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SUMMARY
In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for
a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical
limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance compar-
isons. Among 10 machine-learning classifiers trained on the same samples and independently validated,
when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide var-
iants with paired white blood cell background removal, and combined scores from classifiers evaluated in
this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor
type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor
biology. Clinical LODs mirror relative sensitivities for all approaches. The WG methylation feature best
predicts cancer signal origin. WG methylation is the most promising technology for MCED and informs
development of a targeted methylation MCED test.
Cancer Cell 40, 1537–1549, December 12, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1537
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

Circulating biomarkers have become important indicators of dis-

ease in clinical practice. In particular, the discovery that DNA

from various tissues in the body exists in the bloodstream and

other bodily fluids outside of cells (cell-free deoxyribonucleic

acid [cfDNA])1 has led to a number of blood-based cfDNA tests

to interrogate specific genomic abnormalities, such as chromo-

somal copy number aberrations for non-invasive prenatal

testing2 or actionable tumor-derived mutations for targeted can-

cer therapy selection.3 A critical application of blood-based

cfDNA or other circulating analytes is the early detection of a

shared cancer signal across multiple cancers using a blood

test. One type of multi-cancer early detection (MCED) test is

currently available,4 and others are in development,5,6 although

each uses different information from cfDNA and, in some cases,

other circulating analytes. To our knowledge, there has been

no reported rigorous and systematic comparison of various

genomic features from cfDNA for MCED testing until the analysis

presented here.

Despite significant advances in cancer treatments and the

known benefits of early detection through recommended

screening tests, cancer was the first or second leading cause

of death in over 100 countries in 2019.7 In 2020, almost 10million

people died of cancer worldwide.8 Many cancers are diagnosed

at an advanced stage, after metastasis,9 and so have lower sur-

vival compared with those that are diagnosed at earlier stages.10

Moreover, advanced cancers may lead to considerable in-

creases in health-care costs, which are projected to increase

dramatically over the next 20 years.11 Detecting cancers early

is a viable population health strategy to improve outcomes,

but the vast majority of cancers do not have recommended

screening tests. Indeed, population screening is recommended

by the US Preventive Services Task Force (USPSTF) only

for breast, cervical, colorectal, lung (in high-risk patients),

and—upon discussion with a physician—prostate cancer.12–16

Although available, these single-cancer screening tests are not

perfect12–16 and are organ specific,17 such that the false-positive

rate of multiple tests is cumulative. For example, after 3 years of

routine cancer screening in three different organs (lung, colon/

rectum, and prostate or ovaries), the cumulative risk of one false

positive is 60% for men and 49% for women.18 This is not ex-

pected to be the case for an MCED test, given the low false-pos-

itive rate (<1%) that has been reported.4,19 Recent modeling

work predicted that adding an MCED test to standard care

may improve early-stage detection and prevent 39% of all

cancer-related deaths within 5 years of diagnosis that would

otherwise be expected to occur in individuals with a positive

test result.20 Complementary MCED testing may allow popula-

tion screening across numerous deadly cancer types at once

and potentially a shift toward earlier detection of clinically

significant tumors.17

Any population screening test for a low annual incidence

disease such as cancer9 requires high specificity to have a favor-

able benefit-to-harm balance and avoid burdening the popula-

tion with false-positive results. Blood-based MCED tests face

a challenge in this respect because there is an abundant back-

ground of non-cancer cfDNA in the blood relative to the genomic

material shed from the tumor.17,21,22 In addition, prevalent so-
1538 Cancer Cell 40, 1537–1549, December 12, 2022
matic biology such as clonal hematopoiesis (CH) is observed in

cfDNA, which may confound specific cancer signal detection.

Multiple approaches to overcome this signal-to-background ra-

tio have been proposed,23–26 including sequencing at high depth

and breadth, as well as machine-learning techniques. As such,

a fundamental evaluation of cfDNA approaches, each using

contemporaneous blood samples from the same individuals

with cancer who are demographically and geographically

matched to non-cancer individuals in large studies may reduce

statistical uncertainty and provide robust evidence for an

MCED method best suited to population use. The Circulating

Cell-free Genome Atlas (CCGA; NCT02889978) study included

three prespecified substudies, in part, for this purpose. The first

substudy evaluated cfDNA features in prototype assays and pro-

totype machine-learning classifiers to determine the most

promising approach for an MCED test with a low false-positive

rate and sufficient sensitivity to improve outcomes. That first

substudy is reported here.

RESULTS

Participant disposition and demographics
A total of 2,800 participants, 1,628with cancer and 1,172without

cancer (non-cancer), were included in the first CCGA substudy

(Figure 1) and randomly assigned to independent training or vali-

dation sets. Of the 2,800 participants, 2,261 (1,414 training; 847

validation) had analyzable results (Figure 1; analyzable results

were those samples that met predetermined laboratory quality

control standards). Patients with cancer across all clinical stages

diagnosed by screening or clinical presentation were enrolled

before starting cancer therapy. Demographic and clinical char-

acteristics of participants with analyzable assay data were

similar across cancer and non-cancer participants, as well as

training and validation sets (Table 1). Importantly, among partic-

ipants with cancer, mean age was matched across training and

validation sets (61 ± 12 years for the training set, 62 ± 12 years for

the validation set). Smoking status, clinical cancer stage, sex,

and ethnicity were also well-balanced across sets, with slightly

more representation from early-stage cancers than later-stage

cancers across both sets (Table 1).

Cancer signal detection
Ten different classifiers—nine using different cfDNA features

from three broad and deep prototype MCED assays and one us-

ing only clinical data (Table 2)—were trained to detect a cancer

signal and were independently validated (see STAR Methods).

In both training and validation sets, sensitivity at a post hoc level

of 98% specificity (2% false-positive rate) was reported and

statistically compared for each of the 10 classifiers (Table 3

and Figure 2; see STAR Methods; a relatively high specificity

level was chosen because it is important for a population

screening test not to burden the population with false-positive

results). The top classifiers by sensitivity at 98% specificity

were whole-genome (WG) methylation (training, 39%; validation,

34%), single nucleotide variant (SNV) with paired white blood

cell (WBC) background removal (SNV-WBC; training, 36%;

validation, 33%), and the pan-feature classifier (training, 40%;

validation, 36%). In the validation set, sensitivity of the WG

methylation classifier at 98% specificity was significantly greater



Figure 1. CCGA substudy 1 participant disposition

*Technical controls: non-smoking, non-cancer participants under the age of 35 years. CCGA, Circulating Cell-free Genome Atlas; cTAF, circulating tumor allele

fraction.
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(McNemar test, p < 0.01) than all but the pan-feature and the

SNV-WBC classifier. SNV and somatic copy number alteration

(SCNA) classifiers showed statistically worse sensitivity than

WG methylation (SNV, 16%; SCNA, 27%); to achieve sensitivity

similar to WG methylation, the SNV classifier required WBC

sequencing to remove biological background due to CH (SNV-

WBC, 33%). Accounting for CH for the SCNA classifier improved

its sensitivity performance (30%), although the SCNA-WBCclas-

sifier was still less sensitive than the top three classifiers. Among

the classifiers that were derived fromWG sequencing (WGS), the

fragment lengths classifier provided sensitivity similar to that of

the SCNA-WBC classifier (29% and 30%, respectively). The

next-best WGS classifiers by sensitivity were SCNA (27%),

allelic imbalance (22%), and fragment endpoints (18%). The

classifier containing only clinical features performed poorly by

comparison (3%). As expected, the sensitivity of all cancer clas-

sifiers increased with clinical cancer stage (Figure S1). Training

and validation sets provided generally consistent sensitivity re-

sults (Figure 2).

To investigate classifier performance across methods based

on circulating tumor allele fraction (cTAF; an estimate of the rela-
tive amount of tumor-specific mutations in participant cfDNA),

which was strongly associated with cancer signal detection per-

formance (see cTAF section below), we leveraged the concept of

a limit of detection (LOD) and created a clinical LOD measure.

For this analysis, clinical LOD of a single MCED test was defined

as the cTAF at which the probability of detecting a cancer signal

was at least 50% while maintaining a 98% specificity (see STAR

Methods; note that clinical LOD should not be confused with

analytical LOD, which typically indicates the lowest concentra-

tion of a specific analyte that can be detected 95% of the time

using known replicates over a dilution series).27 Four hundred

nine participants for whom tumor tissue was available and

SNVs were detected in both tissue and cfDNA were included

(see STARMethods). Similar to the sensitivity results for the can-

cer signal detection classifiers, WGmethylation, SNV-WBC, and

the pan-feature classifiers provided the lowest clinical LODs, but

were not significantly different from one another. The SNV clas-

sifier required CH background removal to match the LOD perfor-

mance of the WG methylation classifier (Figures 3 and S2). The

next lowest clinical LOD from this study was from the SCNA-

WBC classifier, followed by the fragment lengths classifier. For
Cancer Cell 40, 1537–1549, December 12, 2022 1539



Table 1. CCGA substudy 1 participant demographics

Training (n = 1,414) Validation (n = 847)

Cancera Non-cancer Cancera Non-cancer

Total, n 854 560 485 362

Age, mean (SD) 61 (12) 60 (12) 62 (12) 59 (14)

Sex, n (%)

Female 594 (70%) 436 (78%) 307 (63%) 235 (65%)

Race/ethnicity, n (%)

White, non-Hispanic 737 (86%) 473 (84%) 400 (82%) 308 (85%)

Black or African American 54 (6%) 46 (8%) 33 (7%) 25 (7%)

Hispanic 43 (5%) 29 (5%) 31 (6%) 22 (6%)

Other 20 (2%) 12 (2%) 21 (4%) 7 (2%)

Age group, n (%)

R50 years 710 (83%) 452 (81%) 414 (85%) 274 (76%)

Smoking status, n (%)

Never smoker 409 (48%) 322 (57%) 243 (50%) 183 (51%)

Body mass index, n (%)

Normal/underweight 237 (28%) 147 (26%) 139 (29%) 84 (23%)

Overweight 275 (32%) 180 (32%) 160 (33%) 123 (34%)

Obese 341 (40%) 233 (42%) 186 (38%) 154 (43%)

Geographic region, n (%)

Northeast 46 (5%) 53 (9%) 26 (5%) 25 (7%)

Midwest 150 (18%) 83 (15%) 127 (26%) 64 (18%)

West 167 (20%) 78 (14%) 104 (21%) 89 (25%)

South 491 (57%) 346 (62%) 228 (47%) 184 (51%)

Overall clinical stage, n (%)

I 289 (34%) – 163 (34%) –

II 239 (28%) – 141 (29%) –

III 159 (19%) – 75 (15%) –

IV 157 (18%) – 93 (19%) –

Non-informative/missing 10 (1%) – 13 (3%) –

Method of diagnosis, n (%)

Screening 293 (34%) – 167 (34%) –

Clinical presentationb 561 (66%) – 317 (65%) –

Based on clinically evaluable population with results on all three assays. CCGA, Circulating Cell-free Genome Atlas; SD, standard deviation.
aAnalyzable cancers by training/validation: breast (339/170), lung (118/46), prostate (69/55), colon/rectum (45/39), kidney (26/13), uterus (27/9),

pancreas (26/22), esophagus (24/7), lymphoma (22/18), head and neck (19/12), ovary (17/7), liver/bile duct/gallbladder (13/14), melanoma (9/8), cervix

(13/8), plasma cell neoplasm (11/8), leukemia (10/13), thyroid (13/5), bladder (10/1), stomach (11/13), multiple primaries (6/0), anus (7/2), unknown pri-

mary/other (19/15).
bClinical presentation includes all cancers detected by a method other than cancer screening. Includes incidental screening findings. Excludes one

participant with missing test information.
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each cancer signal detection classifier compared here, the clin-

ical LOD mirrored sensitivity performances relative to one

another.

To investigate whether combining results across sequencing

assays should be expected to improve cancer signal detec-

tion, we used the top-three single-assay-based classifiers

(WG methylation, SCNA-WBC, and SNV-WBC) to determine

whether each identified cancer signals in different samples, or

whether they mostly identified the same samples. Note that

the pan-feature classifier was a similarly top-performing classi-

fier but was excluded from this analysis because it already
1540 Cancer Cell 40, 1537–1549, December 12, 2022
included information from all three assays. The majority of

correctly detected cancer signals (true positives) across the

top single-assay classifiers were from the same participants

(Figure S3). Samples that were detected by only two classifiers

were more likely to be detected by the WG methylation and the

SNV-WBC classifiers. Non-cancer samples that were incor-

rectly classified as cancer (false positives) from all three assays

were almost entirely different across classifiers (Figure S3). See

Figure S4 for a visualization of the feature space for all classi-

fiers with cancer signal classification from WG methylation

indicated.



Table 2. Mapping of assays to samples, features, and classifiers

Assay Sample type Feature Classifier name

WGBS (303) cfDNA WG methylation patterns for z30

million CpGs

WG methylation pan-featurea

Targeted sequencing assay of 507

genes (60,0003 raw depth, 3,0003

unique depth)

cfDNA small somatic variants SNV

WBCs small somatic mutations to remove noise SNV-WBC

WGS (303 for cfDNA and WBCs;

603 target depth for tumor tissue)

cfDNA somatic copy number

alterations

SCNA

fragment endpoints fragment endpoints

fragment lengths fragment lengths

allelic imbalance allelic imbalance

WBCs somatic copy number

alterations to remove noise

SCNA-WBC

tumor tissue variant calling for allele fraction estimationb – –

None clinical data age, smoking history, family

history of breast/ovarian cancer

clinical datac

cfDNA, cell-free deoxyribonucleic acid; SCNA, somatic copy number alterations; SNV, single nucleotide variants; WBC, white blood cell; WG, whole-

genome; WGBS, whole-genome bisulfite sequencing; WGS, whole-genome sequencing.
aThe pan-feature classifier was trained using scores from all of the individual assay-based classifiers.
bVariant allele fraction was used to estimate circulating tumor allele fraction, not in a classifier.
cThe clinical data classifier used only clinical data (no assay data).

ll
OPEN ACCESSArticle
Cancer signal origin prediction
One top-performing cancer signal detection feature from each of

the three assays (WG methylation, SCNA, and SNV-WBC) was

chosen to create three cancer signal origin (CSO) classifiers.

Each classifier was evaluated using the validation set of cancer

samples that were jointly detected by all three corresponding

cancer signal detection classifiers (n = 127; see STARMethods).

Among the three CSO classifiers, the WG methylation CSO

classifier accurately predicted CSO for 75% (95/127) of jointly

detected cancer samples, whereas SCNA and SNV-WBC accu-

rately predicted CSO for 41% (52/127) and 35% (44/127) of can-

cer samples, respectively (Figure 4). WG methylation predicted

CSO with significantly more accuracy than either SCNA (McNe-

mar test, p = 83 10�9) or SNV-WBC (p = 6.53 10�12). The CSO

prediction accuracy of the SCNA classifier versus the SNV-WBC

classifier was not statistically different (p = 0.35). Similar accu-

racy for all CSO classifiers resulted when each classifier was

evaluated using the full set of validation cancer samples de-

tected by that particular cancer signal detection classifier rather

than the jointly detected set (see STARMethods for a description

of validation sets; Figure S5).

cTAF
cTAF varied by orders of magnitude within and across cancer

types and clinical stages (Figure S6). In cancer types with

sufficient samples to analyze correlative trends (breast, colon/

rectum, and lung; Figure 5), cTAF increased with clinical cancer

stage (Spearman rank correlation test: breast p = 1.4 3 10�10,

colon/rectump= 2.13 10�10, lung p = 7.83 10�3, and remaining

cancer types p = 3.2 3 10�15). Although not powered to draw

definitive conclusions, notable differences in cTAF within clinical

stage and across cancer types were observed (Figure S6). For

example, early-stage prostate cancer showed samples with

lower cTAF, whereas early-stage lung and colon/rectum cancers
showed samples with higher cTAF. cTAF was an important co-

variate of cancer signal detection and accounted for 72% of

the variance inWGmethylation cancer signal detection classifier

scores (Figure S7). Further, in a multivariate analysis of cancer

signal detection versus log10(cTAF) and cancer type and clinical

stage, cTAF was the only significant predictor of classifier

performance (p < 5 3 10�17; Table S1). Biological differences

in shedding rate and the strong influence of cTAF on classifier

performance may explain the differences in sensitivity between

cancer types compared by clinical stage and support that

cTAF is the main driver of cancer signal detection. If cTAF was

omitted from the multivariate analysis, then clinical stage was

significant (p < 0.0002). Taken together, these results indicate

that much of the predictive power of clinical stage for signal

detection is mediated through cTAF differences by stage within

cancer type and motivate the utility of clinical LOD for assessing

cancer signal detection performance.

CH somatic variants
The frequency of recurrent SNVs among participant-matched

WBCs in the CCGA population was calculated to determine

how often the sameCHmutations were observed.WBC-matched

SNVs accounted for 97% (7,275/7,504) of all SNVs detected in

cfDNA from participants without cancer and 69% (11,125/

16,169) of the SNVs in cfDNA fromparticipantswith solid cancers.

Importantly, 90% (16,571/18,400) of allWBC-matchedSNVswere

detected at <1% plasma variant allele fraction (Figure S8A).

Approximately 80% (14,607/18,400) of these SNVswere non-syn-

onymous, with themajority of them (93%= 11,705/12,601) unique

to individual participants (Figure S8B).

Clinical LOD from the second CCGA substudy
Based on the data reported here from the first CCGA substudy,

WG methylation was selected (see the discussion) for further
Cancer Cell 40, 1537–1549, December 12, 2022 1541



Table 3. Performance metrics at 98% specificity for prototype cancer signal detection classifiers

Assay Classifier

Training set Validation set

Sensitivity at 98% specificitya Sensitivity at 98% specificitya

% (95% CI)

TP/total cancer

samples, n % (95% CI)

TP/total cancer

samples, n

WGBS WG methylation 39% (36%–43%) 328/833 34% (30%–39%) 158/464

Targeted sequencing SNV 19% (16%–22%) 159/833 16%b (13%–20%) 75/464

SNV-WBC 36% (33%–39%) 299/833 33% (29%–38%) 155/464

WGS SCNA 33% (29%–36%) 271/833 27%b (23%–31%) 125/464

SCNA-WBC 33% (30%–37%) 278/833 30%c (26%–34%) 139/464

fragment endpoints 22% (19%–25%) 181/833 18%b (15%–22%) 84/464

fragment lengths 28% (25%–32%) 236/833 29%c (25%–34%) 136/464

allelic imbalance 25% (22%–28%) 210/833 22%b (18%–26%) 101/464

All three pan-feature N/Ad N/Ad 36% (31%–40%) 165/464

None clinical datae 2.7% (1.7%–4.1%) 22/815 2.6%b (1.4%–4.5%) 12/457

CI, confidence interval; N/A, not available; SCNA, somatic copy number alteration; SCNA-WBC, somatic copy number alterations with correction for

clonal hematopoiesis noise; SNV, single nucleotide variant; SNV-WBC, single nucleotide variants with correction for clonal hematopoiesis noise; TP,

true positive; WG, whole-genome.
aAt the target specificity of 98%, the observed specificity for the training set was 97.9% (true negatives/total non-cancer samples: 548/560) for all clas-

sifiers except the clinical data classifier (98.0% [540/551e] for the clinical data classifier). The observed specificity for the validation set was 97.8% for all

classifiers (354/362 for all but clinical data; 350/358e for the clinical data classifier).
bp < 0.0001. The p values were computed only for the validation set and represent paired McNemar analysis versus WG methylation.
cp < 0.01.
dPerformance of the pan-feature classifier is not reported for the training dataset. See text for details.
eThe clinical data classifier used fewer cases in the training and validation sets than the other classifiers because of a missing clinical variable for some

participants.
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development and improvement using a targeted methylation

approach. The clinical LOD for the refined, targeted methylation

MCED test used in the secondCCGA substudy19 was 3.13 10�4

cTAF at the 99.3% specificity reported for that test (n = 641

participants with available tumor tissue from the second CCGA

substudy validation set; see STAR Methods). To allow direct

performance comparison with the prototype tests evaluated

here, we also calculated the targeted methylation clinical LOD

at 98% specificity using only solid cancers from the second sub-

study validation set19 to match the specificity and cancer-type

subset here (see STAR Methods). The targeted methylation

clinical LOD at 98%specificity was 1.33 10�4 cTAF (n = 559 par-

ticipants with solid cancer and available tumor tissue from the

second CCGA substudy validation set; Figures 3 and S2). Both

clinical LODs for the targeted methylation MCED test were

almost an order of magnitude better than the top classifiers eval-

uated here.

DISCUSSION

To our knowledge, this initial CCGA substudy is the only compre-

hensive genome-wide comparison of cfDNA-based approaches.

The rigorous multi-center study design included balanced demo-

graphics, clinical stage distribution, and cancer types; careful

randomization of samples to avoid batch effects; and independent

training and validation sets to provide robust data with which to

evaluate different detection methods using the same set of partic-

ipants. The general terms ‘‘liquid biopsy’’ and ‘‘circulating tumor

DNA (ctDNA)’’ have been indiscriminately used to describe

MCED tests,28 but there are a number of genomic features that
1542 Cancer Cell 40, 1537–1549, December 12, 2022
can be derived from cfDNA that have different performance char-

acteristics, as investigated here. As such, it is critical to describe in

detail the specific features and approaches used to allow proper

comparison of results between studies.

A key finding of this study was that most of the variation in

cfDNA cancer signal across cancer types and clinical stages

could be attributed to the relative amount of tumor-specific

genomic features in circulation, cTAF, and in particular, more

than could be attributed to cancer type and clinical stage.

Tumor biopsy sequencing to estimate cTAF across cancer types

and stages provided a survey of the distribution of shedding

across diagnosed cancers. In general, cTAF increased with

increasing clinical stage, compatible with a general relationship

of increased tumor shedding with advancing stage within cancer

types.29 Importantly, extensive variation in cTAF was observed

between cancer types as well as within single stages, which indi-

cated that stage alone may not be the sole predictor of the

amount of tumor-specific genomic features and, further, that

cancer types may have dramatically different shedding rates

even after controlling for stage. As expected,19 cancer signal

detection improved for each cancer with increasing stage and

increasing cTAF, although not all stage IV cancer signals were

detected. This may be explained by molecular factors in unde-

tected stage IV cancers such as lowmitotic and metabolic activ-

ity,30,31 or physical factors such as low surface area and low

microscopic tumor extent (i.e., access to the blood supply)30;

all of which have been associated with lower tumor DNA shed-

ding and lower cTAF. Clinical staging may not completely cap-

ture tumor behavior. Conversely, cancer signals were detected

from stage I–III cancers that showed higher cTAF, which may



Figure 2. Performance of different classifiers for cancer signal detection

Receiver-operating characteristic curves demonstrate the relationship between the false-positive and the true-positive rates for each trained classifier. Greater

area under the curve indicates better performance, and the dotted black line indicates random chance. After each classifier was trained on the training set data, its

performancewas assessed on the independent validation set data. Performance achieved on the training set by cross-validation (left) was similar to that achieved

on the validation set (right), indicating that the classifiers were generalizable and not overfit to the training data. The sensitivity (true-positive rate) of each classifier

at a target post hoc specificity cutoff of 98% (false-positive rate of 2%) is indicated by a circle on each line in the zoomed-in plots (bottom). See Table S2 for partial

areas under the receiver-operating characteristic curves from the validation set. SCNA, somatic copy number alterations; SCNA-WBC, somatic copy number

alterations with white blood cell noise removal; SNV, single nucleotide variants; SNV-WBC, single nucleotide variants with white blood cell noise removal; WG,

whole-genome.
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reflect active proliferation and high tumor DNA shedding.16,17 In

addition, in a model attributing classifier cfDNA cancer signal

detection to cancer type, clinical stage, and cTAF, only cTAF

was a statistically significant contributor. Coupled with previous

research indicating that more aggressive cancers tend to shed

more DNA into the bloodstream,29 it is plausible that cfDNA can-

cer signals and cTAF are correlated with more aggressive tumor

biology; thus, cfDNA assays may preferentially detect clinically
significant cancers. Indeed, cancer prognosis has been shown

to be better with lower cTAF.32–35 Further, cancers detected by

cfDNA tests have shown survival compatible with that reported

in the Surveillance, Epidemiology, and End Results (SEER) pro-

gram, wherein those cancers that were not detected by cfDNA

showed significantly better survival.29 Altogether, these data

suggest that cTAF may be a more direct and accurate measure

of the underlying tumor biology driving cfDNA cancer signal
Cancer Cell 40, 1537–1549, December 12, 2022 1543



Figure 3. Clinical LOD for each cancer signal

detection classifier

The cTAF was used to determine a clinical LOD at

98% specificity for each cancer signal detection

classifier. The clinical LOD, defined as the cTAF that

corresponded to 50% cancer signal detection, was

estimated using the subset of samples that had

corresponding cancer tissue sequencing available.

Results from the validation set are shown here for

simplicity. See Figure S2 for training set results. The

blue data point indicates the estimated clinical LOD

at 98% specificity for the improved targeted

methylation assay that was used in the second

CCGA substudy.19 Note that the clinical LOD for the

targeted methylation MCED test used in the second

CCGA substudy was 3.13 10�4 cTAF at the 99.3%

specificity reported for that test.19 For all black data

points, n = 113 samples with available tumor tissue

from the first CCGA substudy validation set. For the

blue data point, n = 559 samples with available tu-

mor tissue from the second CCGA substudy validation set. Error bars indicate 95% confidence intervals. CCGA, Circulating Cell-free Genome Atlas; cTAF,

circulating tumor allele fraction; LOD, limit of detection; SCNA, somatic copy number alterations; SCNA-WBC, somatic copy number alterations with white blood

cell noise removal; SNV, single nucleotide variants; SNV-WBC, single nucleotide variants with white blood cell noise removal; WG, whole-genome.
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detection than current prognostic indicators such as stage and

cancer type, and that strategies for optimization of MCED tests

should include efforts to improve detection at lower cTAF levels.

The strong relationship between classifier signal detection and

cTAF in this study motivated the creation of a clinical LOD using

cTAF to provide a metric for classifier optimization that ac-

counted for the extensive shedding variation within stage and

between cancer types. The clinical LOD presented here may

enable direct comparison of cancer signal detection perfor-

mance between different cfDNA-based assays and studies,

provided the methods are compared at equivalent levels of

test specificity using tumor-biopsy-verified features to esti-

mate cTAF.

Among all cfDNA features explored in this study, WG methyl-

ation was among the most sensitive of methods, did not require

WBC sequencing, displayed one of the lowest clinical LODs, and

had the highest CSO prediction accuracy. The non-methylation

classifiers we developed (SCNA, fragment endpoints, fragment

lengths, and allelic imbalance) were similar to other work,36–38

but assessed on a held-out validation cohort using samples

collected contemporaneously from the same participants as

for the methylation assay. In the assessment, fragmentomic-

type features distinguished between cancer and non-cancer

but predominantly at higher tumor fractions compared with

methylation, which achieved an order of magnitude better clin-

ical LOD in a targeted methylation assay. In terms of sensitivity,

paired WBC sequencing was required for classifiers that used

SNVs and SCNAs to match or approach the clinical LOD and

sensitivity performance of the other top classifiers. This may be

because SCNA and SNV features are confounded by biological

phenomena such as CH, whereas methylation patterns are

easier to distinguish from background. Coupled with the obser-

vation that most WBC CH variants were unique to each partici-

pant, it is likely necessary to sequence WBCs in addition to

cfDNA on an individual level to achieve high enough specificity

for any SNV- or SCNA-based MCED test. Such a need may

complicate clinical implementation by way of increased costs

and test complexity.39,40 Clinical LODs mirrored the relative
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sensitivity results for each classifier, further supporting WG

methylation as the most promising approach. Importantly, there

was little to no complementarity of other genomic features when

combined in a pan-feature classifier to improve clinical LOD or

sensitivity above WG methylation, which was most likely due

to the shared level of ctDNA. As such, there may not be any sig-

nificant added value from the complexity of including multiple

cfDNA genomic features in an MCED test. The WG bisulfite

sequencing (WGBS) CSO classifier (based on WG methylation)

was significantly more accurate than the classifiers representing

WGS and targeted sequencing (TS), which further indicated that

WG methylation was the most promising approach. Accurate

CSO predictions have the potential to help inform the down-

stream diagnostic workup. The fact that WG methylation was

the most promising overall option in this study across classifier

sensitivity, clinical LOD, and CSO prediction may be, in part,

because it is a pervasive signal across the genome (z30 million

CpGs). Also, methylation patterns along each fragment contain a

robust tumor-specific signal and can be readily identified above

normal genomic background variation, which may enable the

methylation signal to be detected at lower cTAF levels than the

other features of the cancer genome tested here.

The WGBS assay, which generated WG methylation features,

also had the most potential for improvement among the three as-

says and, as noted, was selected for further development. In this

study, WGS and TS were performed with significant sequencing

depth and breadth (303 and 60,0003 covering 507 genes,

respectively). Both technical noise removal (using uniquemolecu-

lar identifiers) and CH suppression (using WBCs) were applied to

these data, and so the results here likely represent the upper limit

of performance forWGS and TS assays for a practical MCED test.

However, for the bisulfite sequencing assay that extracted WG

methylation patterns, targeting the most informative CpG-con-

taining regions predicted to contain cancer- and tissue-specific

methylation patterns in cfDNA would allow greatly increased

effective sequencing depth while controlling complexity to pursue

improvements toward better clinical LOD. Because of its

simplicity, superior overall performance, and potential for assay



Figure 4. Accuracy of cancer signal origin prediction by proto-

type assay using the jointly detected validation set of cancer

samples

Confusion matrices representing the accuracy of CSO prediction. Agree-

ment between the true (x axis) and the predicted (y axis) CSO per sample

using experimental CSO classifiers from each of the three assays is pre-

sented. Color corresponds to the proportion of predicted CSOs (y axis),

which were correct (x axis). Included participants (n = 127) are those

predicted as having cancer at 98% specificity by all three corresponding

cancer signal detection classifiers. Row rates represent the probability of

yielding a correct localization for CSO predictions, column rates represent

the prediction accuracy for cancers within each CSO. Sample sizes

are indicated in parentheses in the figure. CSO, cancer signal origin; L/B/G,

liver/bile duct/gallbladder; PCN, plasma cell neoplasm; SCNA, somatic
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optimization, a methylation-based approach was chosen for

further development. Indeed, the clinical LOD for the targeted

methylation classifier that was validated in the second CCGA

substudy19 showed almost an order-of-magnitude improvement

relative to WG methylation. Importantly, performance improve-

ments (specificity, sensitivity, and CSO accuracy) were observed

in subsequent, recently reported large-scale clinical validations of

the targeted-methylation-based assay and classifier, including

large-scale validation that supported the clinical implementation

of the Galleri� MCED test.4,19 Our findings add to the existing

literature on the use of cfDNA methylation patterns for cancer

detection.41,42

Limitations of the study
This study was not without limitations. First, the sensitivities re-

ported here were based on sensitivity across various cancers

and clinical stages represented in the study population. There-

fore, sensitivity is skewed, as sensitivity is expected to improve

with increased stage. This renders direct comparison of sensi-

tivity values in this study population to a real-world screening

population complex, but the relative performance of the features

tested here would likely remain similar. It is notable that cancer

samples were from participants with already diagnosed cancer

and that cTAF may vary between preclinical and recently diag-

nosed cancers. Although sensitivity is vulnerable to differences

in population, clinical LOD was designed precisely to allow

generalization to other populations by accounting for variations

in cTAF, which we observed may be a critical biological property

of test performance. Clinical LOD allowed robust comparison

between cfDNAapproaches here and, comparedwith sensitivity,

should enable fairer comparisons of cfDNA approaches in

different populations. Although one-third of participants with

cancer in this study were diagnosed through screening, and

were presumed asymptomatic at the time of that screening, it

was not knownwhether clinical symptoms had developed before

blood draw. Second, participants who were enrolled without

known cancer did not receive diagnostic testing to demonstrate

the absence of cancer, so clinical truth was based on a negative

cancer screening test result; a non-cancer participant with a pos-

itive signal could not be definitively known to be a false positive.

Participants are currently undergoing long-term follow-up,

which may further clarify their cancer status. Other ongoing

studies, including an interventional study, are currently address-

ing MCED test performance in asymptomatic populations

(NCT04241796, NCT03085888, NCT03934866). Third, the small

sample sizes for somecancers and resulting bias toward cancers

with more samples may have led to errors in the accuracy of

predicted CSOs. Another potential reason for these errors is the

heterogeneous biology of cancers, which could have led to

confusion betweenCSO labels. Of note, these errors are reduced

in the second19 and third4 CCGA substudies with the targeted

methylation assay. Fourth, the study population of this study

included a slightly larger female and white population than is

reflective of the general US population, although, as described,
copy number alterations; SNV-WBC, single nucleotide variants with

white blood cell noise removal; TS, targeted sequencing; WGBS, whole-

genome bisulfite sequencing; WG, whole-genome; WGS, whole-genome

sequencing.
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Figure 5. Distribution of cTAF by cancer

stage

Each dot in the box plots represents the cTAF

measurement from one participant on a log10 scale.

Text insets above each box indicate the following

numbers: participants with analyzable tumor tissue/

total participants with cancer from the analyzable

set of cancer cases. The total number of partici-

pants with analyzable tumor tissue for this analysis

was n = 409. The total number of analyzable cfDNA

samples from participants with cancer was n =

1,297. Boxes represent the interquartile range and

whiskers represent the largest and smallest values

no more than 1.5 3 IQR. cfDNA, cell-free deoxy-

ribonucleic acid; cTAF, circulating tumor allele

fraction.
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the clinical LOD metric is expected to generalize to a real-world

population. Effort should be taken to improve representation in

future studies. Fifth, the data presented here are also restricted

to one blood draw at a single point in time, because multiple

time points were out of scope of this study, although the second

CCGA substudy19 does include a second blood draw for non-

cancer participants. Open questions related to this include how

each method performs upon repeated use in individuals, and

how each performs over time as cancer progresses and/or is

treated and in remission. Longer-term follow-up data from the

CCGA study may address such questions in the future. Last, in

this study, sensitivity was assessed at only 98% specificity, but

higher specificity is clinically preferred for a screeningpopulation.

Even higher sensitivity at specificity >99% was reported in

subsequent CCGA substudies.4,19

Conclusions
This first CCGA substudy showed that clinical LOD is a useful

benchmark to assess classifier performance and that cTAF ac-

counts for most of the variation in cfDNA cancer signal across

cancer types and clinical stages, more so than clinical staging

or typing information. For these reasons, clinical LOD is an

attractive candidate to enable comparison between studies, as

long as specificity and detection probabilities are equivalent.

Further, WG methylation from cfDNA used in a prototype

MCED test provided the best performance among the ap-

proaches characterized for cancer signal detection and CSO
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prediction, without requiring additional sequencing to correct

for WBC background. These results informed the design and

performance of the recently reported targeted-methylation-

based cfDNA MCED test,19 which showed substantial improve-

ments relative to the top-performing prototype tests evaluated

here and formed the basis for the Galleri� MCED test.4
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

QIAamp� Circulating Nucleic Acid Kit Qiagen Cat #: 55114

EZ DNA Methylation-Lightning�
MagPrep Kit

Zymo Research Cat #: D5046/D5047

Accel-NGS� Methyl-Seq DNA Library Kit Swift BioSciences Cat #: 30024/30096

KAPA� Library Quantification Kit Kapa Biosystems Cat #: KK4873

AccuClear� Ultra High Sensitivity dsDNA

Quantitation Kit

Biotium Cat #: 31029

DNeasy� Blood & Tissue Kit Qiagen Cat # 69504/69506

Chemicals, peptides, and recombinant proteins

Agencourt AMPure XP magnetic beads Beckman Coulter Cat #: A63882

Deposited data

Processed, de-identified genomic data and

code to recreate the figures and tables

This study https://github.com/grailbio-publications/

Jamshidi_CCGA1LOD_2022

Software and algorithms

Glmnet package Friedman et al., 201046

Adam optimizer Kingma and Ba, 201447

Eagle2 Loh et al., 201650

XGBoost Chen and Guestrin, 201651

Rprop Riedmiller and Braun, 199252

Uniform Manifold Approximation and

Projection

Allaoui et al., 202054

Other

NanoDrop� Thermo Scientific Cat #: ND-1

E220 focused-ultrasonicator Covaris Cat #: 500239

HiSeq X flow cell Illumina Cat #: 15072585

NovaSeq 6000 S2 flow cell Illumina Cat #: 20015845
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Oliver Venn (ovenn@

grailbio.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Assay summary statistics, demographic data, and code to reproduce the figures and tables in this paper have been deposited

at Github and are publicly available. A link to the Github repository is listed in the key resources table.

d The genomic sequencing data used in this study have not been deposited in a public repository because we consider it per-

sonal and protected patient data.
EXPERIMENTAL MODELS AND SUBJECT DETAILS

Study design and participants
The CCGA study (NCT02889978) is amulti-center, observational, case-controlled study that included three pre-specified substudies

and is undergoing prospective longitudinal follow-up. The first substudy to comprehensively analyze multiple potential approaches
e1 Cancer Cell 40, 1537–1549.e1–e12, December 12, 2022
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for an MCED test is reported here (Figure 1). The second substudy developed a targeted methylation assay and classifier,19 and the

third substudy validated the targeted methylation approach developed in the second substudy.4 Enrollment in the CCGA study was

monitored to ensure representation of a broad set of cancer types. For the first CCGA substudy, participants with cancer and without

cancer (controls) were randomized to training and validation sets in batches.

Participants with cancer and non-cancer controls were enrolled in the CCGA study from the same centers or, when not possible,

geographic regions, to ensure consistency between cancer and control groups among race, ethnicity, and body mass index, and to

control for pre-analytic factors. Characteristics of the enrolled population were monitored for each center and for the study overall to

ensure, within reason, that a diverse and fair representation of participants was contributed from each location. Age was frequency-

matched between cancer and non-cancer participants selected for the training and validation sets. Cancer type and stage were

monitored to fulfill a distribution of multiple cancer types. The number of participants allowed to be enrolled from a single site was

limited to no more than 40% of the overall study. In line with the initial focus of this substudy, the participants selected for the initial

sequencing (first four batches) included only women. Menwere included in subsequent sequencing batches to achieve a broader set

of target cancers. Men were distributed equally across subsequent batches, resulting in a higher proportion of men in the validation

set than in the training set.

Non-cancer participants were enrolled at an approximate ratio of three non-cancer participants for every seven cancer participants

within each individual clinical research center also enrolling cancer participants. Non-cancer participants were enrolled from

mammography and colonoscopy clinics as well as general medical clinics, hematology clinics, cancer risk clinics, and blood

draw areas. Potential participants were screened utilizing procedures available at approved enrollment centers. Enrollment of

non-cancer participants was monitored to ensure a distribution that reflected demographic characteristics within each individual

research center of the cancer population (eg, by age, gender, ethnicity, and smoking status).

Clinical information, demographics, andmedical data relevant to cancer status were collected on all participants and their medical

record at baseline (time of biospecimen collection). Annual updates throughmedical record review for up to 5 years weremandatory;

contacting investigators for additional clinical insights from existing medical records was allowed and was not intended to alter clin-

ical care. A future blood collection may be requested from study participants during the follow-up period, but is not a scheduled

event. The work reported here is based on data obtained at baseline.

Inclusion/exclusion criteria
Non-cancer participants were required to be aged R20 years and able to provide written informed consent. Potential non-cancer

participants were enrolled if there was no cancer diagnosis at the time of enrollment, although no verification (eg, by PET-CT) was

done and no 1-year follow-up was done to exclude non-cancer participants with subsequent cancer diagnosis. Cancer participants

were required to be agedR20 years, able to provide written informed consent, and have either of the following: (1) a confirmed can-

cer diagnosis of any stage (I-IV or carcinoma in situ) within 90 days prior to study blood draw, based on assessment of a pathological

specimen (including, but not limited to, biopsy from primary tumor site, lymph node, or metastatic lesion; or cytology specimen, or

bone marrow or blood specimen for hematological malignancies); or (2) a high suspicion for a cancer diagnosis by clinical and/or

radiological assessment, with planned biopsy or surgical resection to establish a definitive diagnosis within 6 weeks (42 days) after

study blood draw.

Potential cancer and non-cancer participants were excluded for a known current or prior diagnosis of cancer (with the exception of

participants with a history of non-melanoma skin cancer [eg, basal cell carcinoma or squamous cell carcinoma] that was effectively

and exclusively managed by local or focal therapies such as surgical resection, radiation therapy, cryotherapy, or topical therapy); for

cancer participants, this was separate from the confirmed or suspected cancer diagnosis associated with study enrollment. Addi-

tionally, potential cancer participants were excluded for current or prior receipt of any of the following therapies for treatment of their

current cancer: surgical management of the cancer beyond that required to establish the cancer diagnosis; local, regional, or sys-

temic chemotherapy, including chemoembolization; targeted therapy; immunotherapy, including cancer vaccines; hormone therapy,

or radiation therapy. Potential cancer and non-cancer participants were also excluded for oral or intravenous corticosteroid use in the

14 days prior to blood draw; pregnancy (by self-report of pregnancy status); current febrile illness, acute exacerbation or flare of an

inflammatory condition requiring escalation in medical therapy within 14 days prior to blood draw; recipient or organ transplant; prior

non-autologous (allogeneic) bone marrow of stem cell transplant; poor health status, or inability to tolerate blood draw. For cancer

participants, submission of a pathological tumor specimen to GRAIL, LLC was not required for study enrollment.

Human subject consent
All CCGA-eligible participants provided informed consent as documented via a language-appropriate written informed consent form

that was approved by the governing Institutional Review Board/Ethics Committee, andmet all of the inclusion criteria and none of the

exclusion criteria.

Approval from local institutional review boards to recruit participants was obtained by 142 sites in the United States and one in

Canada. Sites were selected based on their ability to enroll appropriate participants and to perform the study in accordance with

the principles of the International Conference on Harmonization for Good Clinical Practice; the provisions specified in Title 21 Parts

50, 54, 56, and 812 of the U.S. Code of Federal Regulations; and, where applicable, all federal, provincial, state, and local laws of

pertinent regulatory authorities. The Investigators agreed to abide by these regulations, as well as the study protocol.
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METHOD DETAILS

Patient data collection and oversight
Sample collection, processing, and preparation

De-identified blood samples were collected from participants at sites in the United States and Canada as previously described.4,19

Eight 10 mL tubes of peripheral blood were collected using Streck Cell-Free DNA BCT� for each participant and shipped to

BioStorage Technologies, Inc. (Indianapolis, IN). Whole blood was isolated into plasma and buffy coat, and stored at �80 �C at

BioStorage Technologies, Inc. The median time between blood collection and plasma isolation was <2 days (range, 1–5 days).

Cell-free DNAwas extracted from the plasma of each patient using amodified QIAampCirculating Nucleic Acid Kit (Qiagen; German-

town, MD). Two tubes of plasma were used for each of the WGBS and WGS cfDNA libraries. One tube of buffy coat was used for

participant-matched WGS libraries of WBC genomic DNA. As discussed below, the same DNA library was used for TS and WGS.

Selected patient plasma and buffy coat samples were transferred to GRAIL, LLC and processed.

Tumor tissue is typically collected for standard-of-care diagnostic and treatment purposes. When a pretreatment tumor tissue bi-

opsy was available for enrolled participants, study sites submitted formalin-fixed, paraffin-embedded (FFPE) cell or tissue blocks or a

series of stained and unstained glass slides to GRAIL, LLC for research use. Sites were instructed to prepare one 5 mm-thick slide

stained with hematoxylin & eosin (H&E), then a series of 10 unstained slides at 10 mm-thickness, followed by a final H&E slide at 5 mm,

for a total set of 12 slides. Blocks that were received at GRAIL, LLC were sectioned and stained in a similar manner. The H&E slides

were evaluated by board-certified anatomic pathologists using upright brightfield microscopes. Areas of tumor were identified on the

H&E slides and circled with amarking pen to define a region of interest (ROI) that was at least 80% tumor area (if possible) and with an

area of at least 1 mm2. Pathologists also calculated the nuclear volume within the ROI by estimating the percent of the ROI area that

was occupied by tumor nuclei. Based on these calculations, instructions were given to histotechnologists to dissect tissue from 1 to

10 unstained slides (depending on ROI area and percent nuclear volume) and place it in a micronics tissue vial so that the resulting

nuclear volume was between 0.5 and 1.5 mm3.

Sequencing

For the first CCGA substudy, genomic DNA was extracted from scrapings of FFPE tissue specimens by Hudson Alpha Institute for

Biotechnology (Huntsville, AL). To calculate the LOD for the secondCCGA substudy19 genomic DNAwas extracted from scrapings of

FFPE tissue in-house (GRAIL, LLC; Menlo Park, CA) using the AllPrep FFPE DNA/RNA kit (Qiagen; Germantown, MD).

A cfDNA blood sample from each participant was processed using each of the three following sequencing methods: WGBS, TS,

and WGS. When tumor tissue was available, it was sequenced using WGS.

WGBS

Paired-end WGBS at a depth of 30X was performed using sequencing libraries prepared from plasma cfDNA subjected to bisulfite

conversion. Up to 75 ng of plasma cfDNAwas subjected to bisulfite conversion using the EZ DNAMethylation-Lightning MagPrep Kit

(ZymoResearch, D5046/D5047). Converted cfDNAwas used to prepare dual-indexed sequencing libraries using Accel-NGSMethyl-

Seq DNA Library Kits (Swift BioSciences; Ann Arbor, MI) and constructed libraries were quantified using KAPA Library Quantification

Kit for Illumina Platforms (Kapa Biosystems; Wilmington, MA). Four libraries along with 10% PhiX v3 library (Illumina, FC-110-3001)

were pooled and clustered on an Illumina NovaSeq 6000 S2 flow cell followed by 150-bp paired-end sequencing (30X).

TS

Paired-end TS at a raw depth of 60,000X (3,000X unique depth) was performed using amplified WGS libraries prepared from plasma

cfDNA and buffy coat WBC genomic DNA that were enriched for a panel of 507 cancer-related genes (2.13 Mb; GRAIL, LLC; Menlo

Park, CA).43 Genomic DNA (gDNA) from buffy coat was extracted using Qiagen DNeasy Blood and Tissue Kit, and was quantified

using NanoDrop (Thermo Scientific; Waltham, MA). Extracted gDNA was fragmented using Covaris E220 focused-ultrasonicator

(Woburn, MA), and was size-selected using Agencourt AMPure XP magnetic beads (Beckman Coulter; Beverly, MA). Plasma cfDNA

(up to 75 ng) and buffy coat gDNA (75 ng) were used for NGS library construction. The adapter included a set of 218 uniquemolecular

identifier (UMI) sequences to reduce assay and sequencing errors. A fraction of amplified libraries (4 mL of 25 mL) were diluted and

quantified using AccuClear Ultra High-Sensitivity dsDNA Quantitation kit (Biotium; Fremont, CA); the remainder was used in the

whole-genome sequencing protocol (see below). Up to 3.5 mg of each library underwent hybridization-based capture. The gene panel

included full exons except for the telomerase reverse transcriptase gene and intronic regions, which were included for rearrangement

detection of 28 genes and copy number aberration detection of 42 genes. The enriched libraries were quantified using AccuClear

Ultra High Sensitivity dsDNA Quantitation kit. Three or four enriched libraries were normalized, pooled, clustered on a flow cell,

and sequenced on Illumina HiSeq X (150-bp paired-end sequencing, 60,000X).

WGS

WGSwas performed at a depth of 303 using next-generation sequencing (NGS) libraries (see TS section above). Three or four diluted

libraries were normalized, pooled, clustered on a flow cell, and sequenced on an Illumina HiSeq X (30X).

WGS of tumor tissue

WGS was performed at a target depth of 60X for DNA prepared from FFPE tumor tissue. FFPE tumor tissue sections were scraped

and sent to theGenomeServices Lab at Hudson Alpha Institute for Biotechnology (Huntsville, AL), where DNAwas extracted from the

scrapings and converted into NGS libraries for whole-genome sequencing on an Illumina HiSeq X (60X target depth). For each tissue

scraping, one tube of corresponding buffy coat was shipped to Hudson Alpha for extraction, library preparation, andWGS on Illumina

HiSeq X at a target depth of 30X. Sequencing data were transferred to GRAIL, LLC for analysis.
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Classification of cancer versus non-cancer

The original primary objectives of this CCGA substudy were to develop classification models to distinguish invasive breast cancer

from non-cancer and other cancers in women. Based on evaluation of the training phase, and prior to unblinding the validation

set, it was determined that achieving the prespecified goal of specificity and sensitivity for detecting invasive breast cancer was

very unlikely. Therefore, the primary objectives were updated to prespecify the primary comparison of interest in the validation phase

as all cancer versus non-cancer.

Machine-learning classifiers for determining cancer versus non-cancer were developed and uniquely customized using the

following cfDNA genomic features (one classifier per feature): WG methylation patterns, SNV, SNV-WBC, SCNA, SCNA-WBC, frag-

ment endpoints, fragment lengths, allelic imbalance, and a combination of all scores from the previous classifiers (pan-feature). One

additional classifier was trained using only clinical characteristics. Table 2 shows the mapping from the three assays (WGBS, TS,

WGS) to samples to features to classifiers. WG methylation data were generated from the WGBS assay, and SNV data were gener-

ated from the TS assay. SCNA, fragment endpoints, fragment lengths, and allelic imbalance data were each generated from theWGS

assay. WBC biological noise data was generated from TS and WGS as indicated below. All cancer signal detection classifiers were

trained and validated using the same set of solid cancer (carcinoma, sarcoma, lymphoma) samples across all stages to evaluate

detection performance. This allowed parallel and comparative analysis of potential classification of cancer signals using each feature

or multiple features simultaneously. The same ten-fold cross-validation strategy was used during training for all classifiers. Both brief

and detailed descriptions for each classifier are included below.

For initial cancer signal detection for all ten classifiers, we restricted the samples to solid cancers, which were not expected to have

circulating cancer background as a potential component of the WBC fraction. For CSO prediction, three classifiers (WGmethylation,

SCNA, and SNV-WBC) were later rerun with the previously restricted hematologic cancers (plasma cell neoplasm and leukemia).

WGBS: WG methylation classifier - Brief description
For theWGmethylation classifier, a data-reduction step was done first to remove fragments (sequencedmolecules) with methylation

states commonly found in non-cancer samples using a Markov model trained on a set of reference non-cancer samples. After this

reduction, the remaining fragments were further filtered to retain those that were either mostly hyper- or mostly hypo-methylated and

included at least 5 CpG (50-cytosine-phosphate-guanine-30) sites. Across the genome, a probability model was trained to generate a

likelihood that an extreme fragment at that location would be found in non-cancer samples or cancer samples. Finally, for each sam-

ple, a set of the likelihoods of the most cancer-defining (highly ranked) hypo- and hyper- methylated fragments were retained as fea-

tures. These cancer-defining features were then used in a kernel logistic regression classifier to predict whether a cancer signal was

present.

WGBS: WG methylation classifier - Detailed description
For each sample, theWGBS fragment set was reduced to a subset of unusual fragments of extrememethylation status (UFXM). Frag-

ments occuring at high frequency in individuals without cancer, or that have unstable methylation, are unlikely to produce highly

discriminatory features for classification of cancer status. We therefore produced a statistical model of typical fragments using an

independent reference set of 108 participants without cancer (median age: 58 ± 14 years, 79 [73%] women and 45% ever-smokers)

from the main CCGA study. These samples were independent from the under-35 non-smokers used as technical controls by the

WGS and targeted assays below, as methylation status is known to change with age in healthy individuals.44,45 These samples

were used to train a Markov chain model (order 3) estimating the likelihood of a given sequence of CpG (50-cytosine-phosphate-gua-
nine-30) methylation statuses within a fragment. Thismodel was demonstrated to be calibratedwithin the normal fragment range (pR

0.001) and was used to reject fragments with a p value from the Markov model p R 0.001 as insufficiently unusual.

A further data reduction step selected only fragments with at least 5 CpGs covered, and average methylation per fragment either

R0.9 (hyper-methylated) or%0.1 (hypo-methylated). This procedure resulted in amedian (range) of 2,800 (1,500–12,000) UFXM frag-

ments for participants without cancer in training, and amedian (range) of 3,000 (1,200–220,000) UFXM fragments for participants with

cancer in training. Because this data reduction procedure only used reference set data, this stage was only required to be applied to

each sample once.

At selected loci within the genome, an approximate log-ratio score for informativeness for cancer status was constructed sepa-

rately for both hyper- and hypo-methylated UFXM. First, for each sample at the locus, a binary feature was generated: 0 if no

UFXM fragment overlapped that locus within that sample; 1 if there existed a UFXM fragment overlapping the locus. The number

of positive values (1s) in samples were then counted from participants with (Cc) and without cancer (Cnc). The log-ratio score was

then constructed as: log(Cc+1)�log(Cnc+1), adding a regularization term to the counts, and discarding the normalization term relating

to the total number of samples within each group (Nc andNnc) as it is constant (log[Nnc+2]�log[Nc+2]). Scores were constructed at the

locations of all CpG sites within the genome, resulting in approximately 25 million loci with assigned scores: one score for UFXM hy-

per-methylated fragments and one score for UFXM hypo-methylated fragments.

Given a locus-specific log-ratio score, UFXM fragments in a sample were scored by taking the maximum of all log-ratio scores for

loci within the fragment and matching the methylation category of either hyper- or hypo-methylated. This resulted in one score per

UFXM fragment within a sample.

These fragment-level scores within a sample were reduced to a small set of features per sample by taking the scores of a subset of

extreme-ranked fragments within each sample, separately for both hyper- and hypo-methylated fragments. In this way, information
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for the most informative fragments in each sample was captured using a small set of useful features. In a low cTAF sample, only a

minority of fragments were expected to be unusually informative.

In each category of fragments, the rank 1, 2, 4,., 64 (2i, i in 0:6) largest scores were selected for fragments within each category of

hyper- and hypo-methylated UFXM, resulting in 14 features (7 and 7). To adjust for sample sequencing depth, the ranking procedure

was treated as a function mapping ranks to scores, and we interpolated between the observed scores to obtain scores correspond-

ing to adjusted ranks. The ranks were adjusted in linear proportion to relative sample depth: if the relative sample depth was x,

interpolated scores were taken at x multiplied by the original ranks (eg, for x = 1.1, we took scores computed at ranks floor(1.1),

floor(2.2), ., floor(x,2i)). Every sample was then assigned a set of 14 adjusted extreme-rank scores to be used in further

classification.

Given the feature vector, a kernel logistic regression classifier was used to capture potential non-linearities in predicting cancer/

non-cancer status from the features. Specifically, a regularized kernel logistic regression (KLR) classifier was trained using the

isotropic radial basis function (power exponential 2) as the kernel with scale parameter gamma, and L2 regularization parameter

lambda (adjusted by dividing by m2, where m is the number of samples so lambda scales naturally with the amount of training

data). Gamma and lambda were optimized for holdout log-loss using internal cross-validation within specified training data, and

were optimized using grid-search over the range 1–0.01 (gamma), 1000–10 (lambda) in 7 multiplicative steps, starting at the

maximum value and halving the parameter at each step. The median optimal parameters over internal cross-validation folds were

0.125 for gamma and 125 for lambda.

To evaluate performance of this extreme-rank score (ERS) classifier procedure on the first CCGA substudy dataset, cross-valida-

tionwas applied to the training set, dividing the samples into 10 folds. Each fold was held out and the ERS classifier was trained on the

remaining 9/10 of the data (using internal cross-validation within those folds to optimize gamma and lambda). The log-ratio scores

used in featurization only accessed data from training folds. Output scores from each held-out fold were pooled and used to

construct a ROC curve for performance.

For evaluating the validation set, the entire training dataset was used to construct scores and a single KLR classifier, which was

then applied to the validation dataset.

Although the methylation classifiers did not use WBC sequencing, we synchronized the training and validation procedure with the

other two assays.

TS: SNV and SNV-WBC classifiers - Brief description
For the SNV-based classifiers, after preprocessing (including quality filtering of variants), gene-level features were computed based

on the frequency of variants expected to disrupt gene function (non-synonymous and splice), as well as gene-level relative copy num-

ber extracted from TS read depth. Variant presence per gene was analyzed with elastic net binomial logistic regression (using

glmnet)46 to derive a cancer signal versus non-cancer signal classification score. To assess the impact of controlling for WBC inter-

ference, genomic DNA from matched WBCs were sequenced to the same depth using the TS assay. Classification was performed

with variants filtered forWBC interference andwith variants not filtered forWBC interference. These two classifiers are the SNV-WBC

(with WBC filter) and SNV (without WBC filter) classifiers.

TS: SNV and SNV-WBC classifiers - Detailed description
Within the 507 genes and intergenic regions pulled down by the targeted panel fragments with identical UMIs and endpoint positions

were used to define groups of likely polymerase chain reaction (PCR) duplicates, which were collapsed (mean collapsed coverage:

3,000X) and combined to high-accuracy fragment sequences.43 Candidate variants were generated using a de Bruijn graph assem-

bler43 and were scored by a noise model trained on data from 169 non-smoking participants younger than age 35 years without a

diagnosis of cancer (technical controls), used to measure technical variation from the assay; data from 36 participants allocated

for measuring technical variation in the validation set were reserved for future analyses (Figure 1). The noise model provided a cali-

brated quality score estimated on the support for each variant, allowing for filtering of candidate variants to a high-quality subset of

variants unlikely to occur purely by technical variation. Candidate variants were further filtered against DNA damage artifacts that

clustered near the ends of reads and occurred in a subset of samples. Variants that were estimated to have a Phred score of 60

or higher and were unlikely to be technical artifacts were retained.

Biological events that were unrelated to solid tumors and were related to the normal aging process were accounted for by applying

the same targeted panel to buffy coat–extracted cells from the same blood sample. This allowed exclusion of hematopoietic sources

for a large number of variants (SNV-WBC classifier). To accomplish this, a joint model of the probability of observing variant alleles in

only one of the two samples was built, and any variants potentially derived from hematopoietic sourceswere excluded. This compen-

sated for normal within-person accumulation of somatic variants in the blood.

After deriving a list of somaticmutations unlikely to be technical variation or clonal hematopoiesis, a fixed-length feature vector was

constructed for every sample by assigning every gene the maximum allele fraction of any non-synonymous variant (including SNVs

and indels) occurring within that region, or 0 if no variants were detected above noise within that region in that sample. Splicing vari-

ation and 5-prime upstream variation within telomerase reverse transcriptase (TERT) were treated as non-synonymous variants for

this purpose. In this way, a variable length list of mutations was transformed into a real-valued vector.

Elastic net regression (using the glmnet package)46 with binomial outcomes was used to process the above feature vector into a

cancer or non-cancer classification score. Hyperparameters (alpha, the parameter governing ridge versus lasso, and lambda, the
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penalty strength) were optimized using cross-validation within training folds, and then used to provide scores for held-out samples.

Gene regions that artifactually appeared to bemore frequently mutated in non-cancers than in cancers were suppressed by requiring

non-negative coefficients.

Because WBCs are the main signal source of somatic mutations of certain liquid cancer types (eg, plasma cell neoplasm and

leukemia), we included somatic copy number features derived from TS to compensate for the potential loss of sensitivity when

WBC filtering was applied.

Read counts were utilized within each targeted region to estimate the presence of copy number aberrations within each gene.

Read counts were log-transformed and normalized with respect to guanine-cytosine (GC), and systematic effects were removed us-

ing principal components derived from the same individuals used in training the noise model described above. To further remove

noise specific to the targeted assay, two rounds of z-score normalization were applied to the normalized, transformed read counts

using the same set of technical control samples described above. The final transformed and z-score normalized read counts were

turned into a feature vector with one entry per gene. This set of features allowed for sensitivity to liquid cancers that may resemble

clonal hematopoiesis by having matched variants present in the buffy coat. Similarly to above, both feature vectors were supplied to

the elastic net regression to train and use in scoring samples.

The SNV classifier without WBC filtering proceeded as described above for the SNV-WBC classifier: gene-based feature vectors

were constructed based on non-synonymous variants, and elastic net regression was used to predict cancer or non-cancer. The

effect of removing deep sequencing of individually matched buffy coat samples was approximated by removing germline variants

in each participant, but all other noise model–passed variants, which were originally filtered using individually matched WBC

sequencing results, were retained.

WGS: SCNA and SCNA-WBC classifiers - Brief description
For the SCNA-based classifiers, the number of sequencing reads (read depth) in 100 kb genome bins was adjusted for technical vari-

ation using principal components derived from technical controls, reduced to normalized log-ratios, and corrected for variation in GC

base composition (GC bias). This was performed in parallel in both cfDNA and WBC data that were sequenced to the same depth

usingWGS. A convolutional neural network was then trained on either the cfDNA normalized log-ratios or a combination of the cfDNA

log-ratios and the matched WBC log-ratios to account for hematologic sources of SCNA. These two classifiers are the SCNA-WBC

(with WBC log-ratios) and SCNA (without WBC log-ratios) classifiers.

WGS: SCNA and SCNA-WBC classifiers - Detailed description
For each sample in the first CCGA substudy, whole-genome sequencing was performed on cfDNA to an average depth of 30X. The

genome was divided into bins of 100 kb, and the number of sequencing reads within or partially overlapping each bin was counted.

Restricting the analysis to the autosomes, we transformed the raw sequencing reads by generalized logarithm, subtracted a baseline

computed from non-cancer, non-smokers, who were aged <35 years (technical controls), GC corrected using a smooth spline func-

tion, and finally removed systematic effects using the first 5 principal components of remaining variation in the controls. Bins with

unusually low depth or high variability among the controls were filtered, resulting in a vector of approximately 25,000 values per

sample.

A convolutional neural net was trained on these vectors to distinguish cancer from non-cancer status. Treating each autosome as a

channel, the network was structured alternating a convolutional layer (rectified linear unit activation) followed by amax-pooling layer.

In this way, the data size was successfully reduced while allowing the network to learn what features needed to be retained.

Specifically, the first convolutional layer used a kernel of length 22 with 2 filters per channel and tiled across the bins with stride 4.

This was followed by amax-pooling layer with length 3 and stride 3, so that after the first convolution andmax-pooling layer group the

output size on bins dimensionwas reduced by a factor of 12. This structurewas repeatedwith another convolutional layer of length 11

stride 3 with one filter per channel, followed by another max-pooling layer of length 2 stride 2, reducing the output size on bins dimen-

sion again by a factor of 6. A final softmax node was densely connected to the output of all chromosome channels, to classify cancer

or non-cancer status.

The Adam optimizer47 was used with a staircase exponential decay for the learning rate, starting at 0.0005, with decay rate 0.95

after the first 20 training epochs. The network was trained for a total of 180 epochs with batch size 128. The network weights were

initialized with truncated normal distributions with a standard deviation of 0.09. The network was regularized with L2 regularization

loss on convolutional weights using a regularizing factor of 0.03.

Cross-validation was used to train classifiers for the other assays, dividing the samples into 10 folds, training on 9 folds, and

applying the results to the held-out fold. A further normalization step was done within the cross-validation, in which additional

systematic effects were removed by principal components analysis (PCA) as described above. In this case, half of the training-

fold samples labeled as non-cancer were used to derive the normalizing components, and applied to the other half of the training

fold before training the neural network. The full calling procedure on the held-out fold was then to apply the normalization procedure

using the additional components learned from training, and then execute the network. None of the data from the held-out fold was

used in either training the additional normalization or the network.

Finally, the same procedure was used to train on the entirety of the training set, and applied to the validation set.

The SCNA classifier used bin counts without information from WBC sequencing. To explore the potential effect of clonal hemato-

poietic and germline copy number aberrations on classification performance, sequencing results frommatchedWGS sequencing of
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WBC were used to create an SCNA-WBC classifier. Similarly to cfDNA, bin counts from WBC sequencing were corrected for

technical variation (GC bias, PCA correction). A statistical model for determining if bin values were derived from WBC aberrations

was built (estimates of per-bin variation applied to determine significantly non-zero log-ratios in each WBC bin, similarly applied

to segments), and used to supply a masking vector indicating if bin values were likely derived from either germline or hematopoietic

aberrations. The neural network training was performed on the augmented dataset, supplying both masked bin-counts from cfDNA

and matched WBC to parallel networks, combining at the last step.

WGS: Fragment endpoints classifier - Brief description
For the fragment endpoints classifier, cancer-enriched endpoint positions in the genome were identified using hierarchical Bayesian

modeling of fragments that terminated at genome locations in non-cancer individuals to establish the base rate per position. Normal-

ized counts of cancer-enriched endpoints in fragments that were likely from solid tumors due to short length (50–140 bp) were then

input to a logistic regression to predict cancer or non-cancer signal status.

WGS: Fragment endpoints classifier - Detailed description
To generate endpoint features for classification, genome-wide positions that are significantly enriched in the endpoints of cancer

fragments as compared to non-cancer fragments were determined. Given the underlying variation in cTF, only cancer samples

with estimated high-tumor cTF (>5%) were used in the cancer training set. Fragments in both the cancer and non-cancer sets

were in silico-filtered to shorter (50–140 nt) fragments because cell-free tumor-derived fragments are shorter than healthy cell-

free DNA fragments.48 The endpoint features were generated under 10-fold cross-validation as follows: the training fold’s cancer

and non-cancer sample fragment endpoints were aggregated into two respective count vectors each the length of the genome.

On a per-chromosome basis, the significance of each position’s cancer versus non-cancer count was assessed by the statistical

procedure detailed below, resulting in a p value associated with each genomic position. Significant tiers of positions were defined

by different p value thresholds decreasing by orders of magnitude from 10�1 to 10�20 (eg, all positions with p < 10⁻1; positions

with p < 10⁻2; etc.). For each of the fold’s held-out samples, the sample’s number of endpoints at the significant positions was

computed for each tier and used as a feature for classification. Using the held-out sample counts for all folds, the selected p value

threshold was the significance tier that maximized sensitivity at 98% specificity. This yielded a p value threshold of 10�12.

A hierarchical Bayes approach was taken to model the uncertainty in the rate of non-cancer fragments at each position given the

single non-cancer count observation at each position from the aggregated set of non-cancers. The generative model used was that

non-cancer fragments at a particular position are generated from a Poisson(ƛ) distribution, where ƛ is the true rate of non-cancer frag-
ments at that position. Performed separately for each chromosome, all non-cancer counts were used to fit a gamma distribution for ƛ,
which served as the prior for all positions on the chromosome. This gamma distribution was parameterized by alpha (shape) and beta

(rate). The fit alpha and beta determined ƛ’s mean and variance of endpoint counts across different positions on the chromosome,

because the gamma distribution’s mean is alpha/beta and variance is alpha/(beta^2). For each chromosome position, the position’s

observed non-cancer endpoints count (xNC) was used along with the prior to fit a position-specific posterior: Pposterior(ƛ) � gamma

(posterior-alpha, posterior-beta), where posterior-alpha = alpha + xNC and posterior-beta = beta + 1. Given the model that new

observations are drawn from a Poisson(ƛ) distribution where ƛ is gamma-distributed according to Pposterior(ƛ), the probability of

the new observation follows a negative binomial distribution, with mean = (posterior-alpha)/(posterior-beta) and variance = [poste-

rior-alpha * (posterior-beta + 1)/posterior-beta2]. The p value of the cancer endpoints count at the position (xC) was computed as the

probability of observing that number or greater cancer counts under this negative binomial model: P(x R xC). Finally, the gamma’s

posterior-alpha and posterior-beta parameters were scaled before being used in the negative binomial model to account for the

global difference in fragment read depth between the total cancer counts and total non-cancer counts over the entire chromosome;

posterior-beta was divided by the ratio of the total cancer endpoint counts on the chromosome to the total non-cancer endpoint

counts on the chromosome to achieve the scaled gamma distribution.

WGS: Fragment lengths classifier - Brief description
For the fragment lengths classifier, fragment length data was split into 100 kb genome bins, with each bin summarized as the

geometric mean of the per-fragment length likelihood ratio of cancer signal fragments to non-cancer signal fragments. These ratios

were normalized for technical variation found in non-cancer technical control samples as well as corrected for GC bias. Normalized

likelihood ratios were processed using logistic regression on principal components of the bins to classify cancer signal versus non-

cancer signals.

WGS: Fragment lengths classifier - Detailed description
For each cfDNA participant in a training set of cancer participants with small variant based cTF estimates greater than 5%, the frag-

ment length distribution was computed per participant. Similarly, a fragment length distribution was computed per participant for a

set of non-cancer participants. For each cancer participant, the cancer fragment length distribution was inferred using the following

formula:

PðlengthjsampleÞ = cTF � PðlengthjcancerÞ+ ð1 � cTFÞ � PðlengthjnoncancerÞ
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The inferred cancer fragment length distribution was summarized across all the cancer participants using the median density per

fragment length and renormalizing to ensure the density across all fragment lengths summed to 1. The likelihood ratio of the cancer

fragment length distribution to the non-cancer fragment length distribution was used as a fragment level feature. Fragment level

features were then summarized per 100 kb genomic bin using the geometric mean. These per-region features were normalized to

an independent set of non-cancer reference samples and corrected for GC bias. GC bias correction was performed using spline

regression of per-bin GC content as well as by regressing out principal components derived from technical controls. Classification

was performed using principal component logistic regression with 5 principal components.

WGS: Allelic imbalance classifier - Brief description
For the allelic imbalance classifier, allelic imbalance data was first processed into 100 kb genomic bins. Each bin was summarized as

the deviation of the observed from the expected probability of observing the allelic counts for each SNV given the phased haplotypes

expected in that bin. Phased haplotypes were computed using Eagle2 using the 1000 Genomes reference set.49,50 Bins were further

robustly summarized into chromosome-arm level features using the median absolute value over bins with at least 50 phased single

nucleotide polymorphisms. These final chromosome-arm level features were used to train a logistic regression to predict cancer

signal versus non-cancer signal.

WGS: Allelic imbalance classifier - Detailed description
For each participant, WGS data was phased using Eagle2 with the 1000 Genomes reference set.49,50 For each 100 kb bin, the

following metric was computed:

ðhaplotype 1 counts � expected haplotype 1 countsÞ =depth
Expected haplotype 1 counts were computed after adjusting for sequencing/alignment-related bias and down-weighting fragment

counts from single nucleotide polymorphisms (SNPs) found to reproducibly deviate from a binomial distribution centered near 0.5.

For each chromosomal arm, a feature was computed as the median per-bin feature for bins with R50 heterozygous SNPs.

Classification was then performed using logistic regression on arm-level features.

Pan-feature classifier - Brief description
Each of the classifiers described above produced a continuous score to predict cancer signals versus non-cancer signals using only

the features analyzed in that classifier. The pan-feature classifier was trained using output scores from all of the cfDNA feature-based

classifiers (excluding the clinical classifier) as inputs to a gradient-boosted decision-tree classifier (XGBoost).51 Such a classifier

allowed for capture of any nonlinear relations between scores that may allow improved prediction for some samples.

Pan-feature classifier - Detailed description
Individual feature models produced a continuous score predicting cancer versus non-cancer using only the features analyzed in that

model.We combined these predicted scores as inputs to amachine-learning classifier to predict cancer versus non-cancer. To avoid

assumptions of linearity and address the potential for interaction between scores, a gradient boosted decision tree classifier,

XGBoost51 was used to combine the scores. Hyperparameters were optimized by random search on the training data, followed

by a final model trained on the whole training set. This final model was then used to predict cancer versus non-cancer on the vali-

dation set.

Clinical classifier - Brief description
The clinical data classifier used logistic regression incorporating age, smoking status, and family history of breast and ovarian can-

cers. This classifier was intended to provide a benchmark independent of cfDNA that reflected well-established risk factors for

cancer.

Clinical classifier - Detailed description
The clinical baseline classifier was trained similarly to the other classifiers: the training set used 10-fold cross-validation to assess

performance and a single model was trained on the full training dataset and locked prior to assessing on the validation set. The

logistic regression classifier was implemented using R’s glm with the true state of cancer or non-cancer regressed against age,

smoking status, and family history of breast and ovarian cancers:

cancer_status � age + heavy_smoker + current_smoker + family_history

Age was binned into three categories: <50, 50–64 and 65+. Heavy_smoker and current_smoker were two boolean factors: the first

indicated if the participant was a heavy smoker (11+ pack-years) and the second indicated if the participant was a current smoker.

Family history of breast and ovarian cancer was included as a risk score (0–6) determined as the number of affirmative responses to

the following questions:

d Had positive test for hereditary breast syndrome (participant or immediate family member)

d R1 relative had breast cancer before age 50 years

d R2 immediate family members diagnosed at any age
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d R1 relative had cancer in both breasts before age 50 years

d R1 male relative had breast cancer

d Immediate family member had ovarian cancer
CSO prediction - Brief description
Informed by the cancer signal detection classification performance, one feature type was chosen from each assay method (WGBS-

based WG methylation, WGS-based SCNA, and TS-based SNV-WBC) to create classifiers predicting a likely anatomic location or

histological characteristic of the cancer signal in individuals where a positive cancer signal was predicted (CSO). Note that WBC

correction was not used for SCNA for CSO prediction because most of the interference fromWBCs generated false positives, which

would not have an actual cancer origin, and the SCNA-WBC classifier did not show dramatically improved performance over the

SCNA classifier. The SNV classifier, however, was dramatically improved when accounting for WBC interference in the SNV-WBC

classifier, soWBC correction was used for CSO prediction using SNVs. Because a CSO prediction is only returned in the case where

a cancer signal occurs, a common set of cancer samples for evaluation of CSO predictions was generated using only the samples

where all three representative cancer signal detection classifiers detected a cancer signal at 98% specificity (see below). For

completeness, each CSO classifier was also run on the full set of cancer samples detected in the complete analyzable validation

set by its corresponding cancer signal detection classifier (Figure S5).

The CSO classifiers extended the principles for cancer signal detection to predict multiple CSO labels. For the WGBS-based WG

methylation CSO classifier, locations where extreme fragments were indicative not merely of cancer presence but of particular types

of cancer origins were identified, and the presence or absence of fragments at those locations were used as inputs to a penalized

multinomial logistic regression. Each regression was trained to predict a fixed set of CSO labels. The TS-based SNV-WBC CSO

classifier substituted an elastic net multinomial regression for the previous binomial regression and used the same feature set of

potentially disrupted genes as the cancer signal detection classifier. For the WGS-based SCNA CSO classifier, read depths for

bins across the genomewere projected onto principal components for SCNA that were defined for 21 cancers in TheCancer Genome

Atlas (TCGA). These principal components were then used in a multinomial logistic regression to predict CSO.

CSO prediction - Detailed descriptions
Post hoc determination of CSO was accomplished for each of the sequencing approaches as described below. Reported results

reflect the predictions of the described models on the validation set. In particular, CSO performance was reported on detectable

cancers (solid and hematologic) as defined by the set of cancer samples that were correctly detected at 98% specificity by all three

of the cancer versus non-cancer signal detection classifiers (WGmethylation, SNV, and SCNA-WBC). The following set of labels was

defined for CSO classification: breast; cervix; colon/rectum; esophagus; head/neck; liver/bile duct/gallbladder; lung; lymphoma;

plasma cell neoplasm; other; ovary; pancreas; kidney. The label ‘‘other’’ included anus, cancer of unknown primary, melanoma,

stomach, thyroid, and uterus cancers, and was counted as a correct result in the calculation of accuracy and precision for the

CSO classifiers.

WGBS: WG methylation CSO prediction

To classify CSO from WGBS data, the genome was first divided into 1 kb regions. Fragments derived from the training set samples

were grouped by their training label (non-cancer or a particular cancer type) and used to train a probabilistic model of fragment-level

methylation for each label in each region. Each of these models took the form of a three-component Bernoulli mixture model, where

each of the three components was parameterized by a set of methylation probabilities, one for each CpG in the region (each with a

value between 0 and 1), and a non-negative mixture fraction, the values of which were constrained to sum to 1 across the three com-

ponents. Model parameters were learned by iterative gradient-based optimization using the rprop algorithm.52 These models were

used to define a set of boolean-valued features, one for each cancer type C, region R, and threshold value T from the set {1, 2, 3, 4, 5,

6, 7, 8, 9}. Each such feature assigned a numerical value of 1 to any sample that included at least one fragment in region Rwhose log-

likelihood assigned by the Bernoulli mixture model for cancer type C was at least T greater than the log-likelihood assigned to that

fragment by the non-cancer Bernoulli mixture model. All other samples (ie, those lacking any such fragment in region R) were as-

signed the value 0 for that feature. Each feature was assessed for its ability to distinguish between training set samples labeled

as the feature’s positive cancer type and each other (negative) cancer type, pairwise, quantified by the mutual information between

the boolean feature values and the pair of cancer labels. For each label pair (ie, one positive cancer type and a distinct negative can-

cer type), the 256 features with the highest mutual information for that label pair were selected for inclusion in the final feature set, with

the additional constraint that each of the 256must derive from a distinct genomic region. The full set of features was then constructed

from the union of the pairwise lists. The final set of feature values was used to train a multinomial logistic regression classifier with

ridge penalty, using a nested cross-validation strategy to determine an appropriate ridge penalty coefficient value.

TS: SNV CSO prediction

To predict CSO from TS data, the same technique employed for cancer or non-cancer classification, using multinomial regression in

glmnet,46 was employed. In this case, coefficients were allowed to be either positive or negative, as a mutation in a particular gene

region may increase or decrease the likelihood of a sample being a specific cancer type. This was only expected to be accurate in

those samples where both the cancer/non-cancer classification score was sufficiently high, and the mutations were characteristic of

a particular cancer; the classification coefficients reflected this reality. In addition to using gene somatic mutations as features, the
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CSO classifier was trained as a stacking-ensemble classifier. A classifier using copy number alterations (CNAs) estimated from tar-

geted panel regions was trained in a similar fashion as the SNV classifier, and then the probability scores from both SNV and CNA

classifiers were used as the input features to train a final multinomial classifier in glmnet.46 The scores generated by the final stacking

ensemble classifier were used for CSO prediction.

WGS: SCNA-WBC CSO prediction

To predict CSO fromWGS data, copy number filters were pre-trained on TCGA.53 This involved converting TCGA array-based copy

number counts to a compatible format to CCGA copy number counts based onWGS. This required interpolation from a less dense to

a more dense representation of the genome, which was not expected to be problematic because copy number aberrations in cancer

are often much longer than the spacing between array-based markers (eg, chromosome arm scale).

Once copy number data were prepared as described above, we then set out to learn copy number filters that would be useful for

differentiating among cancer types. PCA reduced the dimensionality of the classification problem by producing features that, on

inspection, corresponded to weightings of bins highlighting particular amplification and deletion events.

To increase the likelihood that PCA would identify copy number aberrations that differ among cancer types, the top 50 principal

components (PCs) were kept for each pair of the 21 TCGA cancers matching the first CCGA substudy cancer types, and additionally

for each of these 21 cancers against non-cancer, resulting in a total of 231 sets of 50 PCs each.

Despite being fit independently on each pair of diagnostic classes, PCswere by design generatedwithout explicit knowledge of the

cancer types in each pair. To address this limitation, we determined which of the PCs were informative for cancer signal of origin

classification. To reduce the set of 11,550 PCs, within TCGA data, L1 regularized logistic regression was performed to classify

each of the 231 pairs, and only PCs with non-zero coefficients were retained. This resulted in an average of 6.5 PCs per pair, reducing

the total to 1,502 PCs retained. These PCs were interpreted as the copy number filters that best differentiated diagnostic classes.

For CSO prediction, features for each sample were computed by projecting onto the 1,502 TCGA vectors described above. An

additional 20 cfDNA-specific vectors were generated by PCA on the cfDNA training data. Lastly, these features were catenated

together and passed into an elastic net-regularized logistic regression. This model was fit on the training set, then applied to the vali-

dation set to produce CSO probabilities. Validation set data were preprocessed identically to those in the training set, with no knowl-

edge of validation set labels.

Overview of circulating tumor fraction and clinical LOD
A key exploratory objective of this study was to examine the relationship between classification performance and cfDNA tumor frac-

tion. cTAF is defined as the expected fraction of tumor-specificmutant alleles present in a cfDNA sample across a set of mutated loci.

cTAF was computed under a statistical model that integrates over the somatic variants (tumor mutations) identified in a participant’s

tumor biopsy sample. Tumor mutation candidates were identified from WGS of pre-treatment tumor tissue biopsies and matched

WBCs to remove germline polymorphisms from the tumor biopsy somatic mutation candidates. Consequently, cTAFs are only avail-

able for cancer cases with tumor biopsy and WBC WGS. For each participant’s tumor-specific mutation candidates, the observed

frequency of mutant alleles in cfDNA TS readswas used to calculate the fraction of tumor genomes in a cfDNA sample denoted circu-

lating tumor fraction (cTF, see calculation of cTF and cTAF below). The estimated cTF was then multiplied by the median biopsy

mutant allele frequency to estimate cTAF (see calculation of cTF and cTAF below). For some samples a cTAF could not be estimated

because no tumor-informative variants overlappedwith the regions targeted by TS in cfDNA. Sampleswith TS-overlappingmutations

that did not have any mutant allele support in TS were not included in the cTAF analysis. cTAF allowed the assessment of cfDNA

shedding behavior across cancer types and the estimation of a clinical LOD for each cancer signal detection classifier. To determine

the ability to detect cancer at 98% specificity, the probability of detecting a cancer case was estimated on classifier predictions in

cases versus log10(cTAF) under logistic regression, and 95% confidence intervals (CIs) for the clinical LOD were computed using a

Gaussian approximation of the slope standard error in logistic regression. Clinical LOD was defined for each classifier as the cTAF

where the probability of detecting a cancer signal was 50%. Clinical LOD should not be confused with analytical LODmeasurements

that typically refer to the limit of analyte detection using known replicates over a dilution series.

Targeted methylation clinical LOD from second CCGA substudy
For comparison, a clinical LODwas also included for the targetedmethylation method from the second CCGA substudy. Methods for

the second CCGA substudy have been described previously.19 In order to properly compare with the approaches evaluated here,

clinical LOD was calculated for the targeted methylation method at a 98% specificity level, though in the second CCGA substudy

the observed specificity for the targeted methylation approach was 99.3%.19

Calculation of cTF and cTAF
For each sample, somatic tumor variants were identified from available tumor-tissue biopsy and matched WBC sequencing. For

those variants, cTAF was estimated based on the fraction of mutant containing reads contributed from the tumor to the cfDNA

sample using the targeted small variants panel (TS). Once computed across participants, cTAF estimation allowed assessment of

shedding behavior across cancers and identification of the clinical LOD at the 98% specificity target.

Within each participant, we computed a Bayesian likelihood of observing the cfDNA alternate allele counts corresponding to the

alleles found in the tumor for a given value of the fraction of tumor genomes in cfDNA. We refer to the fraction of tumor genomes in

cfDNA as cTF, which is the target of the inference. Mutant allele counts were approximated as a Poisson distribution where the rate
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was controlled by the local depth of sequencing, cfDNA allele frequency, and tumor biopsy allele frequency. Individual variants were

treated as independent for purposes of aggregating the total likelihood. The posterior density was computed using a uniform prior.

We define the estimated cTF to be the value at the median of the posterior density. Approximate credible intervals were obtained

based on the same density. cTAF was then computed by multiplying the estimated cTF by the median tumor biopsy mutation allele

frequency per sample to obtain an expected tumor mutant allele frequency in cfDNA. This provided a simple, robust method for

estimating cTAF across samples with multiple orders of magnitude difference in value.

Analysis of CH - Brief description
A post hoc analysis of a subset of the CCGA participants in the training set with TS data of paired cfDNA andWBC genomic DNAwas

performed in order to evaluate the necessity of sequencing individual WBCs in order to remove interference from CH variants. WBC-

matched somatic variants (SNVs, indels) were compared with cfDNA variants in participants with and without cancer to identify CH

variants.

Analysis of CH - Detailed description
Deep TS was performed on both cfDNA and WBC using the TS panel. A noise model was trained allowing cfDNA candidate variants

to be quality scored. After filtering candidate variants for high quality (Phred-scaled quality score 60), as well as for technical artifacts

occurring at the ends of reads, a joint calling procedurewas performed to establish whether the frequency in cfDNAwas incompatible

with a hematopoietic origin (99% likely that cfDNA frequency was larger than the WBC frequency, conditional on observed allele

counts). Candidates identified as incompatible were removed from WBC-matched analysis.

The remaining variants with frequencies compatible with aWBCorigin were further filtered to establish high-quality variants likely to

be of hematopoietic origin. Candidate variants likely to be germline (either common or private) were eliminated by requiring observed

WBC frequency to be <30%. Candidate variants recurring within technical controls in >5% of the samples were removed as likely

artifacts. Variants occurring in repetitive sequence (R8 repeats) were suppressed, as were candidates in the HLA-A region. At least

one alternate allele was also required to be observed in the WBC sequencing results. Finally, biologically derived variants exhibited a

range of allele frequencies, while remaining mismapping artifacts either had no occurrence within a sample or had a very tight dis-

tribution of frequencies, and variants were removed when the standard deviation of the log(allele frequency) for samples with positive

frequency was <0.02; this occurred in R6 samples. Variants were required to pass all of these filters.

This analysis was performed on all individuals where both targeted panel cfDNA and WBC sequencing passed quality control,

including individuals with non-informative clinical staging and those for whom one or more of the other assays failed. Analysis of

clonal hematopoietic effects was restricted to individuals with solid tumors. This resulted in 1,438 individuals in the training set where

clonal hematopoietic effects could be analyzed independently of cancer type and status.

Site balance analysis
A post hoc analysis was performed to investigate the ability of the methylation assay and classifier to perform equivalently on

samples from sites not represented in training. The training set was divided into five folds approximately balanced for participants

with cancer and without cancer, with the added condition that all samples recruited from a given site were within the same fold.

Five corresponding classifiers were trained, each one omitting a fold and hence removing a set of sites from the training for that

classifier. Each classifier was then applied to the validation set, generating five replicates, each scored by a classifier trained by

leaving out a set of sites. A 98% specificity cutoff was generated for each classifier using only validation set samples where the

site was present in the training. This cutoff for each classifier was then applied to determine a cancer versus non-cancer call in all

samples scored by that classifier.

A bootstrap analysis resampling by participant was used to account for the fact that the same samples were repeatedly

scored. This allowed an estimate of the differential effect due to a site being present in training, conditional on the fact that

some samples were easier than others to detect. The validation set contained 847 samples (485 cancer, 362 non-cancer);

average sensitivity was 33.4% (range 32.2%–35.1%) across the five classifiers, comparable to the original classifier perfor-

mance. As each classifier was run on the same set of validation samples, the differential effect of training on the site where

a sample was recruited was compared to omitting that site from training. Eighty-four samples (55 cancer, 29 non-cancer)

were from sites not used in training, and were therefore not used for differential analysis. The average sensitivity on those sam-

ples was 41.8%. The remaining samples were used in a bootstrap analysis to examine if any difference in performance could be

attributed to training on sites.

The bootstrap analysis showed that the median sensitivity in the remaining samples was 32.4% over bootstrap replicates, with

the median difference in sensitivity being 0% for site included in training versus site not included in training (95% CI: �1.2%–

1.1%, p = 0.478 for superior performance with site included). Specificity was examined in training with and without sites included.

Retaining the originally set specificity thresholds using scores from samples with site included in training, the median false-positive

rate for samples with site omitted from training was 1.5% (95% CI: 0.3%–3%, p = 0.745 to reject a false-positive rate %2% [98%

specificity]).

Thus, in this post hoc analysis there was no statistically significant effect on sensitivity to omitting sites from training. Specificity

was within the expected range of variation for a small sample set at a targeted 98% specificity threshold.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
We analyzed clinically relevant outcomes for statistically significant differences in performance, assessing cancer signal detection

with associated clinical LOD and CSO prediction separately. We analyzed sensitivity at a chosen specificity for pairs of classifiers

and CSO accuracy for pairs of classifiers using McNemar’s two-sided test. A paired test was appropriate for this data because

we compared predictions that were generated from the same samples. Finally, for clinical LOD, we compared the overlap of 95%

CIs for significance. CIs shown in figures were binomial estimates of the 95% CIs computed using the standard Clopper-Pearson

method, except for the CIs for clinical LOD (described above in the section on clinical LOD).

For the validation set, analyses of WGmethylation, SNV, SNV-WBC, SCNA, SCNA-WBC, and clinical data cancer signal detection

classifiers were double-blinded: none of the personnel involved in performing sequencing or quality control, or classification analyses

were aware of clinical information (eg, cancer/non-cancer status) until assay data lock, and none of the team involved in collecting the

clinical information were aware of the sequencing, quality control, or classification results until clinical data lock. In particular, for each

of the blinded datasets, access to the mapping from sample identification in the laboratory to the clinical data patient identifications

was restricted. Additionally, after the validation dataset clinical data lock but before the validation dataset was released for use, a

data integrity team reviewed the merged data to ensure completeness across the training and validation datasets; the data integrity

team was not involved in classifier development or in determining clinical or assay evaluability. The fragment endpoint, fragment

length, allelic imbalance, and pan-feature cancer signal detection classifiers, as well as the CSO classifiers were developed after

blinding was lifted.

Performance comparison
The features and classifiers were compared in a number of ways. In order to ensure a method with the best performance was iden-

tified at a high specificity to reduce false positives, sensitivity was calculated at a 98% specificity level. A 98% specificity cutoff was

determined post hoc for the training and validation sets. Clinical LOD was assessed as described above, and CSO prediction accu-

racy was also assessed for one feature from each of the three sequencing assays.

Additional performance measures
Partial area under the ROC curve (pAUC) values were used to assess cancer signal detection classifier ROC curves. Because

population-scale screening is thought to require high specificity, classifiers were compared in the relevant region (98%–100% spec-

ificity). A bootstrap technique was used to evaluate differences in pAUC between cancer signal detection classifiers. pAUC was

calculated using a pROC R package.

ADDITIONAL RESOURCES

Clinical trial registry number: NCT02889978.

Clinical trial URL: https://clinicaltrials.gov/ct2/show/NCT02889978.
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