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Abstract 

The existing mechanical metamaterials are often designed with periodic inter-connected structs with 

simple cylindrical or uniform hierarchical geometries, which relies on their parent materials to either 

have a good mechanical performance with low recoverability, or significantly sacrifices their mechanical 

performances to be highly recoverable.  Biological fibrous structures are often evolved with a 

composition of different fibrous morphologies to possess a desired balance of mechanical performances 

and recovery.  In this study, we developed digital design algorithms to generate the next-generation 

metamaterials with composite bio-inspired twisting fibrotic structs that are rubber-like recoverable 

without significant scarification of their mechanical performances.  A machine learning predictive model 

is trained based on experimental data to reveal the resulted specific energy absorption (SEA) and SEA 

recoveries for such metamaterials with complicated fiber-composition mechanisms.  To further 

understand the fundamental structural recovery mechanisms of the natural fibers, we derived the 

elastoplastic theories of the twisting fibrotic structs, and revealed that such structs possesses a rubber-

like fracture strain with significantly improved specific energy absorption.  Our studies combined the 

structural recovery mechanisms of the composite natural fibrous structures and mechanical 

metamaterials, liberates the design potential of materials with engineerable optimal balances of their 

mechanical performances and recoverability. 

Keywords: metamaterials, bio-inspired, machine learning, specific energy absorption, additive 

manufacturing, energy recovery  
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1. Introduction 

Mechanical metamaterials are often referred to the materials with artificially engineered three-

dimensional  microstructures that possess remarkable mechanical properties, e.g. lightweight [1], 

ultrahigh stiffness [2-4], vibration mitigation [5], negative Possion’s ratio [6, 7], fracture resistant [8, 9], 

and energy absorption [10-12].  Depending on the printing techniques and functional requirements, the 

existing metamaterials are often designed with patterns of interconnected cylindrical structs such as 

octet-truss [13], octahetral [14], body-centered-cubic (BCC) [15], or face-centered-cubic (FCC) [16], and 

fabricated with variety of parent materials ranging from rubber-like plastics  to brittle ceramics [17].  

Influenced by the design patterns of structs and the parent materials [18, 19], the metamaterials usually 

exhibits either good mechanical performances with a low recoverability [20, 21] or largely sacrifice their 

mechanical performances (e.g. stiffness, toughness, energy absorption) to achieve high recoverability 

[22-24].  For certain protective applications such as defensive armor or impact-resistant landing 

components of satellites, absorbing the mechanical energy from a secondary impact after recovering from 

the initial damages is desired (e.g. the secondary impact-landings of the satellites or rovers).  Among the 

existing designs of the metamaterials however, a general design paradigm is missing to engineer the 

metamaterials to simultaneously achieve high recoverability and initial energy absorption.  Current 

design strategies to improve mechanical performance of metamaterials include solid-hardening [25], 

crack guiding [26], or the functional grading [27, 28], the geometry and design of the struts in these 

metamaterials are simple and unable to provide significant improvement on mechanical performances 

whilst maintaining a high recoverability. Therefore, engineering next-generation mechanical 

metamaterials with tailored mechanical performance and high recoverability would require the 

fundamental breakthrough of their prematurely yielded struct designs. 

In nature, protective biological structures are evolved to possess mechanical properties with 

structural recovery capabilities to resist mechanical damages induced from their surroundings.  For 

example, the copra of the coconut is protected by the husk structure composed of twisting coir fibers 

with different fiber angles and numbers to against multiple impacts.  Such natural fibers are widely 

observed in different natural species such as hemp [29], bamboo [30], and palms [31], which is 

lightweight [32], recoverable [33, 34], and damage-resistant [35, 36].  The underlying mechanisms of 

their structural recovery capability are worthwhile to be understood to reinforce existing struct design of 

metamaterials, and to create next-generation of metamaterials with tailored mechanical performances 
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with high recovery.  Therefore, we propose a natural-fiber-inspired (NFI) strategy to replace the existing 

designs of structs for metamaterials, so that these materials can be rubber-like recoverable without 

scarification of its initial energy absorption.  To achieve lattice materials with such novel and complicated 

structures, digital design algorithms including the NFI struct generation algorithm and composite NFI 

lattice generation algorithm are developed.  To predict the mechanical properties of such metamaterials 

with a large number of highly abstract design parameters however, the conventional finite element 

analysis (FEA) or experimental approach consumes a large amount of computational or manual resources, 

which makes them impractical to aid the design process for the metamaterials with a highly controlled 

and optimized mechanical performances.  As a maturing prediction tool, machine learning (ML) is widely 

applied in industrial designs [37, 38] and materials sciences [39, 40] to predict the future data based on 

uncovered patterns of data without deriving the analytical solutions or performing time-consuming 

simulations [41].  Therefore, we further proposed a innovative data-driven deep search optimization 

strategy enabled by ML to optimize the mechanical properties of the complicated metamaterials with 

composite compositions of struct morphologies based on the rapid property-predictions for thousands of 

design.  Based on this optimization algorithm, we discovered a linear stiff-soft transition trend of NFI 

metamaterials that links the conventional stiff and soft phases of the material properties, which provides 

a useful design guideline to design the metamaterials with desired and optimal balance of SEA and SEA 

recoverability.  As a result, the developed data-driven NFI metamaterials has a 6 to 36x and 6 to 16x 

higher initial SEA and recovered SEA compared to the lattice material fabricated by the rubber-like 

parent materials, while possess a 0.2 to 1.5x improvement of recovered SEA with similar initial SEA 

values for stiff parent materials. 

A general research flowchart is provided in Fig. 1.  Due to the consideration of computational cost, 

we used abstracted design data (NFI compositions) within the FCNN training process and optimization 

algorithm, while the printable files are generated by the NFI design algorithms.  Specifically, the RGM 

deep search optimization algorithm uses a trained fully connected neural network (FCNN) as the fast 

prediction tool to search the optimal NFI compositions based on comparing the predicted mechanical 

properties from thousands of different NFI compositions.  The design algorithms are used as the file-

generation tool that takes the abstract design data as input, and generate the printable optimal data-driven 

NFI lattices with given optimal NFI compositions, or provides the training NFI lattices based on the 

training NFI configurations.  Within the NFI design algorithms, the composite NFI lattice generation 
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algorithm uses the NFI struct generation algorithm as struct generation tool to convert the digital design 

matrix to a printable NFI lattice geometry.  Inspired by the microstructure of natural fibers, we rebuild 

the structs of metamaterials with hierarchical twisting fibers based on the proposed composite NFI lattice 

generation algorithm in Section 2.1.  The mechanical properties of the natural fibers are affected by its 

fibrous twisting structures and anisotropic mechanical behaviors of the monofilaments, where we focus 

on investigating structural effects of the natural fiber instead of its parent materials in this research.  

Therefore, we used stereolithography (SLA) technique to prepare the samples with smaller number of 

potential defects and mechanical instabilities of as-built materials from other techniques for a better 

precision of fabricating such complex geometry.  Future study could further innovate the printing 

techniques to replicate the parent materials of natural fibers by fabricating the samples with engineerable 

and 3D-variable anisotropic local mechanical properties in different locations.  Similar to the biological 

structures, we developed natural-fiber-inspired (NFI) lattices with composite fibrous morphologies, 

where each fibrous morphology represents the NFI structs with different number of fibers or fiber angles.  

We experimentally measured the initial specific energy absorption (SEA) and SEA recovery to reflect 

the mechanical performance and recovery of the specimens, respectively.  Therefore, we designed the 

experiments to testify the specific energy absorption (SEA) of the initial and secondary compressions of 

the conventional and NFI lattice structures.  To reveal the underlying effects of the percentages of fibrous 

morphologies on the resulting SEA and SEA recovery, we trained a fully connected neural network based 

on the experimentally gathered training data in Section 2.2.  In Section 3.1, a random-generation-

modified (RGM) deep search algorithm is combined with the FCNN to find the optimal percentages of 

fibrous morphologies within the NFI lattice that led to the highest recoverability with different initial 

SEAs. By deriving the data-driven percentages of fibrous morphologies for different levels of energy 

absorption performances, we discovered a highly recoverable linear stiff-soft transition phase of the 

metamaterials with well-performed mechanical energy absorptions. This linear stiff-soft relationship can 

also be used to precisely engineer metamaterials with an optimal balance between the mechanical energy 

absorption and recoverability.  To explain such performances, the elastoplastic behaviors of fibrotic 

structs with different fiber parameters are elucidated based on theoretical and simulation efforts in 

Section 3.2, which indicates that the structs of NFI lattice exhibits a rubber-like mechanical recoverability 

with a 370 times higher SEA. 

We provide data-driven strategies revealing the structural recovery mechanisms of composite natural 
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fibers, and derived fundamental elastoplastic theories of fibrotic structs.  We replicate such structural 

recovery mechanisms from nature to the metamaterial design, successfully engineer next-generation 

artificial fibrous structures that are rubber-like recoverable with ultrahigh mechanical performances, 

through a data-driven approach. 

2. Materials and methods 

2.1. Digital design and fabrication of NFI lattice materials 

Mimicking the helical microstructures of the coconut coir fibers (Fig. 2a), the structs of cubic NFI lattice 

specimens are developed based on a NFI struct generation algorithm with 3 × 3 × 3 arrangement of the 

unit cells and fabricated through SLA technique with Formlabs® Tough 2000 resin (See Fig. 2b, 

Supplementary Fig. 1 and Supplementary Information Section A).  All NFI specimens are post-processed 

under same conditions (See Supplementary Table 1, and the Supplementary Information Section A), 

where the parent material exhibits an elastic modulus E = 1.31 GPa, yields at 3.46% with a yield stress 

𝜎! = 26.01 MPa, and fails at 33.03% with a fracture strength 𝜎" = 34.41 MPa (Fig. 3, Table 1).  The unit 

cells of the specimens are designed with the octet-truss microstructure due to its profound energy 

absorption capabilities [21, 42], and a cell size of 10 mm. 

The design of the NFI structs (Fig. 4) includes four steps: (1) the convertibility analysis, where original 

conventional structs are categorized to either convertible or inconvertible structs; (2) the NFI conversion, 

where the design curves of NFI structs are generated; (3) the design of structural relations, where 

appropriate relations among the fiber number 𝑛, fiber diameter 𝑑", fiber separation distance 𝑑#, node 

diameter 𝐷, and the node minima area 𝐴$%&%$' are established for a consistent cross-sectional area of the 

struct, and an improved printability.  The morphology of the NFI structs (Fig. 2a, Fig. 5) is engineered 

with twisting fibers of fiber angles in the range 17º ≤ 𝜃" ≤ 57º and fiber numbers ranging from 1-3.  To 

determine the convertibility of a conventional struct (Fig. 5), the maximum fabrication angle of its 

potential NFI fibers is calculated based on the summation of the structural angle 𝜃# and the fiber angle 

𝜃".  It is then compared with the printability limit of the fabrication platform 𝜃( to determine whether the 

unsupported minima would occur.  Note that the unsupported minima represent the regions that are 

unable to be fabricated without the additions of internal support structures, where these support structures 

are difficult to be removed for complicated lattice structures.  For a convertible struct where the 

maximum fabrication angle is below 𝜃(, groups of control points 𝐶) to 𝐶* are developed to generate the 
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NFI curves (Fig. 6).  To derive the control points within each group, an initial control point 𝑝),) and its 

mirror point 𝑝),),$%,,-, are constructed with respect to the central axis of 𝐶) to 𝐶* with equation (1-3) 

satisfied: 

𝑙	(𝑝),), 𝑝),),$%,,-,) 	⊥ 	 𝑙	(𝑂), 𝑂*) (1) 

𝑂) 	 ∈ 	𝑙	(𝑝),), 𝑝),),$%,,-,)	 (2) 

𝑑	2𝑝),), 𝑝),),$%,,-,3 = 	𝑑# (3) 

where 𝑙	(𝑥, 𝑦) represents the line with x and y as its edge points, 𝑑	(𝑥, 𝑦) is the distance between x and y, 

𝑂. is the center of the control point circle 𝐶..  Based on constraints from equation (1-2), we initialize the 

coordinate of 𝑝),) and 𝑝),),$%,,-, as: 

𝑝),) = (𝑥/! + 𝑦/" − 𝑦/! , 𝑦/! + 𝑥/! − 𝑥/" , 𝑧/!) (4) 

𝑝),),$%,,-, = (𝑥/! + 𝑦/! − 𝑦/" , 𝑦/! − 𝑥/! + 𝑥/" , 𝑧/!)	 (5) 

To ensure the constraint of the separation distance (equation (3)), the coordinate of 𝑝),) is adjusted by: 

𝑝),) = 𝑂) +	𝑑#/𝑑(𝑝),), 𝑝),),$%,,-,)(𝑝),) − 𝑂)) (6) 

According to these implementations, the initial control point 𝑝.,) of each control point group 𝐶. is derived 

by: 

𝑝.,) = 𝑝),) + [(𝑖 − 1)/(𝑚 − 1)](𝑂* − 𝑂)) (7) 

For the NFI struct with fiber number 𝑛, the adjacent control points in each group are separated at an 

angle: 

𝜃0 = 2𝜋/𝑛 (8) 

Therefore, the 𝑗12  control point 𝑝.,3  on 𝐶.  is implemented based on the rotational operation from the 

rhinoscriptsyntax library [43]: 

𝑝.,3 = 𝑅(𝑝.,), (𝑗 − 1)𝜃0 , 𝑂)𝑂*DDDDDDDDDDD⃗ ) (9) 

where 𝑅(𝑝, 𝜃, 𝑥𝑦DDDD⃗ ) represents the rotational operator to rotate the point 𝑝 with an angle 𝜃 based on the 

rotational axis 𝑥𝑦DDDD⃗ .  To obtain the twisting feature of the NFI structs, secondary rotational operations are 

applied for each point group 𝐶. based on the fiber angle 𝜃": 

𝐶. = 𝑅(𝐶. , ∆𝜃, 𝑂)𝑂*DDDDDDDDDDD⃗ ) (10) 

∆𝜃 = [2(𝑖 − 1)𝑑(𝑂), 𝑂*)]/)/[(𝑚 − 1) cos 𝜃" 𝑑#] (11) 

where ∆𝜃 is the angle of rotation calculated based on equation (11).  Trough connecting 𝑝),3 to 𝑝*,3 for 

each 𝑗, the curves of the NFI structs are constructed.  To preserve a uniform cross-sectional area of the 

NFI structs for comparison purposes (Fig. 7), equation (12) is assured: 
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𝑛𝑑"4 	= 	𝑑04 (12) 

where 𝑑" and 𝑑0 are the diameters of the NFI fiber and conventional struct, respectively.  Based on this 

calculation, the radius of the fibers is in the range 202 µm ≤ 𝑟" ≤ 350 µm with a separation distance of 

𝑑# = 1000 µm between the fiber centers, which are engineered to produce a consistent cross-sectional 

area of the structs.  This consistency requires the total cross-sectional areas of the NFI structs with 

different number of fibers sums to that of the conventional struct with a 350 µm radius, since further 

reducing this radius will results in fiber diameter lower than 200 µm, and will leads to a print failure.  To 

form the connections between NFI structs, the unsupported minima is removed from spherical nodes 

(Fig. 7), where the cross-sectional area of the minima 𝐴$%&%$' is derived as: 

𝐴$%&%$' = 	𝜋[(𝑑# 	−	𝑑")/2]4 (13) 

Finally, the NFI curves are solidified into solid structures, and merged with the nodes upon the calculated 

structural relations (Fig. 8). 

To design a composite NFI lattice with the desired composition of NFI struct morphologies, a 

composite NFI lattice generation algorithm (Fig. 9) is developed in the Python environment and applied 

as a Rhino plug-in to create desired design files.  The algorithm can be subdivided into three processes: 

(1) calculation of the total struct numbers based on the given NFI composition; (2) generation of the 3D 

design matrix based on the random coordinate assignments; (3) creation of the composite NFI lattice 

material using the NFI struct generation algorithm (Fig. 4 to Fig. 8).  For a given percentage composition 

of the NFI struct morphologies {𝑝5, 𝑝), … , 𝑝)6} (Fig. 10, also refer to Table 2 for the design information 

of struct morphologies), the corresponding struct numbers are derived by 

{𝑁5, 𝑁), … , 𝑁)6} = 𝑁 × {𝑝5, 𝑝), … , 𝑝)6} (14) 

where {𝑁5, 𝑁), … , 𝑁)6 } are the number of the NFI structs with different morphologies within the 

composite NFI lattice material, 𝑁  is the total number of convertible structs for a given lattice 

configurations: 

𝑁 =		𝐶7𝐶!𝐶8𝑁9&%1	;<== −𝑁9&;-&><,1%?=< (15) 

where 𝑁9&%1	;<== is the number of the struct segments for a given unit cell topology, 𝑁9&;-&><,1%?=< is the 

number of unconvertible structs derived based on the convertibility analysis (Fig. 5), 𝐶7, 𝐶!, 𝐶8 are the 

cell numbers of a lattice material in 𝑥 , 𝑦 , and 𝑧  directions in Cartesian coordinates, respectively.  

Afterward, 𝑁5, 𝑁), … , 𝑁)6  random coordinates from the lattice materials are selected without 

duplications and assigned for the design parameters of struct morphology 0 to morphology 15, 
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respectively, to form the 3D design matrix (Fig. 9) of composite NFI lattice.  Based on the distribution 

of 𝜃" and 𝑛 on the design matrix, the NFI struct generation algorithm is applied for each individual struct 

to generate the corresponding NFI structs at desired locations of the lattice materials. 

2.2. Machine learning studies of the composition of fibrous morphologies 

Due to the complex microstructures of the NFI lattice material, the computational cost of predicting its 

mechanical performances is unacceptable through the traditional finite element analysis (FEA) approach.  

It is also not realistic to develop analytical solutions of the NFI specimen, because it is composed of in 

total 756 structs with 16 different types of NFI morphologies (fiber number 𝑛 = 1,2,3, and fiber angle 

𝜃" =	17º, 27º, 37º, 47º, 57º).  Therefore, we developed a FCNN based on TensorFlow[44] to evaluate the 

initial SEA and SEA recovery of NFI lattice materials.  The schematics of a sample training data gathering 

process is provided in Fig. 11.  To experimentally characterize mechanical performances and recoveries 

of composite NFI lattice materials and construct the training data (Fig. 11a), the initial specific energy 

absorption (SEA) and SEA recovery values of NFI lattice specimens are calculated based on the 

experimental results from the energy recovery tests that consist of three steps: (1) an initial compression 

of the sample with a compressive displacement 𝛿5, where the initial SEA is recorded; (2) an one-hour 

structural recovery without loading; and (3) a secondary compression of the sample with a compressive 

displacement 𝛿5 −	𝛿(, where 𝛿( is the permanently deformed length along the compressive direction, 

and the SEA recovery is derived.  Prior to the mechanical measurements, the specimens are secured in a 

dark environment after their fabrications to avoid the inconsistency of the ultraviolet exposure.  During 

an energy recovery test, the samples are initially compressed to 40% of their height with a load rate of 2 

mm/min to satisfy a quasi-static compressive condition, which is beyond the densification stage of the 

contacting layer for conventional octet-truss lattice used in this research (Video S1).  During the recovery, 

the samples are released from the load, where the one-hour recovery time is chosen to ensure an abundant 

structural recovery.  The calculation of initial SEA and SEA recovery is given by: 

Initial	SEA = ∫ 𝐹@
A#
5 𝑑𝛿/𝑚   (16) 

SEA	Recovery = ∫ 𝐹@@
A#B	A$
5 𝑑𝛿/∫ 𝐹@

A#
5 𝑑𝛿   (17) 

where 𝑚 is the mass of the specimen, 𝐹@, 𝐹@@ are the loads during the initial and secondary compression, 

respectively.  According to equation (16-17) a sample training data can be constructed (Fig. 11c), where 

the calculation logics are provided in Fig. 11d. 
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We applied the composite NFI generation algorithm to create NFI specimens with randomly 

distributed, artificially controlled percentages of different fibrous morphologies for training data 

construction.  Based on the preliminary experiments, we observed that the composition of the fiber 

morphologies rather than their spatial distributions over the lattice structures has more contribution to 

the SEA and SEA recovery, where the composition of conventional structs have the most significant 

effect.  Therefore, the training fibrous compositions are constructed with a fully covered percentage range 

of the conventional structs (0% to 100%), where the training data is evenly separated with different 

percentage compositions of conventional structs to improve the quality of the training process (Fig. 12).  

To ensure the sufficient amount of training samples, we gradually increase the quantity of the training 

samples until error of the predicted values converges (Fig. 13).  Specifically, 80 sets of training data are 

experimentally constructed with the inputs as different percentages of fibrous morphologies, and the 

output as either the initial SEA or the SEA recovery.  The structure of FCNN is composed of three hidden 

layers with 20 neurons in each layer, where the input layer with 16 percentages of fibrous morphologies 

is gradually connected into a single output unit (Fig. 14, Supplementary Information Section B).  Separate 

training processes are performed to develop two neural networks for the predictions of SEA and SEA 

recovery.  To avoid the vanishing gradient issue[45] caused by mapping a large input space into a small 

amount of outputs, the rectified linear activation function (ReLU) is constructed throughout the network 

to predict the mechanical performances of NFI lattices with non-saturating non-linearity natures: 

𝑎3. = max	(0, 𝑧3.)  (18) 

𝑧3. = ∑ 𝑊3C.45
CD) 𝑎C.B) + 𝑏3.   (19) 

where 𝑧3., 𝑎3. is the input and output values of the 𝑗12 neuron in 𝑖12 layer, respectively, 𝑊3C.  is the weight 

of 𝑎C.B)  on 𝑧3. , 𝑏3.  represents the bias between the adjacent layers.  In addition, comparison between 

different activation functions including the tanh, sigmoid, and ReLU (Supplementary Fig. 3) indicates 

the ReLU produces the best decay of the loss function during the training cycles. 

To evaluate the trained model, we calculated and recorded the mean squared error loss function 

during the total 2000 training epochs and evaluated the accuracy of the model by 10% randomly selected 

test data (Fig. 15).  The significant decrease of the loss functions attested the training quality of the FCNN, 

while the accuracy of the trained model is converged to a 10% and 5% error (Fig. 13) when compared to 

the test data, as the size of the training samples scales up.  Based on the repetitive tests, the experimental 

values with standard deviations fits in the confidence intervals of predicted values for the initial SEA 
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(Fig. 16a) and SEA recovery (Fig. 16b), respectively, which ensured the reliability of the FCNN.  Based 

on a trained ML model, the underlying relations between the mechanical performances and the 

compositions of fibrous morphologies are revealed, which enables the possibility of data-driven 

approaches of designing the NFI lattice material with optimal percentages for its fibrous morphologies. 

3. Results and discussion 

3.1. Data-driven design of NFI lattice material 

Based on the ML prediction model, we used a data-driven approach to control the composition of fibrous 

morphologies to develop the NFI lattice material with optimal relation of initial SEA and SEA recovery 

properties.  To search the optimal NFI composition for the highest SEA recovery of different initial SEA 

values, a ML-aided RGM deep search algorithm is developed (Fig. 17).  Within each deep search cycle, 

1000 random percentages {𝑝5, 𝑝), … , 𝑝)6})B)555  are generated, and the ML prediction model is applied 

to select the optimal composition that satisfies: 

maximize SEA	Recovery{𝑝5, 𝑝), … , 𝑝)6}. 			s. t. SEA	{𝑝5, 𝑝), … , 𝑝)6}. ≥ SEA1',E<1	(𝑖 = 1,… ,1000) (20) 

where {𝑝5, 𝑝), … , 𝑝)6}. is the 𝑖th randomly generated composition, SEA1',E<1 is the minimum initial SEA 

value to be reached.  According to the optimal composition, the composition range, R, of the random-

generation is narrowed with a search-factor α for the next search cycle, and the optimization procedure 

terminates once the SEA recovery value converges or the range R reaches user-defined limit (Fig. 17, 

also see the Supplementary Fig. 4, as well as the Supplementary Information Section B, for the detailed 

comparison of computation efficiency among nested loop, deep search, and RGM deep search 

approaches).  To explain, the increment limit of SEA recovery value is selected to match with the 

accuracy of the FCNN. The range limit could be determined based on the consideration of the 

computational cost or the resolution of the optimal NFI composition.  In this study, the range limit is set 

as 0.1%, since further reducing the range will not results in differences of the number of NFI structs for 

each fibrous morphology. 

Through searching the maximum SEA recovery for different initial SEA values, a linear relation 

between the initial SEA and the maximum SEA recovery is observed (Fig. 18a).  In addition, the 

experimental results with standard deviations confirm with the confidence intervals of predicted values 

as expected.  Apart from the traditional soft phase with reduced mechanical performance, or the stiff 

phase with low SEA recovery of the material design, we discovered and established a novel transition 

phase that connects the soft and stiff phase, where its relation between the initial SEA and SEA recovery 
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is described by: 

MAX	(SEA	Recovery) = 𝑘FGHSEA +	𝑏FGH  (21) 

where 𝑘FGH = −1.39	 × 10B4g/mJ, 𝑏FGH  = 100.33% are the derived coefficients of the data-driven 

relation. The accuracy of this relation is validated through the experimental testing of seven data-driven 

NFI samples with the initial SEA ranging from 1000 mJ/g to 4000 mJ/g with 500 mJ/g spacing, which 

gives 4.6% and 7.2% average deviations for initial SEA and SEA recovery when compared to the 

predicted curve, respectively.  Compared to the conventional octet-truss lattice material with an initial 

SEA of 4133 mJ/g and SEA recovery of 36%, the data-driven NFI lattice material can provide a 45% to 

87% ultrahigh SEA recovery for initial SEAs reducing from 4000 mJ/g to 1000 mJ/g (see the 

Supplementary Video S1-5 for the experimental recordings and interactive mechanical curves for A-E in 

Fig. 18a). 

The detailed fibrous compositions of the conventional lattice (E) and selected optimal NFI lattices 

(A-D) are provided in Fig. 18b.  It is observed that a larger percentage composition of the conventional 

structs would result in a reduced SEA recovery and an improved SEA.  Within the NFI transition phase, 

we further observed a uniform-to-composite transform of the NFI percentages at the initial SEA of 1500 

mJ/g, where the deformation analysis of the samples is performed to reveal the underlying mechanisms 

(Fig. 18c).  In the uniform NFI regime with an initial SEA below 1500 mJ/g, no conventional structs are 

required for the NFI lattice material (see Supplementary Fig. 5 for the initial SEA range of uniform NFI 

lattice materials), and the structural recovery reached 100% for a SEA recovery larger than 80%.  To 

achieve such goal, the data-driven design algorithm avoids the constraining effects between the 

unrecoverable and recoverable grains of NFI structs for a well-distributed structural deformation during 

the initial compression, and a maximized structural recovery. 

In the composite NFI regime, the NFI lattice material needs to involve a certain portion of 

conventional structs and the NFI structs with low 𝜀!,IJK for a further improved initial SEA.  In this case, 

the data-driven design algorithm is more interested to provide a design solution that possesses both high-

recoverable grains and less-complaint grains of NFI and conventional structs, where the high-recoverable 

grains suffered the majority of the structural deformation and utilized the constraining effects to aid the 

recovery of less-complaint grains.  Different from conventional octet-truss lattice material, this 

composite NFI lattice design allows a larger structural and SEA recovery potentials, which results in an 

improved SEA recovery with similar initial SEA values.  These newly engineered stiff-soft transition 
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metamaterials can readily be applied in numerous applications where a precise control of the balance 

between the energy absorption and the softness is desired for customized demands (Fig. 19a), or a 

transition between the soft and stiff area is required to resist a large amount of impact while protecting 

the soft and vulnerable human bodies (Fig. 19b). 

We directly compared the data-driven NFI lattice material and different state-of-the-art energy 

absorbing lattice materials designed with struct patterns including the face-centered-cubic (FCC), body-

centered-cubic (BCC), vintiles, and octet-truss.  The parent materials with both stiff/unrecoverable 

(Formlabs® Tough 2000) or soft/recoverable (Formlabs® Flexible 80A) mechanical properties are 

selected (Fig. 20, also see the Fig. 3 and Table 1 for the property of parent materials).  Fig. 20a compared 

the recoverable SEA and initial SEA values for these lattice materials with the data-driven NFI lattice 

materials proposed in this work, we observed that the NFI lattice materials exhibits a 6 to 36x and 6 to 

16x improvement for initial SEA and recovered SEA compared to the lattice material fabricated by the 

soft and recoverable Flexible 80A parent material.  Compared to lattice materials prepared with Tough 

2000 resin, the data-driven NFI lattice materials also possess a 0.2 to 1.5x improvement of recovered 

SEA with similar initial SEA values.  For the SEA recovery ratio with different initial SEA (Fig. 20b), 

the data-driven NFI lattice materials have a 25% - 50% larger SEA recovery ratios for similar initial 

SEAs compared to Tough 2000 lattice materials, and exhibit a 1041% higher initial SEA for similar SEA 

recover ratios compared to Flexible 80A lattice materials. 

3.2. Elastoplastic theory of NFI structs 

To explain the excellent initial SEA and SEA recovery of NFI lattices, we performed theoretical 

derivations and simulations to reveal the structural recovery mechanisms of the NFI struct (Fig. 21 and 

Fig. 22).  For the simulations, the struct models are generated using the NFI struct generation algorithm 

(Fig. 4 to Fig. 8) proposed in this work and designed with two cylindrical compressive plates at their 

edges.  The models are imported into Abaqus CAE for deformation simulation, where the quasi-static 

simulation condition is selected.  A fixed boundary condition is applied on the bottom plate of the NFI 

struct, while a forced displacement is designed on its top plate (Supplementary Fig. 7).  In addition, the 

twisting structs are meshed using the 10-node quadratic tetrahedron (C3D10) mesh elements with an 

average mesh size of 0.2.  The elastoplastic material properties (Fig. 3, Table 1) are assigned to the mesh 

elements based on experimental results.  During the simulation, the stress and strain fields are recorded 

to compare with the theoretical calculations (Fig. 21a) and visualize the stress distribution (Fig. 21b). 
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The maximum strain of a NFI struct is reduced by an increased fiber number and fiber angle (see 

Supplementary Fig. 6, and Supplementary Information Section C, for detailed derivations), as described 

by: 

𝜀IJK = 1 − cos𝜃q(1 + 𝜀)4 + tan4𝜃   (22) 

where 𝜀IJK  is the maximum strain of the fibers, 𝜀  is the strain of the NFI struct, 𝜃  is the smallest 

structural angle of the NFI struct, given as: 

𝜃 = arccos(𝐷cos𝜃"/(𝐷 − 2q𝐴𝑛/𝜋))   (23) 

where 𝐷 is the separation distance between the fiber center, 𝐴 is the total cross-sectional area of the struct, 

𝜃" is the fiber angle, and 𝑛 represents the fiber number.  Based on equation (22), the effective yield and 

fracture strains of the NFI struct (Fig. 21a caption) is modelled by: 

𝜀!,IJK = q(1 + 𝜀!)4/cos4𝜃 − tan4𝜃 − 1   (24) 

𝜀",IJK = q(1 + 𝜀")4/cos4𝜃 − tan4𝜃 − 1   (25) 

where 𝜀!, 𝜀", 𝜀!,IJK, and 𝜀",IJK are the yield strain of conventional struct, fracture strain of conventional 

struct, effective yield strain of NFI structs, and effective fracture strain of NFI structs, respectively. 

In linear elastic regime (Fig. 21a), the NFI structs proposed in this work are able to suffer a 

deformation strain 30% - 250% larger than conventional structs to permanent deformation, and exhibits 

a significant increment rate of 𝜀!,IJK  for a larger 𝜃"  (equations (24) and (25)).  The deformation 

simulation of the NFI structs at conventional yielding point indicated a more distributed and lower 

intensity of the stress field compared to the conventional structs, while a further reduction of the stress 

magnitude is observed for an increased fiber number 𝑛 and fiber angle 𝜃" (Fig. 21b).  This extended 

elastic range with well-distributed stress field explains the ultrahigh structural and SEA recovery of the 

NFI lattice compared to its conventional contour parts. 

In the elastoplastic regime (Fig. 22), we calculated the normalized loads of the NFI structs and 

conventional structs prepared with different parent materials by: 

𝐹&-,$'=%L<M,NO@ = 	𝜎(𝜀NO@(𝜀),MAT)𝐴/𝑚P1,9;1  (26) 

𝐹&-,$'=%L<M,;-&><&1%-&'= = 	𝜎(𝜀,MAT)𝐴/𝑚P1,9;1  (27) 

where 𝑚P1,9;1 is the mass of the interested struct,	𝜎(𝜀,MAT)	represents the stress of material type MAT 

at strain 𝜀 based on experimental stress-strain curves of the parent materials (Fig. 3), 𝐹&-,$'=%L<M,NO@ and 

𝐹&-,$'=%L<M,;-&><&1%-&'= represent the normalized loads for NFI and conventional structs, respectively.  To 

obtain a high fracture strain, the conventional structs relies on the properties of the parent materials (Fig. 
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22a), which scarifies a significant amount of mechanical stiffness.  However, the NFI structs (Fig. 22a) 

are able to withstand an unreduced normalized fracture load with an increased fracture strains controlled 

by 𝜃" and 𝑛.  Compared to the conventional deceasing trend of SEA and fracture strain relations (Fig. 

22b), the NFI structs provide an anomalistic increasing SEA with higher fracture strains.  These fibrotic 

structs provide rubber-like facture strains, but possesses a 370 times higher SEA compared to the rubber-

like flexible materials.  The novel elastoplastic behavior of this biological structure leads to the 

fundamental controllable, highly recoverable, and significant SEA properties of the NFI lattices. 

4. Conclusions 

We identified the mechanical elastoplastic behavior of the biometric fibrous structures, and integrated 

different fibrous morphologies to form the mechanical metamaterials with extremely recoverable and 

ultrahigh mechanical performance through a data-driven approach, where the following conclusions are 

reached: 

(1) The conventional metamaterials are unable to simultaneously achieve a high SEA and SEA recovery 

due to the early yielding or their structs, which makes them unfunctional after the initial resistance to the 

damage.  We challenged this fundamental problem of the existing mechanical metamaterials by replacing 

their cylindrical or simple hierarchical structs with NFI structs to have with rubber-like recoverability 

but ultrahigh SEA, and confirms that the fundamental early yielding problems of the traditional structs 

can be successfully prevented by the anomalistic elastoplastic behavior of the novel twisting fibers.  

(2) We developed composite NFI metamaterials with artificially engineered compositions of 16 different 

fibrous morphologies based on digital design algorithms that significantly utilized the design freedom 

offered by AM.  However, conventional FEA or experimental approaches are unable to efficiently predict 

the mechanical properties of the metamaterials with such complicated structures for optimization 

purposes.  In this study, we innovatively proposed a ML-aided deep-search optimization strategy that is 

able to generate the desired NFI configurations through predicting the SEA and SEA recoveries for 

thousands of abstracted information of NFI design updates, which makes it possible to design the 

complicated composite metamaterials with highly optimized and precisely controlled mechanical 

performances. 

(3) Our paper used a data-driven approach to discover a linear stiff-soft transition phase of composite 

NFI metamaterials with different compositions of fibrous morphologies.  This design guideline leads to 
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the next-generation metamaterials with engineerable balance of their SEA and recoverability, enduing a 

wide application potential for the proposed NFI metamaterials in different engineering practices such as 

the shoe sole or body-armor where a designable softness distribution is acquired.  

(4) We developed a data-driven NFI metamaterials that have a significantly outperformed SEAs and SEA 

recoveries compared with existing metamaterial designs with different lattice structures fabricated with 

both stiff and soft parent materials.  Indicated by the experimental results, a 6 to 36x and 6 to 16x higher 

initial SEA and recovered SEA is achieved compared to the lattice material fabricated by the rubber-like 

parent materials, while a 0.2 to 1.5x improvement of recovered SEA with similar initial SEA values is 

observed for stiff parent materials.  

Our proposed mechanical metamaterials enable the potentials for (1) developing highly recoverable 

metamaterials with artificially controlled balance of mechanical performance and recoverability; and (2) 

forming a stiff-soft transition phase of the metamaterial with engineerable simultaneous improvements 

of its mechanical performance and recoverability. Our proposed methodology rationalizes new design, 

modeling, and experimental approach to understand and apply natural-fiber-inspired structural recovery 

mechanisms into mechanical metamaterials. 
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Figures and tables 

 

Fig. 1. Research flowchart of this paper, where the detailed descriptions of FCNN, NFI struct generation 

algorithm, composite NFI lattice generation algorithm, and RGM deep search optimization algorithm are 

provided in Fig. 4 to Fig. 8, Fig. 9 to Fig. 10, Fig. 11 to Fig. 15, and Fig. 17, respectively. 
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Fig. 2. Bio-inspired design and fabrication of NFI specimens: (a) the microstructure of the natural fiber 

and its design inspirations, where the single NFI struct are captured by in-situ X-ray technology; (b) the 

design and fabrication of NFI lattice. 

 

Fig. 3. Mechanical evaluations of parent materials: (a) design of the specimens; (b) experimental 

configurations, where A is the specimen to be tested, B is the extensometer for the strain measurement, 

C represents the load cells for the load application and measurement, D are the grips for the specimen 

holding; (c-d) the experimental stress-strain curves for Formlabs® Tough 2000 and Formlabs® flexible 

80A parent material, respectively. 
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Fig. 4. Flowchart of NFI struct generation algorithm. 

 
Fig. 5. The convertibility analysis, where 𝜽𝒔 , 𝜽𝒇 , 𝜽𝒑  are the angles of the original struct, fiber, and 

printability limit to the print direction, respectively. 
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Fig. 6. The fiber conversion algorithm, where 𝒑𝒊,𝒋 represents the 𝒋𝐭𝐡 control point on 𝒊𝐭𝐡 circle of the 

control-point group 𝑪𝒊. 

 

Fig. 7. The structural relations among the fibers, node, and conventional struct, where 𝑫 is the diameter 

of the node, 𝒅𝒔 is the separation distance of the centers of the fibers, 𝒅𝒇 represents the diameter of the 

fiber, 𝒅𝒄 is the diameter of the conventional struct, 𝑨𝐦𝐢𝐧𝐢𝐦𝐚 is the area of the node minima, and 𝒏 is the 

fiber number. 
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Fig. 8. The solidification process of the NFI struct. 

 

Fig. 9. The composite NFI lattice generation algorithm. 
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Fig. 10. The design of composite NFI octet-truss lattice of different percentages of fibrous morphologies 

(𝑝) to 𝑝)6), where the fiber angle 𝜃" ranges from 17° to 57°, the fiber number 𝑛 ranges from 1 to 3. 
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Fig. 11. The schematics of a sample training data: (a) the procedure of energy recovery test; (b) example 

initial and secondary compressive curves; (c) the constructed sample training data; (d) a flowchart of 

the processing of a sample training data. 
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Fig. 12. The experimentally conducted training data. 

 
Fig. 13. The test errors of the FCNN for different numbers of the training data, where the confidence 

intervals of the FCNN are reflected in Fig. 16. 
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Fig. 14. The structure of FCNN, where Y represents the mechanical aspect to be predicted, 𝑎3. is the 

output values of the 𝑗12 neuron in 𝑖12 layer, 𝑊. and 𝑏. is the weight matrix and bias vector between the 

adjacent 𝑖12 and 𝑖 − 112 layer, respectively. 

 

Fig. 15. The loss functions for initial SEA and SEA recovery during the training process. 
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Fig. 16. Comparison between the FCNN-predicted (with confidence intervals) and experimentally 

observed (with standard deviations calculated based on three repetitive tests) initial SEA and SEA 

recoveries for the randomly selected test data. 

 
Fig. 17. A RGM deep search algorithm enabled by the ML prediction model, where R is the composition 

range of random- generation, α is the search-factor. 
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Fig. 18. The initial SEA and SEA recovery for data-driven NFI lattice material, and conventional octet-

truss lattice material: (a) the experimental and predicted SEA recoveries and initial SEAs, where the error 

bars represents the confidence intervals and standard deviations (both scaled by 2) of the predicted and 

experimental data, respectively; (b) the fibrous composition of optimal NFI lattices (A-D) and 

conventional octet-truss lattice (E); (c) the experimentally observed compressive and recovery process. 
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Fig. 19. Potential applications for the data-driven design of composite NFI octet-truss lattices: (a) a data-

driven design of customized energy absorbing shoe sole design with artificially engineered balance of 

structural recovery and energy absorption performances; and (b) a layer-wise light-weight protective 

body armor with data-driven design of NFI implants. 

 

Fig. 20. Ashby chart reflecting (a) the recoverable SEA and initial SEA and (b) the SEA recovery ratio 

and initial SEA for data-driven NFI lattice material, and the state-of-the-art lattice structures built with 

stiff (Formlabs® Tough 2000) or rubber-like (Formlabs® Flexible 80A) parent materials. 
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Fig. 21. Deformation and failure mechanisms of the conventional and NFI structs: (a) the theoretical 𝜺𝒚-

normalized elastic mechanical performance of conventional and NFI structs with different fiber angles, 

𝜽𝒇, and fiber numbers, 𝒏, where 𝝈𝒚 and 𝜺𝒚 represent the yield stress and strain for conventional structs, 

respectively; (b) the stress distribution of conventional and NFI structs deformed at conventional yield 

strain 𝜺𝒚, where A1-3 to E1-3 represents the NFI structs with different morphologies. 
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Fig. 22. The (a) theoretical elastoplastic behaviors and (b) SEA of the NFI structs built with stiff 

(Formlabs® Tough 2000) parent material, and the conventional structs prepared with both stiff and 

rubber-like (Formlabs® Flexible 80A) parent materials. 

Table 1. The dimensions and mechanical properties of the tensile specimens. 

Build 
material 

Specimen 
number (#) 

Test area 
(mm2) 

Modulus 
(MPa) 

Yield 
stress 
(MPa) 

Fracture 
stress 
(MPa) 

Yield 
strain 
(%) 

Fracture 
strain 
(%) 

Formlabs® 
Tough 

2000 resin 

1 21.93 1303.88 26.01 37.96 3.46 34.10 
2 22.19 1306.31 25.97 30.85 3.45 31.96 

Average 22.06 1305.10 25.99 34.41 3.46 33.03 
Formlabs® 

Flexible 
80A resin 

1 19.28 6.25 2.73 2.73 58.50 58.50 
2 19.12 4.59 2.24 2.24 59.23 59.23 

Average 19.20 5.42 2.49 2.49 58.87 58.87 

Table 2. Design parameters of different fibrous morphologies. 

Fiber morphology (#) Fiber angle, 𝜃" (o) Fiber number, n (#) 
0 Conventional struct, not applicable 
1 17 1 
2 27 1 
3 37 1 
4 47 1 
5 57 1 
6 17 2 
7 27 2 
8 37 2 
9 47 2 
10 57 2 
11 17 3 
12 27 3 
13 37 3 
14 47 3 
15 57 3 

 


