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Abstract

The computation time and the infinite possibilities in
model structures of data driven models often hinder
the efficient development of accurate models. This
paper presents a systematic approach for selecting the
appropriate model when forecasting the temperature
dynamics in non-residential buildings, using different
streams of data. The main objective of the work is
to evaluate the presented approach by comparing the
results to those obtained by a typical backward elim-
ination method.

The workflow delivers the selection of the appropriate
features in order to represent the system accurately
in a parsimonious model, by setting the initial model
structure search space and then estimating the pa-
rameters, using the least absolute shrinkage and se-
lection operator (LASSO) procedure. The analysis is
performed on a case study educational building com-
plex at Loughborough University in the Midlands,
UK. The input data comprise of multiple features in-
cluding internal room air temperatures, external air
temperatures, and HVAC related data such as valve
positions and fan speeds, measured sub-hourly over a
winter period between 2018 and 2019.

The results confirm that the specified automated
workflow enables accurate estimates of indoor air
temperature using considerably less computational
effort than the backward selection approach. How-
ever, the final form of the models identified could lead
to poor control performance.

Introduction

Constructing models from empirical data has been
a fundamental element in science throughout his-
tory. However, advances in monitoring equipment
of building energy systems in recent years, have al-
lowed for data driven modelling methods to be ex-
plored in much greater depth than ever before in the
field of building physics. Depending on the avail-
able data and the required output, various models
have been applied for achieving objectives, such as
energy demand reduction, fault detection and opti-
misation of HVAC systems operation. However, the
large plethora of modelling techniques that exists is

not fully explored often, mainly due to time restric-
tions or lack of experience.

The identification of the correct model can be a chal-
lenging task that is often referred to as system identi-
fication, a term whose origins can be traced to Zadeh
(1956) for the model estimation problem for dynamic
systems. Ljung (2010) defined system identification
as the ”art and science of building mathematical mod-
els of dynamic systems from observed input–output
data” (Ljung (2010)). Selecting the optimal input
data in order to represent the system accurately in
a parsimonious model, is a process that requires in
depth exploration of all the input variables and has
been termed feature selection. According to Liu and
Hiroshi (1998), feature selection is the process of elim-
inating features from the database that are irrelevant
to the task to be performed. Guyon and Elisseeff
(2003) suggested that there are three main objectives
in feature selection: firstly improving the prediction
performance of the models, secondly producing faster
and more cost-effective models, and thirdly providing
a better understanding of the underlying processes in
a given system.

Feature selection methods have been categorised in
filter, wrapper and embedded (Chandrashekar and
Sahin (2014)). Filter methods select features by rank-
ing them based on correlation criteria regardless of
the model, while wrapper and embedded methods
select the optimal state (e.g. a subset of features)
based on the performance of the model, therefore con-
sistently delivering higher performance (Jović et al.
(2015)). All methods consist of a search strategy and
a rating methodology. The search strategy describes
the selection of specific states (e.g. a subset of fea-
tures) for rating and the rating methodology deter-
mines how those states are rated (Rätz et al. (2019)).

Wrapper methods have been used extensively in
developing models for building energy forecasting.
Zhang and Wen (2019) developed a systematic feature
selection procedure that included a wrapper method
to determine the best feature set in developing a
data-driven building energy forecasting model. The
proposed method outperformed that built with a fil-
ter method alone in two case study buildings. Rätz



et al. (2019) used wrapper methods to develop an effi-
cient methodology for exploring the potential of data-
driven machine learning models in modelling building
energy systems. A common wrapper method is the
stepwise regression method that has two main classes,
the forward selection and the backward elimination
(Draper and Smith (2000)). The forward selection in-
volves the stepwise addition of features, starting with
no variables, until the model is not statistically sig-
nificant improved, while the backward elimination in-
volves starting with all the nominated variables and
stepwise deleting features until the statistically sig-
nificant deterioration of the model fit does not allow
for any further elimination. Vu et al. (2015) used
backward elimination processes to select the most ap-
propriate variables and develop a multiple regression
model for monthly forecasting of electricity demand
in the state of New South Wales in Australia. Amiri
et al. (2015) also used backward elimination to reduce
the number of parameters in their model and only in-
clude the most effective parameters in predicting en-
ergy consumption in the USA. Geneidy and Howard
(2020) used the backward elimination is selecting the
features of a model that was later applied to identify
the factors affecting the contracted energy flexibility
potential of homes.

Embedded methods have also been popular in devel-
oping models for predicting energy demand in build-
ings. Fan et al. (2014) applied recursive feature elim-
ination to select the optimal inputs for next-day en-
ergy consumption and peak power demand predic-
tions of a case study building in Hong Kong. Can-
danedo et al. (2017) also used recursive feature elim-
ination for selecting the variables in the prediction of
energy demand in a low energy house in Belgium.

An increasingly popular embedded method is the
least absolute shrinkage and selection operator
(LASSO). This approach minimizes the residual sum
of squares, with a constraint of keeping the sum of the
absolute value of the coefficients less than a constant.
This constraint results in producing some coefficients
that are exactly zero and hence gives parsimonious
models (Tibshirani (1996)). Ma and Cheng (2016)
used the lasso technique for identifying the influential
features on the regional energy use intensity of resi-
dential buildings in New York. Wang et al. (2019)
applied lasso to improve the accuracy and reliability
of the occupancy detection of their model. Chen et al.
(2018) proposed lasso in selecting the most influential
variables to establish models for predicting building
energy consumption. Finally, Suryanarayana et al.
(2018) chose lasso to perform feature selection in de-
veloping a model for operational day-ahead heat de-
mand forecasting in district heating systems.

Whilst these methods have been used for more gen-
eral forecasting of building electricity demand, their
use for detailed building dynamics models for use for
control has been limited.

This paper will test the effectiveness of two popular
methods,the backward elimination and lasso as fea-
ture selection methods, for the modelling of the inter-
nal temperature in a case study educational building,
in UK. The aim is to identify efficient methods of
identifying variables that enable the control mecha-
nisms of building thermal dynamics.

Methodology

This study presents a comparison of feature selection
methods in modelling the internal temperature of a
teaching space, in an educational building. The fol-
lowing subsections describe the data used as the ba-
sis for modelling, the Ordinary Least Squares (OLS)
and LASSO approaches used, and the validation tech-
niques and metrics.

Data

The work used data from a case study educational
building complex at Loughborough University, lo-
cated in the Midlands, UK. The building, situated
in the west park of the campus, was refurbished in
2016 and it comprises of a central learning and exhi-
bition zone, lecture theatres, seminar rooms and an
informal learning area.

Data were acquired from the building management
system for the winter period 2018-2019. After a first
screening process to identify missing data, the inter-
nal temperature of a lecture theatre (Teaching Room
1) was obtained with continuous data for the period
between 17 January 2019 and 15 February 2019, in
15 minutes intervals. This is presented in Figure 1.

A number of variables that were considered to have an
impact on the formation of the internal temperature
in Teaching Room 1 and play a key role in controlling
the indoor thermal environment, were also obtained,
in the same resolution (15 minutes intervals) and for
the same period (between 17 January 2019 and 15
February 2019). These are variables related to op-
eration of the air handling unit that serves Teaching
Room 1 as well as the temperature of the adjacent ex-
hibition space and the external temperature, which is
continuously measured by the facilities management
team, using high accuracy probes. In summary, the
following variables were considered for the modelling:

• Internal air temperature

• Cooling valve demand

• Heating valve demand

• CO2 fan speed demand

• Damper calculated demand

• Outside air temperature

The cooling valve demand, heating valve demand, the
CO2 fan speed and damper calculated demand vari-
ables were considered as they were the main control
signals that define the operation of the air handling
unit. The internal temperature is the variable of in-
terest for prediction and the outside air temperature
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Figure 1: Data

is a common external factor that affects building in-
door temperature. The values of these parameters
over the period of evaluation is shown in Figure 1.
These variables formed the basis for the modelling
approach and the analysis presented in this paper.

Modelling

The proposed model is an Ordinary Least Squares
(OLS) calculation of the internal temperature, based
on past values of both endogenous and exogenous
variables, for the calculation of one time step ahead
forecasts. Endogenous variables are the own lags of
the dependent variable, in this case of the internal
temperature of Teaching Space 1. Exogenous vari-
ables are all the rest of the inputs to the model,
other than the own lags of the internal temperature
of Teaching Space 1. The general form of the model
is given by the following equation:

yt+1 =

Tn∑
i=0

βiyt−i +

X∑
j=1

Tx∑
i=0

δj,ixj,t−i (1)

Where yt denotes the internal temperature of Teach-
ing Room 1 at time t, xj,t denotes the exogenous vari-
able j at time t, i is the number of own lags of the
endogenous or exogenous variables,betai is the param-
eter relating lag i of the endogenous variable to its
value at t + 1, δj,i is the parameter relating lag i of
the exogenous variable xj to the endogenous variable
at time t+1, X defines the number of exogenous vari-
ables, Tn defines the number of lags of the endogenous
variable to be explored and Tx defines the number of

lags of the exogenous variables to be explored. .

The main aim of this model is to provide parsimony
and improve the understanding of the dynamics in the
building’s thermal behaviour. Its composition allows
for the future control of variables that are part of the
HVAC system in order to achieve the desired thermal
conditions in a space and allow energy efficiency and
energy flexibility approaches to be implemented. The
simplicity of the OLS calculation further allows the
exploration of various feature selection methods.

Feature Selection

This paper explores two different feature selection
techniques, the backward elimination and the least
absolute shrinkage and selection operator (LASSO).
These will be evaluated against the base case of de-
veloping a model with no feature selection technique
applied, but they will also be compared against each
other in terms of model accuracy and parsimony.

The backward elimination feature selection involved
initially selecting a significance level p < 0.05, then
the model was first fitted with all the nominated
variables and the significance level of each variable
was calculated. A stepwise process followed where
the variable with the highest p-value was identified
and eliminated if its p-value was greater than 0.05.
The model was then fitted again with the remaining
variables. This process was repeated until all vari-
ables left in model were significant with a p-value less
than 0.05. This threshold is consistent with Vu et al.
(2015) and also suggested in literature Montgomery
(2011). Figure 2 illustrates the backward elimination



feature selection process.
The LASSO technique fits the model with a regular-
isation technique. This means the feature selection
was applied by penalising the magnitude of coeffi-
cients of features together with minimising the error
between measured and predicted values on the inter-
nal temperature (residual sum of squares or ”RSS”).
More particularly, LASSO performed an L1 regulari-
sation, by adding a factor of sum of absolute value of
coefficients (”SAC”) in the objective function (which
is minimising the error). This factor is depicted by
the α (alpha) parameter, which balances the amount
of weight given to minimising the residual sum of
squares compared to minimising the sum of abso-
lute values of the features’ coefficients. The LASSO
model was implemented using the statsmodels pack-
age where the objective function to be minimised is
the following:

Objective =
0.5 ∗RSS

n
+ α ∗ SAC (2)

It is clear that if the value of α is zero then the LASSO
performs a normal OLS without feature selection. For
values of α > 0 the LASSO should result in producing
some coefficients that are equal to zero and hence re-
duced model complexity, allowing parsimonious mod-
els to be developed. Figure 3 illustrates the LASSO
feature selection process.
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Figure 2: Backward elimination feature selection pro-
cess

The nominated variables that form the features of the
model are the own lags of the endogenous and the own
lags of the exogenous variables. For the endogenous
variable this work has selected the value at time t as
well as the lags of up to 16 time steps (Tn), for the
one-time-step ahead prediction (t+ 1). With a single
time step being the 15 minutes interval of the data
resolution, 16 time steps are equal to 4 hours worth

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fit OLS model with endogenous and 

exogenous variables by minimising the 

objective function 

Complete 

Select value of α (alpha) 

Figure 3: LASSO feature selection process

of data. For the exogenous variables in this work, the
values at time t and those at the lags of up to 4 time
steps (Tx) (1 hour worth of data) were considered.
For the computation of the feature selection, the cod-
ing language Python (3.7.1) was used and in particu-
lar the package statsmodels, installed on a standard
laptop (i5 Processor @1.60GHz, 8GB RAM, 64-bit
operating Windows 10 system).

Validation

The presented work has been validated using internal
split validation. The data were split into training and
testing sets. The training dataset was from 12:00am
on 17 January 2019 until 11:45pm on 4 February 2019
(about 70% for the dataset) and the testing dataset
was from 12:00am on 5 February 2019 until 11:45pm
on 15 February 2019 (about 30% of the dataset). The
training dataset was used to fit the model and calcu-
late the coefficients of all the selected features and the
testing dataset was used to calculate the one time step
ahead (t + 1) predictions at each time step (t). The
measures of error used to evaluate the results, given
below for n observations, were based on the residuals
between the measured value at (t+1), marked with y
in the equations below, and the prediction (the sim-
ulated) marked with ŷ.

• Coefficient of determination (R2) is the propor-
tion of the variance in the dependent variable
that is predictable from the independent vari-
ables.

R2 =
n×(

∑n
i=1 yi×ŷi)−

∑n
i=1 yi×

∑n
i=1 ŷi√

(n×
∑n

i=1 y2
i−(

∑n
i=1 yi)2)×(n×

∑n
i=1 ŷ2

i−(
∑n

i=1 ŷi)2)

• Root Mean square Error (RMSE): the standard
deviation of the prediction errors.

RMSE =

√∑n
i=1(yi−ŷi)2

n

• Coefficient of Variation of RMSE (CVRMSE):
the normalised RMSE by the mean value of the
measurements.

CV RMSE = 1
ȳ ×

√∑n
i=1(yi−ŷi)2

n × 100



• Mean Absolute Error (MAE): the mean of the
absolute difference between the measured and
the simulated values.

MAE =
∑n

i=1 |yi−ŷi|
n

• Mean Absolute Percentage Error (MAPE): the
average of absolute percentage errors .

MAPE =
∑n

i=1 |
yi−ŷi

yi
|

n × 100

• Mean Biased Error (MBE): the mean of the dif-
ference between the measured and the simulated
values

MBE =
∑n

i=1(yi−ŷi)

n

• Normalised MBE (NMBE): the normalised value
of the mean biased error that allows for compa-
rable results.

NMBE = 1
ȳ ×

∑n
i=1(yi−ŷi)

n × 100

These measures of error have been extensively used
in the field of forecasting and energy demand studies.
Each one depicts a different aspect of the prediction
as it will be discussed when presenting the results.

Results

The results from three models for the prediction of
the internal temperature of Teaching Room 1 are pre-
sented here:

• the OLS with no feature selection

• the OLS BE with backward elimination feature
selection

• the OLS LASSO (with three different α values:
0.1, 0.5 and 1.0)

The comparison of the one-time-step ahead predic-
tions of all three models to the measured testing
data is presented in Figure 4 and shows a good over-
all agreement, with the OLS LASSO model under-
predicting some of the daily peaks of the internal
temperature.

The measures of error for the one-time-step ahead
predictions in Table 1 show that the performance
of all models is high, with the OLS with backward
elimination model performing almost identical to the
OLS model with all the nominated features selected.
The values of R2 are very close to 1, which was to
be expected after inspecting Figure 4. The measures
RMSE, MAE and MBE indicate that the magnitude
of the error for the test dataset is low. The MAE
shows that on average, the error is below 0.2◦C, while
the RMSE gives more emphasis on larger differences,
skewing the average difference to 0.1-0.2◦C for all
models. The MBE, which is the only measure that
can capture the over and under prediction of the mod-
els, shows that, on average, all models under-predict
the measured values, with an average error value of
less than 0.1◦, which is a relatively small value.

The measures CVRMSE, MAPE, and NMBE, allow
for a relative comparison showing the error as a per-
centage of the mean value for every model. The value
of CVRMSE indicates that the RMSE is 0.6% of the
mean value of the measured series in the OLS and
OLS with backward elimination and between 1.07-
1.17% in the OLS with LASSO model, values that
are considerably small. The MAPE shows that in
terms of absolute error, the mean is proportional to
less than 0.5% of the mean measured value in the
cases of OLS and OLS with backward elimination
and less than 1% in the case of OLS with LASSO.
The NMBE, indicates that the average errors are up
to 0.7% of the mean value in the case of the OLS
LASSO model, while less than 0.1% in the other two
models.

It is clear that as the value of α increases, the per-
formance of the model degrades. This was to be
expected since, the higher values of α, the less fea-
tures are selected in the model, affecting its perfor-
mance. Table 2 shows the features that were selected
for each model and the calculated coefficients. It can
be observed that the OLS with backward elimination
model has less than half of the features (19 features)
compared to the initial OLS model (42 features).

The OLS LASSO model has a considerably different
structure than the OLS with backward elimination,
yet the number of features selected is comparable, es-
pecially for α values of 0.5 (21 features selected) and
1.0 (20 features selected). The value of the internal
temperature at the value at time t, for the predic-
tion at t + 1, is the one with the most influence in
all models. This was to be expected as the values
of internal temperature in high resolution time series
are highly correlated. The main difference between
the OLS model with backward elimination and that
with LASSO is in the lags of the endogenous vari-
able, the internal temperature, where the former has
selected certain lags , while the later has selected all
the lags. In terms of the exogenous variables, the
OLS LASSO model has eliminated all of the outdoor
temperature features as well as those of the CO2 fan
speed demand. It is possible that a different form
of this exogenous feature would be more appropriate,
one that would take into account the lagged values
of past days and not only those of past hours, allow-
ing the role of the thermal mass of the building to be
captured in the models’ structure.

Discussion

The aim of this work is to develop an efficient data-
driven approach to model a building’s thermal dy-
namics in response to various HVAC inputs.

The analysis indicates that the LASSO performs
slightly worse in prediction but is able to reduce the
number of parameters through the regularisation ap-
proach. This approach has its benefits as the model
structure is defined at the same time as the model
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Figure 4: Model results for test data period

Table 1: Measures of error for model evaluation

Models R2 RMSE CVRMSE MAE MAPE MBE NMBE
(%) (%) (%)

OLS 0.99 0.1 0.60 0.1 0.45 0.0 0.09
OLS BE 0.99 0.1 0.60 0.1 0.44 0.0 0.09
OLS LASSO (α = 0.1) 0.98 0.2 1.07 0.2 0.78 0.1 0.49
OLS LASSO (α = 0.5) 0.98 0.2 1.09 0.2 0.83 0.1 0.61
OLS LASSO (α = 1.0) 0.98 0.2 1.17 0.2 0.86 0.1 0.68

parameters.

In developing data-driven models of building system
dynamics, one could encounter a variety of different
system configurations. With the data-driven OLS
LASSO approach, a model developer just needs to
define the parameters of interest and the pertinent
time scales of importance, i.e. how far back into the
past to look, to define a model that could be used in
control. This could be done offline to first determine
which parameters are important to gather and then
refit online with only a subset of parameters.

However, the results from this analysis indicate some
issues with respect to the use of such models for con-
trol. The LASSO with an alpha value of 1.0 (LASSO
α=1.0) found that the cooling valve, outside air tem-
perature and CO2 were not relevant to the building
dynamics.

The outside air temperature not being a significant
parameter is obviously not desirable as from building
physics theory it is known that the outside air temper-
ature will have an effect on the indoor temperature.
The outdoor temperature not being relevant could be
due to the few previous time lags considered, specifi-

cally 1 hour. This indicates that the selection of the
bounds of the parameter space to be considered are
very important.

With respect to the CO2 Fan Speed Demand and the
Cooling Valve Demand, given that the estimation was
done in the winter period, it is possible that in this
time period this parameters have little effect. Yet,
it is possible, during other seasons, these parameter
would have a large influence on the indoor temper-
ature. This indicates the model would need to be
re-estimated periodically.

Further the LASSO (α=1.0), found that only the
heating valve demand at time t − 4 was relevant.
This could potentially lead to poor control behaviour
as the model would consider that the heating valve
demand at other time lags would have no influence
on the room temperature, leading to plausible gaps
in the sequential predictions of the dependent vari-
able, in this case the internal temperature of Teach-
ing Room 1. The same would occur with the damper
calculated demand.

The values of LASSO (α=0.1) also exhibit behaviour
that would not be beneficial for control. The heat-



Table 2: Feature Coefficients

Features OLS OLS BE OLS LASSO OLS LASSO OLS LASSO
(α = 0.1) (α = 0.5) (α = 1.0)

Cooling Valve Demand (t) -0.0007 -0.0007 0 0 0
Cooling Valve Demand (t-1) 0.0000 0 0 0 0
Cooling Valve Demand (t-2) -0.0002 0 0 0 0
Cooling Valve Demand (t-3) 0.0002 0 -0.0005 0 0
Cooling Valve Demand (t-4) 0.0007 0.0007 0 0 0
CO2 Fan Speed Demand (t) -0.0069 -0.0057 0 0 0
CO2 Fan Speed Demand (t-1) 0.0023 0 0 0 0
CO2 Fan Speed Demand (t-2) 0.0031 0.0028 0 0 0
CO2 Fan Speed Demand (t-3) -0.0034 0 0 0 0
CO2 Fan Speed Demand (t-4) 0.0046 0.0025 0 0 0
Heating Valve Demand (t) 0.0036 0.0036 0.0122 0.0046 0
Heating Valve Demand (t-1) -0.0037 -0.0035 -0.0033 0 0
Heating Valve Demand (t-2) 0.0000 0 -0.0053 0 0
Heating Valve Demand (t-3) 0.0018 0.0017 -0.0018 0 0
Heating Valve Demand (t-4) 0.0001 0 0.0042 0.0009 0.0046
Damper Calculated Demand (t) 0.0001 0 0.0024 0.0020 0
Damper Calculated Demand (t-1) -0.0002 0 0.0005 0 0
Damper Calculated Demand (t-2) 0.0001 0 -0.0005 0 0.0010
Damper Calculated Demand (t-3) 0.0005 0.0006 -0.0024 0 0
Damper Calculated Demand (t-4) 0.0001 0 0.0023 0.0004 0.0010
Outside Air Temperature (t) -0.0077 0 0 0 0
Outside Air Temperature (t-1) 0.0363 0.0142 0 0 0
Outside Air Temperature (t-2) -0.0211 0 0 0 0
Outside Air Temperature (t-3) 0.0067 0 0 0 0
Outside Air Temperature (t-4) -0.0107 -0.0110 0 0 0
Teaching Room 1 Temp (t) 1.3899 1.3917 0.9252 0.9262 0.9304
Teaching Room 1 Temp (t-1) -0.0855 -0.0870 0.0020 0.0012 0.0006
Teaching Room 1 Temp (t-2) -0.2768 -0.2668 0.0024 0.0012 0.0007
Teaching Room 1 Temp (t-3) -0.0603 -0.0928 0.0026 0.0029 0.0011
Teaching Room 1 Temp (t-4) -0.0241 0 0.0029 0.0032 0.0018
Teaching Room 1 Temp (t-5) 0.0067 0 0.0036 0.0037 0.0037
Teaching Room 1 Temp (t-6) -0.0300 0 0.0040 0.0040 0.0040
Teaching Room 1 Temp (t-7) 0.0319 0 0.0043 0.0043 0.0043
Teaching Room 1 Temp (t-8) 0.0188 0.0329 0.0045 0.0045 0.0045
Teaching Room 1 Temp (t-9) 0.0106 0 0.0048 0.0047 0.0048
Teaching Room 1 Temp (t-10) -0.0041 0 0.0050 0.0049 0.0049
Teaching Room 1 Temp (t-11) 0.0814 0.0833 0.0050 0.0050 0.0050
Teaching Room 1 Temp (t-12) -0.0755 -0.1210 0.0050 0.0050 0.0049
Teaching Room 1 Temp (t-13) -0.0588 0 0.0051 0.0050 0.0050
Teaching Room 1 Temp (t-14) 0.0507 0.0567 0.0052 0.0050 0.0050
Teaching Room 1 Temp (t-15) 0.0178 0 0.0050 0.0049 0.0049
Teaching Room 1 Temp (t-16) 0.0041 0 0.0046 0.0045 0.0045

ing value demands at times t − 1, t − 2, and t − 3
are defined as negative values. This indicates that
a heating value demand at these times reduces room
temperature. This could also lead to undesirable con-
trol behaviour.

However, the OLS with backward selection exhibited
much poorer performance in this respect, as there are
many variables in the time history that set to zero and
negative parameter values.

Therefore the LASSO approach would appear to be

an efficient approach to developing a model structure
as well as parameter identification, however further
regularisation techniques may be needed to develop
models that have good control performance.

The conclusions of this work are limited by the case
study’s small scope as it only considered a single room
served by a single air handling unit in a single edu-
cational building. Nonetheless, the issues exposed for
the parameter selection can generally be considered
for other building energy systems. To provide more



general conclusions with respect to performance, this
approach should be explored in a wide range of build-
ings across a variety of seasons.

Conclusions and Future Research

This work explored two feature selection techniques,
the backwards elimination and LASSO regularisation,
to estimate one-step ahead models of building ther-
mal dynamics. The analysis found that across all
metrics the LASSO approach performed worse than
the backwards selection but the change in perfor-
mance was very small. This indicates that the LASSO
regularisation is an efficient approach to model selec-
tion.

The analysis did however indicate that the final model
structures selected by both the backward selection
and LASSO techniques could lead to poor control
performance, due to negative values and lack of regu-
larity in the time lags of exogenous variables, leading
to plausible irregularities in the sequential form of the
predictions.

Therefore, future work will focus on expanding the
regularisation techniques to encourage selection of pa-
rameters with characteristics for stable control, ex-
tend the time history explored to include previous
days, and examine the performance in a variety of
buildings across various seasons.
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