al.,

1997). E. hyllebergi demonstrated an exponential growth phase

the first 30 dph when raised at 28°C (Nabhitabhata et al., 2005).

E. tasmanica raised at 20°C experienced exponential growth

from 7 to 44 dph was followed by approximately linear growth

from 58 to 140 dph (Moltschaniwskyj and Carter, 2010). As with

other bobtail squid, adult males of E. berryi and E. morsei can be

definitively distinguished from females by their characteristically

modified first left arm, the hectocotylus, which is shorter than

the opposing arm and curls outward; female left and right first

arms are indistinguishable (Okutani and Horita, 1987; Norman

and Lu, 1997). Sexual dimorphism becomes visually evident

~90-100 dph for E. berryi and ~70 days for E. morsei, concurrent

with aggressive behavior in males.
Survivorship

Both E. berryi and E. morsei recorded higher survivorship in

the first 30 dph (93% and 80%) compared to the 73%

survivorship reported for E. scolopes (Hanlon et al., 1997).

Neither species exhibited long-lived pelagic paralarval stages

after hatching, which could contribute to higher survivorship in

captivity relative to E. scolopes. E. morsei was previously reared at
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22.5°C and survived for 97 to 128 dph (Ikeda et al., 2003). Our E.

morsei grew more slowly and lived longer, possibly due to being

cultured at a lower temperature (20°C) and thus having a lower

metabolic rate (Iglesias et al., 2014). E. berryi recorded the

longest lifespan of any cultured Euprymna spp. (Table 2).
Reproductive maturity and mating
behavior

Mating behavior is similar to what was observed in other

Euprymna spp. without any obvious courtship behavior

(Moynihan, 1983; Hanlon et al., 1997; Nabhitabhata et al.,

2005; Squires et al., 2013; Sanchez et al., 2019; Drerup et al.,

2020). Females stored spermatangia deposited during matings

similarly to other Euprymna spp. (Hanlon et al., 1997; Squires

et al., 2013). As females were observed laying eggs cooperatively

on the same substrate simultaneously; it is necessary to separate

females to track parental lineage without genotyping. Male

squids were sometimes aggressive towards conspecifics;

therefore, crowding should be avoided especially as squids

reach sexual maturity.
Spawning

Both E. berryi and E. morsei are multiple spawners similar to

other members of the genera Euprymna and Sepiola (Huang,

2006; Rodrigues et al., 2011; Squires et al., 2013). Adult females

of both species laid egg clutches every few days until reaching a

late senescent life stage similar to other Euprymna species

(Hanlon et al., 1997; Nabhitabhata et al., 2005; Squires et al.,

2013). Spawning events were observed within three days of

shipment of wild animals, possibly stimulated by the stress of

transport (Cecere and Miyashiro, 2022). Mature E. berryi were

observed spawning fertilized clutches repeatedly over a period of

100 days at 20°C. Egg clutch morphology differs across sepiolids,

and may be used to differentiate sympatric species (Sanchez

et al., 2019). Similarly, we found eggs more densely packed in E.

morsei clutches than in E. berryi (Figure 2A).
Concluding remarks

Protocols established for E. scolopes are readily adapted for

E. berry and E. morsei. Some existing protocols, including in situ

hybridization (Lee et al., 2009e), micro-CT (Kerbl et al., 2013),

immunohistochemistry (Lee et al., 2009d), and hemocyte

collection (Collins and Nyholm, 2010) have already been

described in E. berryi (Gavriouchkina et al., 2022), and

protocols for infection with symbiotic bacteria (Naughton and

Mandel, 2012), behavioral assays, injury treatment, and

electrophysiology (Howard et al., 2019) are expected to be

transferable from E. scolopes other bobtail species.
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Established cultures of E. berryi and E. morsei will allow for

comparative studies among bobtail squids in the genus

Euprymna. Genomic and transcriptomic data are publicly

available for both E. berryi and E. morsei (Sanchez et al., 2019)

and other related species (Sanchez et al., 2021), and a genome

sequence of E. berryi has recently been reported (Gavriouchkina

et al., 2022). The widespread distribution of E. morsei and E.

berryi in conjunction with the ability to ship adults and recently

spawned eggs should allow more researchers access to these

model bobtail squids, and also offers opportunities to find

adaptations acquired by different populations.
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