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Abstract: Heat-related morbidity and mortality is anticipated to increase as climatic change induced 
overheating become increasingly common. The development of building-specific predictive models has the 
potential to alert occupants and emergency services to the severity of impending risks. This research aims to 
evaluate the implementation of a newly developed time series model for overheating prediction.  Since risk 
forecasting is contingent upon the accuracy of the model at different future time steps, the sensitivity of 
model outputs to the uncertainty in the data inputs needs to be understood. Internal and external climatic 
variables were monitored in an unoccupied domestic dwelling in order to evaluate the empirical model’s 
predictive accuracy.  The uncertainty related to the proximity of external weather stations was evaluated using 
data taken from four nearby weather stations and further bespoke data sets derived by interpolation. The 
results confirmed the overall accuracy of the newly developed time series predictive model, whilst highlighting 
the benefits of climatic data interpolation in reducing predictive uncertainties. The empirically derived 
modelling approach showed a low variance to the actual temperature evolution over a seven-day predictive 
period, pointing to its validity as a robust model for the prediction of future overheating risks. 
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Introduction  

Context 

Time series data, spanning more than a century, illustrates that the most populous regions 
on Earth are experiencing progressively hotter annual temperatures (NASA & GISS, 2017). 
Warmer than average summers coupled with an increased frequency of extreme heat wave 
events (Jenkins et al., 2008) pose obvious risk factors in relation to overheating in the built 
environment. Events such as the 2003 heat wave, which is reported to have resulted in over 
2000 heat-related deaths in the UK, are predicted to become increasingly common 
(Armstrong et al., 2011; Hajat et al., 2006; Rooney et al., 1998; Wright et al., 2005). 

Active cooling systems remain relatively uncommon in UK homes but their uptake is 
projected to increase rapidly (Pathan et al., 2008). O’Neill et al. (2005) point out that unless 
extensively subsidised however, the ownership of cooling systems is likely to reflect 
socioeconomic inequalities thereby rendering disadvantaged households more vulnerable. 
Furthermore widespread power outages in North America and Australia during heat waves 
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have highlighted the risks associated with reliance upon active cooling systems at times of 
grid overload (Ostro et al., 2010). 

Despite strong epidemiological correlations between elevated external temperatures 
and increased risks of heat-related morbidity and mortality (Armstrong et al., 2011; 
Vardoulakis & Heaviside, 2012) relatively little is known about internal temperature 
evolution under these conditions. Real-time predictive overheating models are needed in 
order to understand when critical thresholds are likely to be breached in specific buildings 
and to warn occupants and facility managers when health-endangering environmental 
conditions are anticipated to occur.   

Background – the development of time series models and indoor temperature prediction 

Studies related to overheating in dwellings, conducted in recent years, can be broadly 
categorised as: those that involved measuring internal temperatures in order to identify and 
quantify the risk of overheating (Beizaee et al., 2013; McLeod and Swainson, 2017; Pathan 
et al., 2017), those that involved dynamic thermal simulation modelling to assess the 
current and future risk of overheating in dwellings (McLeod et at., 2013; Mavrogianni et al., 
2012); and those that have used empirical data to construct predictive models in order to 
assess overheating both spatially and temporally (Mlakar & Strancar, 2011; Mirzaei et al., 
2012). Modelling methods that make use of measurements to explain the variation in the 
data present advantages over other modelling methods that typically entail large numbers 
of assumptions and thereby elevate the level of uncertainty in the results. The Time Series 
Analysis Method (TSAM) has been successfully used in diverse fields such as economics, 
geophysics, control engineering and meteorology to describe, explain, predict and control 
processes (Chatfield, 1996). Here the descriptive TSAM is applied to room temperature data. 
The advantage of TSAM over other black box approaches (such as artificial neural networks, 
autoregressive models, multiple linear regression models, distributed lag models, transfer 
functions etc.) is that it is an exploratory technique that allows a clear understanding of the 
causality of internal temperatures. 

 Methodology  

An empirical TSAM model was used to predict the hourly internal temperature evolution in 
the test house, in relation to different sources of meteorological data. The data measured 
on-site were compared with the meteorological data and the modelling predictions in order 
to assess the effects of the proximity of weather stations and interpolation of weather data 
on the models’ predictive accuracy.  

Time series model  

This paper utilises a newly developed Internal Trend and Cyclical Component (ITCC) Model, 
which is based on the descriptive TSAM approach. The principle aim of the descriptive TSAM 
is to decompose the variation in the series into individual components (Trend, Cyclical 
variation) that can be described and modelled independently (Fleming & Nellis, 1994). The 
definition of these components is specific to the dataset used in the analysis. In this work, 
the components trend and cyclical variation are defined in relation to the internal air 
temperature profiles in homes. The trend represents the changes in the series from day to 
day over the (52 days) monitoring period which encompasses the daily variation. Whilst the 
cyclical variation encompasses the diurnal fluctuations of internal temperatures (the 



variation within a 24h period). These concepts have their origins in the formative work of 
Chatfield (Chatfield, 1996) and Kendal & Ord (1990). 

The detailed methodology describing the ITCC model can be found in Oraiopoulos et al. 
(2017). The ITCC model is the result of joining the trend and the cyclical component models 
together and is given below: 

 

𝜽′
𝒊𝒏,𝒕 = 𝒊 + 𝒈 × [(𝟏 − 𝜶) × (𝜽𝒆𝒙,𝒅 + 𝜶 𝜽𝒆𝒙,𝒅−𝟏+. . + 𝜶𝒎 𝜽𝒆𝒙,𝒅−𝒎)]  + 𝑨 × 𝑪𝒆𝒙,𝝋𝒆

+ 𝑩 × 𝑪𝒔,𝝋𝒔 − 𝜸     

 
Where: 
θ′

in,t hourly modelled internal air temperature 

i y-axis intercept of the line of best fit for the correlation between the daily mean internal 
temperature and the exponentially weighted moving average of the daily means external air 
temperatures 

g gradient of the line of best fit for the correlation between the daily mean internal air temperature 
and the exponentially weighted moving average of the daily means of the external air 
temperatures 

α constant between 0.00 and 1.00 ( BS EN 15251, 2007) 

θex,d daily mean of the external air temperature of the current day 

θex,d−1 daily mean of the external air temperature of the previous day 

m total number of previous days used in the formula for the exponentially weighted moving average 
of the daily mean of the external air temperature 

θex,d−m daily mean of the external air temperature of the 𝑚𝑡ℎ previous day 

A numerical coefficient of the cyclical component of the external air temperature 

Cex,φe
 cyclical component of the external air temperature 

φe phase of the cyclical component of the external air temperature 

B numerical coefficient of the cyclical component of the solar irradiation 

Cs,φs  cyclical component of the solar irradiation 

φs phase of the cyclical component of the solar irradiation 

γ Constant 

Test house and empirical data monitoring 

The data used in this study was collected from one of two unoccupied, semi-detached test 
houses located in Mountsorrel, Leicestershire. The experiment was undertaken, and all the 
data collected, by other researchers as part of a different research project (see 
acknowledgements), during the summer of 2016. The houses are typical, solid brick walled, 
family homes dating from the 1910s which have subsequently undergone some 
refurbishment.  

 
Figure 1. Front elevation (facing S-SE) of the test houses (the left hand house was used in this study).  



Weather and environmental data 

Internal monitored data 
Internal temperature data was collected in the test house from 9 June to 31 July (2016) 
using a U-type thermistor (accuracy = ±0.2°C) installed in the middle of each room (with an 
aluminium foil shielding to mitigate radiant heat influences). Logging was carried out at five-
minute intervals. During the tests, the windows remained closed, with blinds and trickle 
vents open. Synthetic occupancy was created, simulating the occupancy profile and 
appliance usage of an elderly couple (staying at home the whole day): living room (occupied 
from 08:30 to 23:00) and bedroom (occupied from 23:00 to 07:30).  

External weather data – measured on site 
External temperatures were monitored on site during the monitoring period (from 9 June to 
31 July) using a shielded U-type thermistor (accuracy = ±0.2°C). The sensor was mounted in 
a shaded location on the North side of the house. The data was logged at the same interval 
as the internal sensors (five-minute intervals).  

External weather data – third party sources 

Hourly weather data was gathered from two different sources: Loughborough University (LU) 
meteorological station and the Centre for Environmental Data Analysis (CEDA, n.d.). 
Through the CEDA platform, it was possible to access data from the Met Office Integrated 
Data Archive System (MIDAS): UK Hourly Weather Observation Data. Three MIDAS stations 
in the proximity of the test house were selected for this study: Sutton Bonington (SB), 
Coundon Coventry (CC) and Wittering (WIT). The locations of the test house, meteorological 
stations and their distances from the site are shown on the map in Figure 2.  

 
Figure 2. Locations of the test house (star) and meteorological stations (circles) on the map. 

External weather data – spatial interpolation 
For the spatial interpolation of meteorological data, the method adopted by the Joint 
Research Centre (JRC) of the European Commission was selected (Voet, Diepen, & Voshaar, 
1994). This method was chosen due to its proven reliability and ease of application. Voet et 
al. (1994) demonstrated that with the averaging of data from optimally sited meteorological 
stations it is possible to obtain satisfactory results without the use of weighting coefficients 
or other more complex interpolation methods such as splines, kriging etc. (Franchello, 2005; 
Hofstra et al., 2008). Although the JRC method was originally developed for interpolating 
daily meteorological data, in this study the same criteria were adopted for spatial 
interpolation at an hourly resolution. As suggested by Voet et al. (1994), the optimal 
number of three weather stations for interpolation was used in this study. The results of 



interpolation using two meteorological stations are also shown for reference. In this case 
study, no algorithm was adopted for their selection, but the three closest meteorological 
stations (triangulating the site) with complete hourly temperature and solar radiation data 
were chosen. The JRC method foresees that in order to improve the accuracy of the data, 
the air temperature and has to be corrected to take into account the altitude difference. For 
every 100m increase in altitude (relative to the site) the temperature was reduced by 0.6°C. 
To interpolate the data, the corrected station data was then simply averaged. 

Overheating 

Various criteria have been developed to assess when rooms in a dwelling might be 
considered as overheated. These include CIBSE static criteria which suggest that the 
operative temperature (OT) in living rooms should not exceed 28oC for more than 1% of 
occupied hours in the year, for bedrooms the criterion is 1% of hours over 26oC (CIBSE, 
2006).  More recently a move towards the use of adaptive overheating thresholds, which 
vary according to the outdoor temperature, have gained popularity for the assessment of 
risks in free running (i.e. naturally ventilated) buildings (CIBSE, 2013). In terms of legislation 
The Health and Safety Rating System (HHSRS) Operating Guidance  states that when 
temperatures exceed 25°C there is a significant increase in the risk of strokes and mortality  
(HHSRS, 2004). Currently the HHSRS provides the only statutory definition of ‘overheating’ 
risks in relation to morbidity and mortality in UK residential properties (McLeod and 
Swainson, 2017). 

Uncertainties analysis 

As stated by Hopfe et al (2013), “in the assessment of the performance of a building, it is 
imprudent to take deterministic values for the input parameters”. Moreover, to generate 
robust predictions, analysis of the measurement uncertainties is required (Buswell, 2013). In 
order to take measurement uncertainties into account, they were evaluated in accordance 
with good practice guidance developed by the National Physics Laboratory  (Bell, 2001). 
Using type A (repeated readings) and type B (manufacturer specifications – accuracy) 
uncertainties for the air temperature measurements were calculated to be ±0.10°C and 
±0.12°C respectively, producing a combined standard uncertainty of ±0.15°C. Considering a 
coverage factor of k=2, the resulting extended standard uncertainty is ±0.30°C, with a 
confidence interval of 95%.  

Model evaluation 

The ITCC time series model was trained from 9 June to 16 July, and produced hourly 
predictions from 17 to 31 July. Since the external air temperature was also monitored on-
site, in order to assess the data from the various meteorological stations and the 
interpolated data, the RMSE between the measured and adopted meteorological data was 
used as a dispersion metric, as used for example by (Voet et al., 1994). The RMSE was also 
used to evaluate the errors between predicted and measured internal temperatures in the 
living room and bedroom. To check the influence that measurement uncertainty has on the 
results, the RMSE and R2 were also calculated on the measurement uncertainty limits as an 
adjunct to using the deterministic values. These values represent the minimum errors and 
the maximum explanatory power of the model (respectively), which could be achieved 
when considering the uncertainty in the measurements. Since the model was predicting 
reliably for the period up to seven days, the errors between the predicted and modelled 
data were evaluated only for the first week of predictions.  



Results and Analysis  

Modelling inputs – weather data 
As shown in figure 3, when the meteorological data is taken from a single station, the RMSE 
ranges between 0.96 and 1.15°C, compared to the site values. The RMSE is significant also 
for the meteorological stations that are very close to the test house. It has to be mentioned 
that the errors for the MIDAS stations are at certain hours very large, suggesting that the air 
temperatures are varying more quickly than at the analysed site. This can be easily 
explained due to the locations of the MIDAS stations, which are usually located in open field, 
whilst the test house is located in the middle of a small town. However, when the 
meteorological data is interpolated, the RMSE drops significantly. The best results were 
obtained using triangulation (interpolation of three meteorological stations), with the RMSE 
ranging between 0.69 and 0.89°C. This indicates that using triangulation it is possible to 
improve the input data by 7-28% relative to using a single ‘near neighbour’ weather station. 

 

Figure 3. RMSE of the meteorological data against the external temperatures measured on site. 

Modelling outputs – hourly predictions 
Figure 4 illustrates how the model was trained on 38 days of data to predict the internal 
temperature evolution for the following 14 days. Due to the increasing inaccuracy of 
forecasts after day 7, only the first week of predictions was considered in this study. 

Overall, the model showed an excellent explanatory power for the first week of 
predictions for all the meteorological data, with an R2 of 0.876-0.896 for the living room 
(LR), and 0.943-0.952 for the bedroom (BR). Considering the measurement uncertainty, the 
explanatory power might be even higher with the potential maximum of 0.937-0.951 (LR) 
and 0.951-0.960 (BR). As shown in figure 5, taking the data from the closest meteorological 
station does not guarantee that the most accurate prediction will be achieved. Indeed, in 
this case, the predicted data showed that while the largest RMSE was obtained from the 
two closest stations (LU and SB), the lowest RMSE (CC and WIT) was obtained from the two 
furthest stations. Whilst the interpolation did not show significant reductions in the RMSE of 
predictions, it is evident that with its use the errors show a greatly reduced variability 
(Figures 3 and 5), thereby reducing the uncertainty of the data that are used for the model. 
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Figure 4. Measured and modelled temperatures – Example showing model dry bulb temperature predictions 

for the living room using meteorological interpolation (SB-CC-WIT) 

 
Figure 5. RMSE of the predictions in the LR and BR, with and without considering the uncertainty range. 

Conclusions and recommendations  

This study has shown that the newly developed ITCC empirical TSAM model is able to 
accurately predict the internal temperature evolution of a dwelling, for a period up to 7 
days in the living room and bedroom of this test house. It also highlights the inaccuracies 
that are introduced to the model when data from ‘near neighbour’ meteorological stations 
are used. Triangulation of the weather data inputs improved the model’s predictive 
accuracy whilst reducing the variability and uncertainties associated with the results. For 
more robust and prolonged predictions, further model development is needed in order to 
further improve predictive accuracy during sudden spikes in the external temperatures. 
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