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Abstract. Echo planar imaging (EPI) is the most common approach
for acquiring diffusion and functional MRI data due to its high tempo-
ral resolution. However, this comes at the cost of higher sensitivity to
susceptibility-induced B0 field inhomogeneities around air/tissue inter-
faces. This leads to severe geometric distortions along the phase encoding
direction (PED). To correct this distortion, the standard approach in-
volves an analogous acquisition using an opposite PED leading to images
with inverted distortions and then non-linear image registration, with a
transformation model constrained along the PED, to estimate the voxel-
wise shift that undistorts the image pair and generates a distortion-free
image. With conventional image registration approaches, this type of
processing is computationally intensive. Recent advances in unsupervised
deep learning-based approaches to image registration have been proposed
to drastically reduce the computational cost of this task. However, they
rely on maximizing an intensity-based similarity measure, known to be
suboptimal surrogate measures of image alignment. To address this lim-
itation, we propose a semi-supervised deep learning algorithm that di-
rectly leverages ground truth spatial transformations during training.
Simulated and real data experiments demonstrate improvement to dis-
tortion field recovery compared to the unsupervised approach, improve-
ment image similarity compared to supervised approach and precision
similar to TOPUP but with much faster processing.

Keywords: Deep learning registration · susceptibility distortion correc-
tion · semi-supervised learning.

1 Introduction

Echo planar imaging (EPI) is the most common approach for acquiring diffu-
sion and functional MRI data due to its high temporal resolution which both
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reduces the influence of motion and allows the acquisition of a large number
of volumes in a time frame amenable to neuroscientific and clinical research.
This is, however, at the cost of higher sensitivity to susceptibility-induced B0

field inhomogeneities around interfaces of air, bone, and soft tissue. This leads
to severe geometric distortions in the form of local expansions or contractions
along the phase encoding direction (PED), breaking alignment with the corre-
sponding anatomical scans and corrupting subsequent diffusion model fitting or
tractography. Moreover, the effect of EPI susceptibility distortions radiate over
the whole image, introducing systematic alterations even far from the apparent
hot spots [6].

To tackle this problem, the strategy that has proved most effective is to ac-
quire an extra scan with identical settings, except for an opposite PED [1] (also
referred as blip up, blip down). It produces an analogous image with reverse dis-
tortion: expansions where there were contractions and vice versa. One can then
apply non-linear image registration, with a transformation model constrained
along the PED, to estimate the shift in voxel coordinates that undistorts the im-
age pair and generates a distortion-free image. Standard implementations of this
strategy, e.g. TOPUP [4] in FSL, are computationally intensive. They rely on
traditional image registration methods that align each new pair of images with
a separate iterative optimization. A comparison of such algorithms is available
in [2]. It was proposed in [3] to synthesize a b=0 image through deep learning
thus allowing to use TOPUP with the economy of the opposite PED acquisition,
but with no gain in terms computational time.

Recently, image registration based on deep learning (DL) architectures, con-
volutional neural networks (CNN) in particular, have been developed. With the
investment of an upfront cost during training, test images can be registered
in one-shot almost instantaneously. In the same vein as the unsupervised Vox-
elmorph [16] framework for anatomical images, it has led to the development
of fast EPI distortion correction with DL-powered registration. In [8] and [7],
similarly to traditional registration, the optimization relies on maximizing an
intensity similarity measure, known to be suboptimal surrogate measures of im-
age alignment [9]. Also, [8] does not integrate intensity modulation to account
for signal stretchings and pile-ups associated to geometric expansions and con-
tractions. This aspect is given due consideration in [7], but the network is based
on a 2D architecture likely to miss volumetric characteristics. In [5], more re-
liable fiber orientation distribution (FOD) features are used, although this is
intended only to be used as secondary correction of the distortion residuals after
an external primary one.

To address those limitations, we propose a 3D semi-supervised DL algorithm
that directly leverages ground truth spatial transformations during training. We
hypothesise that constraining DL model training with the most direct repre-
sentations of spatial correspondence will significantly improve the fidelity of the
recovered spatial correspondence during testing. Also we integrate Jacobian in-
tensity modulation when constructing the undistorted images.
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We performed two experiments to evaluate the proposed method against
the unsupervised approach similar to [8], but also against a fully transformation
supervised one. The first experiment makes use of real data to assess the practical
performance. For this experiment, transformations produced by TOPUP are
used as ground truth for training and testing. The second experiment makes
use of simulated data, generated by DW-POSSUM [1], a realistic Spin-Echo
EPI simulator. This sets up a scenario where we have genuine ground truth for
both undistorted image and the distortion-inducing deformation, and allows the
comparison with TOPUP.

The code used to implement the proposed semi-supervised model, as well as
the unsupervised and field supervised ones (and more), is available in the open
source sudistoc1 repository.

2 Background

2.1 Distortion model

Susceptibility-induced EPI geometric distortion is well understood [11]. For such
multi-slice acquisitions, distortion due to B0 field inhomogeneities is negligible
along the frequency encoding direction. Its effect can thus be parametrized by a
unidirectional deformation field V shifting voxel coordinates x along the PED.
For the typical PED from posterior to anterior, we have T+(x) = x+V (x). If the
PED is reversed, an opposite displacement field will result: T−(x) = x − V (x).
Henceforth, we will refer to this as the opposite symmetry constraint for the two
displacement fields.

Without loss of generality, we will refer to T+ as the forward transform, and
the corresponding distorted image as I+. Likewise, T− will be referred to as the
backward transform and the corresponding distorted image as I−. The latent
undistorted image will be denoted as Î. Following [12], it can be expressed both
in terms of the forward and backward images following:{

Î(x) ∼ JT+
· I+ ◦ T+(x)

Î(x) ∼ JT− · I− ◦ T−(x)
(1)

where JT+
(resp. JT−) is the Jacobian determinant of T+ (resp. T−), ◦ denoting

composition and · element-wise multiplication. JT encodes the local expansion (if
|JT | ∈ [1,+∞)) or contraction (if |JT | ∈ (0, 1]) properties of the transformation
and will modulate the resulting intensities accordingly [13].

2.2 Distortion correction using image registration

Under the above distortion model, it is evident image registration can be used
to estimate the transformations for correcting the distorted image pair. Eq. (1)

1 sudistoc: https://github.com/CIG-UCL/sudistoc

https://github.com/CIG-UCL/sudistoc
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suggests the correction can be formulated as the following image registration
problem:

argmin
V

C
(
JT+ · I+ ◦ T+, JT− · I− ◦ T−

)
(2)

where C is a dissimilarity criterion between the two corrected images (from I+
and I− respectively). The mean squared error (MSE) between intensities is par-
ticularly well suited in this case since we are dealing with the same subject, the
same modality, the same acquisition parameters (with the exception of PED);
we therefore expect almost identical intensities at endpoint. The sought trans-
formations (T+ and T−) are parametrized by V which, even though constrained
to be unidirectional, can have a large number of degrees of freedom: up to the
number of voxels of the image.

As noted in the introduction, this image registration problem is currently typ-
ically solved via computationally intensive iterative optimization, with each new
image pair solved completely independently. Recent advances in DL-based image
registration have recently been leveraged to substantially accelerate this task by
replacing iterative optimization with a one-shot computation [14] [15]. The idea
behind DL-based image registration is to learn a model that can predict from an
image pair the transformation that put them into correspondence. During train-
ing, model parameters are tuned to output an optimal transformation, for each
training sample, that maximises either some similarity between transformed im-
ages (unsupervised) or the resemblance to the corresponding ground truth trans-
formation (supervised). While the training may be computationally expensive,
once completed, new image pairs can be registered almost instantaneously. The
most popular publicly available implementation is VoxelMorph [16][17] which
provides an unsupervised framework, making use of a U-Net convolutional neu-
ral network (CNN) architecture. This framework was recently exploited for EPI
distortion correction [8]. However it has now been limited to optimisation over
purely intensity-based losses and does not embed intensity modulation.

3 Method

We implement the proposed semi-supervised approach using the Voxelmorph
framework. The framework must be adapted 1) to predict a spatial transform
pair with opposite symmetry, 2) to constrain predicted spatial transforms to be
unidirectional along the PED, 3) to support the image registration formulation
represented by Eq. (2) that includes Jacobian intensity modulation, 4) to enable
semi-supervision with ground truth spatial transforms, and 5) to handle weight
maps that modulate the contribution of each voxels according to anatomical
regions of interest. Points 3, 4 and 5 are not present in the work from [8]. The
details of the model are described below.

3.1 Model architecture

The model is organised into three sequential blocks (Fig. 1). The first block takes
a distorted image pair as input and outputs a unidirectional vector field which
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is used to produce a forward and a backward transformation. Those, together
with the associated input images, are fed to a resampling block that reconstruct
undistorted images by interpolating from transformed coordinates.

The CNN block is a U-Net as in VoxelMorph, but its input and output are
different. Instead of any arbitrary image pair, it must be given a pair of analo-
gously distorted images {I+, I−} as input. Instead of a vector field, it outputs
a scalar field V characterizing constrained displacements along a single direc-
tion (PED). As in VoxelMorph, all the trainable parameters of the model are
contained in this block.

CNN

Unsupervised loss

Supervised loss

Regularization loss

: Input backward image
: Input forward image

: Estimated distortion field
: Ground truth distortion field

resampler

Fig. 1. Diagram of the the proposed semi-supervised distortion correction network.
Portions specific to unsupervised are highlighted in blue, whereas the ones associated
to supervised are in red.

To preserve the opposite symmetry constraint induced by the PED reversal,
the pair of forward and backward transformations {T+, T−} are built from the
estimated field V following: T+ = Id + V and T− = Id− V .

Resampling block implements image warping. Unlike VoxelMorph and [8],
our implementation includes intensity modulation, which allows us to account for
signal pile-up in the presence of contraction and signal reduction in the presence
of expansion. It takes I+ (resp. I−) and T+ (resp. T−) as input to produce
undistorted, intensity-modulated images JT+ · I+ ◦T+ (resp. JT− · I− ◦T−). This
requires computing the Jacobian determinant of the transformations.

3.2 Models

The model architecture described above is used to implement an unsupervised
and a transformation supervised model, as baselines for comparison, and the
proposed semi-supervised model.

A diagram illustrating the different models can be found in Fig. 1. The parts
exclusive to the unsupervised model, comparable to [8], are highlighted in blue. It
includes the resampling block that unwarps the input images with the estimated
field allowing their comparison (unsupervised loss). The red parts are exclusive
to the supervised model. It includes the ground truth field that is compared to
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the estimated one (supervised loss). The black parts are common to both. It
includes the distortion field estimation (a regularization loss is computed on it).
The semi-supervised model encompasses both the unsupervised and supervised
components.

The unsupervised loss LU is an image similarity metric between the two
undistorted images that have undergone Jacobian intensity modulation. As men-
tioned in Section 2.2 the MSE is well indicated and Eqn. 1 leads to:

LU =

n∑
i=1

wi

(
JT+ · I+ ◦ T+(xi)− JT− · I− ◦ T−(xi)

)2 (3)

This loss is only required for the unsupervised and semi-supervised models.
The supervised loss is a distance between the estimated distortion field V

and the ground truth one V̂ . The MSE is also well adapted when dealing with
displacement vectors as it corresponds to an average of geometrical distances,
it’s a direct quantitative measure of the goodness of the registration:

LS =

n∑
i=1

wi

(
V (xi)− V̂ (xi)

)2

(4)

This loss is only required for the supervised and the semi-supervised model.
A regularization loss LR is also use on the estimated distortion field V to

encourage smoothness:

LR =
1

n

n∑
i=1

∥∇V (xi)∥2F (5)

where ∇V is the Jacobian of the field V and ∥.∥F is the Frobenius norm. This
loss is computed for all models.

For each models, the overall loss is a sum of the ones above, weighted to
account for large order-of-magnitude differences in different loss terms.

To prevent the learning process to be influenced by meaningless information
from background (which represent the majority of the image!), another kind of
weighting, spatially this time, occurs when computing the unsupervised and the
supervised losses. It corresponds to the wi in Eq. 3 and Eq. 4. The contribution
of each voxels is modulated such as only areas of interest (typically just the
brain) contribute to the loss, ignoring the background. This is not present in
Voxelmorph and [8].

4 Evaluations

The idea is to evaluate how well, having processed a portion of a dataset with
a regular tool (here TOPUP), one can use those to train a DL model that will
rapidly process the rest of the dataset. Corrections from three DL registration
approaches are engaged for comparison: unsupervised, transformation supervised
and semi-supervised. We will perform experiments on two datasets: 1- A real
dataset with TOPUP outputs as ground truths, 2- A synthetic dataset with
absolute ground truths allowing to integrate TOPUP to the comparison.
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4.1 Datasets

We acquired anatomical and diffusion weighted data as part of an ongoing study
investigating memory learning and consolidation. We have, for 60 healthy sub-
jects, T1-weighted images and distorted EPI b=0 image pairs from opposite
PED acquisition that are antero-posterior (AP) and postero-anterior (PA).

Distorted EPI images have been processed through TOPUP to obtain undis-
torted images and associated distortion fields.

acquired AP b=0

real dataset simulated dataset

acquired PA b=0

undistorted b=0 distortion field

weight map

acquired T1-w

CSF

grey matter

white matter

simulated b=0

acquisition
parameters

simulated AP b=0

simulated PA b=0

Topup FastPossumResampler

 Threshold
 + Dilation 
+ Smoothing

Fig. 2. Preprocessing steps involved in creating the real and the simulated datasets.

In addition, simulated data were produced using DW-POSSUM [1] (an ex-
tension of FSL POSSUM [10]), a realistic Spin-Echo EPI simulator. It takes as
input tissue segmentations, MR parameters associated with these tissues and a
pulse sequence, and produces an EPI image by solving the Bloch equations. We
obtained the tissue segmentations by processing the anatomical scans with FSL
FAST, producing probability maps for grey matter, white matter and cerebro-
spinal fluid. We then applied the distortion estimated by TOPUP on the real
EPI data of each subject to their corresponding simulated undistorted images
to create new synthetic pairs of AP and PA distorted images.

Acquired, TOPUP processed and simulated data have been used to produce
two datasets, denoted as real and simulated, in order to cover various experi-
mental configurations. A diagrammatic representation of the processing paths
followed to obtain the two datasets is presented in Fig 2.

– In the real dataset: the inputs of the model are the acquired AP and PA
images, the ground truth distortion fields used at training and for evaluation
are the ones from TOPUP, the ground truth images used only for evaluation
are the undistorted images from TOPUP. The advantage of this dataset is
that it is made of real data and all the artifacts it implies. The drawback is
that TOPUP is used as ground truth and therefore cannot be included in
the comparison.
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– In the simulated dataset: the inputs of the model are the simulated AP
and PA images, the ground truth distortion fields used at training and for
evaluation are the ones from TOPUP (same as for the real dataset), the
ground truth images used only for evaluation are simulated non-distorted
images. The advantage of this dataset is the synthetic, absolute nature of
the ground truths allowing any algorithm comparison. The drawback is that
the simulation process is not able to reproduce all the artifacts induced by
a real acquisition.

For both, the weight maps have been computed by thresholding (binary brain
mask), then dilating (3 voxels), then smoothing (Gaussian, σ = 6 mm) the
T1-weighted images.

We divided the same way the two datasets into training (n=40), valida-
tion (n=10) and testing (n=10) samples. Although it was shown in [16] that
Voxelmorph-like architectures can achieve decent registration with only ten or
so training subjects.

4.2 Models

We compared 3 deep learning approaches: unsupervised, transformation super-
vised and semi-supervised. Each model is trained and assessed separately for real
and simulated experiments. To form the overall loss, the unsupervised loss was
attributed a weight 200 000 (unsupervised and semi-supervised models only),
the supervised loss was attributed a weight 300 (supervised and semi-supervised
models only) and the regularization loss was attributed a weight 1 (all models).
Each model was trained for 1000 epochs, with the epoch giving the best valida-
tion loss kept. Learning rate was set to 10−4. The training time for each model
was about 3 hours on a GPU.

4.3 Assessment metrics:

For both real and simulated data experiments, their respective unseen test
data were used to quantitatively assess the performance of the proposed semi-
supervised approach against the current unsupervised approach. The assessment
made use of the following metrics: 1) Image fidelity: MSE between the estimated
undistorted versions of the AP and PA images and the corresponding ground
truth undistorted image. 2) Field fidelity: MSE between the estimated distortion
field and the corresponding ground truth distortion field (expressed in fraction
of the voxel size which is 2 mm). These mean measures were weighted by the
weight maps to ignore the background.

5 Results

Table 1 and Fig. 3 summarise the evaluation results for both real and simulated
data experiments.
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Real data Synthetic data

Fig. 3. Fidelity (MSE) to ground truth distortion fields and images for the different
models for real data with TOPUP as ground truth and for synthetic data. The field
fidelity is expressed as a fraction of the voxel dimension (2 mm). Large frames share
the same scale for global overview between experiments whereas yellowish ones are
zoomed in for intra-metric, between models comparison.

– The real dataset experiment uses real acquired EPI images and evaluate
how close to TOPUP (ground truth) the different models behave. In terms
of field fidelity, supervised and semi-supervised models show a mean vox-
elique MSE around 0.2 (equivalent to 0.4 mm2), way better than the un-
supervised approach that shows an error about 4 times bigger with also a
much higher variance. In terms of image similarity, the unsupervised and the
semi-supervised approach show an error equivalent to 2/3 of the one of the
supervised approach with akin variance. The semi-supervised approach per-
forms well for both metrics whereas the other models present weaker results
in one situation. An example case subject from the testing sample, corrected
with the semi-supervised approach, is shown in Fig. 4.

– The synthetic dataset experiment uses simulated EPI images and evaluate
how each model and TOPUP are able to retrieve a synthetic ground truth. It
quite follow the same trend as above for the deep-learning models. TOPUP,
the supervised and the supervised models show similar field fidelity that is
better than the one of the unsupervised model. TOPUP, the unsupervised
and the supervised models show similar image fidelity that is better than
the one of the supervised model. TOPUP and the semi-supervised model
performs similarly well for both metrics whereas the supervised and the
unsupervised models are weaker in one situation.
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uncorrected TOPUP unsupervised supervised semi-supervised

Real
dataset

Field
fidelity

2.21

(0.70)
∅ 0.86

(0.34)

0.21

(0.07)

0.22

(0.07)

Image
fidelity

1.39 .103

(3.39 .104)
∅ 2.22 .104

(6.76 .105)

3.27 .104

(9.09 .105)

2.10 .104

(6.29 .105)

Synthetic
dataset

Field
fidelity

2.21

(0.70)

0.17

(0.02)

0.36

(0.11)

0.17

(0.05)

0.21

(0.08)

Image
fidelity

3.89 .103

(5.94 .104)

8.73 .104

(1.51 .104)

8.98 .104

(1.82 .104)

1.55 .103

(3.41 .104)

9.25 .104

(1.81 .104)

Table 1. Fidelity (MSE: mean (std)) to ground truth distortion fields and images for
the different models for real data with TOPUP as ground truth and for synthetic data.
The field fidelity is expressed as a fraction of the voxel dimension (2 mm).

acquired AP acquired PA TOPUP distortion field

estimated undistorted PAestimated undistorted AP

TOPUP undistorted

weight map estimated distortion field

Fig. 4. Example case from the testing sample (unseen) of the real dataset, corrected
using the semi-supervised model.

6 Discussion

This study show that, with proper distortion model, one can use deep-learning
registration trained on some tens of subjects to rapidly correct a larger set for
susceptibility-induced distortion, with results as good as TOPUP. One can use
a processed subset of a dataset to include transformation supervision and im-
prove the transformation fidelity which is a direct measure of the quality of the
registration. One might have expected the semi-supervised model to perform
half-way between its unsupervised and supervised counterparts in terms of field
and image fidelity. However, our findings suggest it offers the best of both worlds.

Similar to TOPUP [4], the proposed approach requires reversed PED ac-
quisitions to correct distortion in EPI images trough registration, although this
process is performed using a deep-learning architecture, much faster than its
classical counterpart. Our approach builds on the purely unsupervised approach
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in [8], but enhance the training notably using more reliable transformation su-
pervision.

In the broader context of applying deep learning to EPI distortion correction,
Schilling et al. [3] proposes a technique that allows TOPUP-based correction in
the absence of a second reversed PED acquisition. It works by applying deep
learning-based modality transfer to synthesise a distortion-free b=0 from a T1-
weighted scan; the distortion-free b=0 is then used with the acquired b=0 for
TOPUP processing. Our method can be readily extended to drastically shorten
this distortion correction process as well. It could also be used as the primary
correction prior to the FOD-based secondary one from [5].

In future work, we plan to evaluate the effect of the training sample size
on performance. We also intend to study the generalizability of the proposed
approach. Although decent performance may be expected when training and
testing on different datasets, due to the relative homogeneity of b=0 images
compared to anatomical ones for example, the high variability of acquisition
parameters (TE, TR...) may still lead to sub-optimal results.

7 Conclusion

We presented a semi-supervised approach for the distortion correction of EPI im-
ages with opposite PED using DL-based image registration. We compared this
model with an unsupervised and a supervised one, as well as a traditional algo-
rithm: TOPUP. By leveraging ground truth distortion transformations during
training, the proposed method can produce more accurate estimate of distor-
tion fields (direct quantitative metric) compared to unsupervised approaches at
testing. It also outperforms the supervised approach for the image metric. On
synthetic data, the results were similar to TOPUP but with much faster compu-
tation. The proposed model can typically be trained on a processed subsample
of a dataset with an external tool and then be applied to the rest of the dataset
to produce distortion correction very efficiently.
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