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Abstract 

Background: Gene set enrichment analysis (detecting phenotypic terms that emerge 
as significant in a set of genes) plays an important role in bioinformatics focused 
on diseases of genetic basis. To facilitate phenotype‑oriented gene set analysis, we 
developed PhenoExam, a freely available R package for tool developers and a web 
interface for users, which performs: (1) phenotype and disease enrichment analysis on 
a gene set; (2) measures statistically significant phenotype similarities between gene 
sets and (3) detects significant differential phenotypes or disease terms across different 
databases.

Results: PhenoExam generates sensitive and accurate phenotype enrichment analy‑
ses. It is also effective in segregating gene sets or Mendelian diseases with very similar 
phenotypes. We tested the tool with two similar diseases (Parkinson and dystonia), to 
show phenotype‑level similarities but also potentially interesting differences. Moreo‑
ver, we used PhenoExam to validate computationally predicted new genes potentially 
associated with epilepsy.

Conclusions: We developed PhenoExam, a freely available R package and Web 
application, which performs phenotype enrichment and disease enrichment analysis 
on gene set G, measures statistically significant phenotype similarities between pairs of 
gene sets G and G′ and detects statistically significant exclusive phenotypes or disease 
terms, across different databases. We proved with simulations and real cases that it is 
useful to distinguish between gene sets or diseases with very similar phenotypes.

Github R package URL is https:// github. com/ alexc is95/ Pheno Exam.

Shiny App URL is https:// aleja ndroc ister na. shiny apps. io/ pheno examw eb/.
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Background
One of the main aims of clinical genetics research is to discover new gene-disease asso-
ciations [1–6]. A disease is commonly diagnosed through the identification of a set of 
symptoms and signs associated with a particular and recognized clinical phenotype [7–
10]. While some phenotypes are due to the impact of environmental factors, if a disease 
is inherited then the genetic variation within the individual also explains the phenotype 
at least partially [11]. Here, we introduce PhenoExam, a software tool to assist in the 
identification of new gene-phenotype associations. PhenoExam focuses on genetic dis-
eases, harnessing all available gene-phenotype annotation resources to provide a com-
prehensive gene set and differential gene set annotation approach.

Over the last decade, we have seen attempts to standardize our knowledge of genetic 
diseases by formally linking genes to phenotypes using standard terminology, as exem-
plified by The Human Phenotype Ontology (HPO) [12] and The Mouse Genome 
Database (MGD) [13]. HPO is a standardized set of human phenotypic terms that are 
organized hierarchically with a directed acyclic graph and have been used to annotate all 
clinical entries in the Online Mendelian Inheritance in Man database (OMIM). OMIM 
[14] is a continuously updated catalog of human genes, genetic diseases, and traits, 
with a particular focus on the molecular relationship between genetic and phenotypic 
variation. On the other hand, MGD is the manually curated consensus representation 
of genotype to phenotype information including detailed information about genes and 
gene products. It is the authoritative source for biological reference data sets related to 
mouse genes, gene functions, phenotypes, and mouse models of human disease. MGD 
has more terms and detailed phenotypic information than HPO because scientists can 
perform a wider set of experiments on mice. These features increase our knowledge and 
can help to prioritize novel gene-phenotype relationships in humans. Beyond pheno-
type databases, PhenoExam also includes gene-disease association databases, namely 
UniProt [15], The Comparative Toxicogenomics Database (CTD) [16], Orphanet [17], 
The Clinical Genome Resource (ClinGen) [18], The Genomics England PanelApp [19], 
The Cancer Genome Interpreter (CGI) [20] and PsyGeNET [21]. It also includes CRIS-
PRbrain [22], the first genome wide CRISPR interference and CRISPR activation screen 
in human neurons so we may study the potential association of phenotypic terms to spe-
cific functions of these genes in human neurons.

Apart from being a general-purpose tool for phenotype-based gene sets annota-
tion, PhenoExam can also help in the diagnosis of genetic diseases. Currently fewer 
than half of patients with suspected Mendelian disorders (genetic diseases primarily 
resulting due to alterations in one gene) receive a molecular diagnosis [23]. Diseases 
with a genetic basis are usually diagnosed by looking for causal mutations in a panel 
of genes specifically associated with the disease. Gathering all phenotypes associated 
with the genes in a panel delivers a general phenotype-level description beyond the 
disease under study. To improve the accuracy of genetic diagnosis, we need meth-
ods to appropriately evaluate the gene level phenotypic similarity between candidate 
diseases. Moreover, the identification of differential phenotypes between diseases can 
also help towards more precise diagnostics. The identification of exclusive and/or 
shared phenotypes between gene panels can demonstrate common pathophysiology 
[24] but it can also help to create genetic links between diseases through their gene 
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sets [25, 26]. We can find numerous methods based on measuring disease-based phe-
notypic similarities by comparing sets of HPO terms e.g., Phenomizer [27], HPOSim 
[28], and PhenoSimWeb [29], Table 1 offers a detailed comparison amongst all tools. 
We also have modPhEA [30], an online resource for phenotype enrichment analy-
sis. modPheEA helps with the gene-based phenotype enrichment analysis but just 
focused on one phenotype database at a time and without considering conditional 
analyses (two gene sets).

Phenomizer obtains the phenotype semantic similarity between sets of phenotypes 
based on the HPO ontology but does not rely on the use of the genes implicated in 
each phenotype. HPOSim is an R package that implements widely used ontology-based 
semantic similarity measurements to quantify phenotype similarities, and phenotype-
level enrichment analysis using a hypergeometric test and the NOA method [31]. Phe-
noSimWeb is an online tool for measuring and visualizing phenotype similarities using 
HPO, uses a path-constrained Information Content-based measurement in three steps 
and exploits the PageRank algorithm [32]. Nevertheless, these tools did not take some 
important concepts into consideration. PhenoExam contributes to the field with new 
features. These include the ability to detect differential phenotypes between pairs of 
gene sets: phenotypes that are significant within one gene set only, useful for detect-
ing featured phenotypic terms between gene sets to distinguish better between similar 
diseases. It also combines phenotype and disease terms. This is important to link phe-
notypes to specific diseases. Finally, it tries to make the interpretation of the results of 
the phenotypic analysis easier by using simple scores to rank significant terms as well 
as summary messages and interactive graphs. We also found a knowledge manage-
ment platform integrating and standardizing data about disease-associated genes from 
multiple sources called DisGeNET [33]. While being similar to PhenoExam in finding 
gene-disease associations, DisGeNET does not, however, offer facilities for gene-based 
phenotype enrichment analysis or for detecting phenotypic conditional similarities 
between pairs of gene sets. PhenoExam uses as the basic substrate for gene-phenotype 
and gene-disease associations a number of configurable databases both in human and 
mouse that the user can tailor and adapt depending on the type of analysis to be per-
formed. In PhenoExam, the phenotypic similarity between two groups of genes is per-
formed by assessing the statistical significance of the Phenotypic Overlap Ratio (POR) 
between those (i.e., the number of common enriched phenotypes between the gene sets) 
(See methods Phenotype scores calculation).

We developed PhenoExam intending to support a variety of target users, mainly cli-
nicians, computational biologists, and geneticists. PhenoExam can help clinicians with 
finding phenotypes which are exclusive to diseases amongst a set of possible genetic 
disease candidates whose diagnosis is based on gene sequencing panels (Case 1). Phe-
noExam is also useful for geneticists as it can be used to improve their in-house-main-
tained gene panels but also to more accurately select genes involved in specific genetic 
studies (Case 2). Finally, computational biologists can use PhenoExam to discover new 
information about gene sets of interest thanks to the integration of multiple phenotype 
and disease databases and to compare phenotypes between known genes associated 
with a disease and the validation of computationally predicted disease genes (Case 2).



Page 4 of 19Cisterna et al. BMC Bioinformatics          (2022) 23:567 

Ta
bl

e 
1 

Co
m

pa
ris

on
 o

f P
he

no
Ex

am
 a

nd
 o

th
er

 s
im

ila
r t

oo
ls

. “
X”

 m
ea

ns
 th

e 
to

ol
 p

ro
vi

de
s 

th
e 

fu
nc

tio
n 

an
d 

“–
” m

ea
ns

 th
e 

to
ol

 d
oe

s 
no

t. 
“*

” m
ea

ns
 th

e 
si

m
ila

rit
y 

sc
or

es
 a

re
 b

et
w

ee
n 

ph
en

ot
yp

e 
te

rm
s 

an
d 

no
t b

et
w

ee
n 

ge
ne

 s
et

s 
as

 d
oe

s 
Ph

en
oE

xa
m

To
ol

A
s 

w
eb

A
s 

so
ft

w
ar

e 
to

ol

O
pe

n 
so

ur
ce

M
od

el
 

O
rg

an
is

m
Ph

en
ot

yp
e 

se
ts

G
en

e 
se

ts
M

ul
tip

le
 

da
ta

ba
se

 a
t 

on
ce

Ph
en

ot
yp

e 
En

ri
ch

m
en

t 
A

na
ly

si
s

D
is

ea
se

 
En

ri
ch

m
en

t 
A

na
ly

si
s

D
iff

er
en

tia
l 

ph
en

ot
yp

es
D

ia
gn

os
is

 b
as

ed
 

on
 p

he
no

ty
pe

s
Si

m
ila

ri
ty

 
sc

or
es

Ph
en

oE
xa

m
X

X
X

X
X

X
X

X
X

X
–

X

m
od

Ph
EA

X
–

–
X

X
X

–
X

–
X

–
–

D
is

G
eN

ET
X

X
X

–
X

X
X

–
X

–
–

–

Ph
en

om
iz

er
X

–
–

–
X

–
–

–
–

–
X

*

H
PO

Si
m

–
X

X
–

X
X

–
X

–
–

–
*

Ph
en

oS
im

W
eb

X
–

–
–

X
X

–
–

–
–

–
*



Page 5 of 19Cisterna et al. BMC Bioinformatics          (2022) 23:567  

Design and implementation
Database integration

The set of analyses performed by PhenoExam is based on manually curated phenotypes 
language like HPO, gene-disease ones as OMIM but also screening-based databases like 
CRISPRBrain, amongst many others (see Table  2 for a complete list, description, and 
potential use). PhenoExam can perform a variety of analyses (Fig. 1). The integration of 
these different databases is possible thanks to a well-established standardization process 
of genes and phenotypes used by PhenoExam. Using the HUGO Gene Nomenclature 
Committee (HGNC) gene naming system as the common way of identifying all human 
genes, and the definition of a new annotation term within each annotation database to 
indicate the HGNC genes that do not have any phenotype term associated in the data-
base of interest. The list of HGNC genes was obtained from [34] https:// www. genen 
ames. org/ downl oad/ stati stics- and- files/. The HPO gene-phenotype association list was 
obtained from https:// archi ve. monar chini tiati ve. org/ latest/ tsv/ gene_ assoc iatio ns/. The 
new no-phenotype association (HPO:XXX No HPO phenotype) was added to HPO 
for all protein coding genes with no known association to phenotype. For MGD, MP 
terms from orthologous genes to humans were obtained from http:// www. infor matics. 
jax. org/ downl oads/ repor ts/ index. html# go, and the relationship between human genes—
mouse genes—mouse phenotype were collected using the files (MGI_PhenoGenoMP.
rpt, HMD_HumanPhenotype.rpt, VOC_MammalianPhenotype.rpt). A new no- pheno-
type association (MP:XXX No phenotype) was created and all the protein coding genes 
without a relation to phenotype were linked to this term. For CRISPRBrain, the gene-
phenotype relationships were obtained from https:// crisp rbrain. org/ simple- screen/. For 
the generation of this database, the phenotypes were codified in three classes for each 
CRISPR analysis: association to the phenotype (Positive-Hit and Negative-Hit genes in 
CRISPRBrain), positive association (Positive-Hit genes in CRISPRBrain) and negative 
association (Negative-Hit genes in CRISPRBrain). This was accomplished according to 
the Hit-Class label in CRISPRbrain (Positive-Hit, Negative-Hit). The non-relationship 
phenotype (CRB:XXX No phenotype was created and all the protein coding genes that 

Table 2 Databases usable through PhenoExam and size of each in terms of genes, phenotypes and 
associations. Numbers reported are final, after preprocessing and unification of gene names across 
databases

Source Genes Phenotypes Diseases Assocs Summary

HGCN 19,197 – – – All protein coding genes

HPO 19,248 7861 – 186,290 Human gene‑phenotype associations

MGD 17,900 10,243 – 242,313 Mouse gene‑phenotype associations

CRISPRBrain 19,275 55 – 43,481 Cell screen gene‑phenotype associations

ClinGen 19,198 – 420 19,851 Human gene‑disease associations

Genomics England 19,230 – 5538 24,336 Human gene‑disease associations

CTD 19,636 – 6843 58,660 Human gene‑disease associations

CGI 19,198 – 177 20,361 Human gene‑disease (cancer) associations

UniProt 19,204 – 3868 21,101 Human gene‑disease associations

Orphanet 19,262 – 3183 2228 Human gene‑disease (rare) associations

PsyGeNET 19,248 – 82 20,952 Human gene‑disease associations

ALL 20,209 18,159 9348 544,022 PhenoExam tool
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were not related to any phenotype were related to this term. We integrate into Pheno-
Exam only the information from curated databases (UniProt, CTD, Orphanet, ClinGen, 
The Genomics England PanelApp, CGI and PsyGeNET). Then the non-relationship dis-
ease term (CXXX No diseases associated) was created and all the protein coding genes 
that were not related to any disease were related to this term. After standardization pro-
cess, the current release (v1.0) of PhenoExam contains, 659,634 gene-phenotype asso-
ciations, involving 20,209 genes, 18,159 different phenotypes and 9348 different diseases 
(see details in Table 2).

Phenotype scores calculation

Phenotype enrichment analysis on a gene set G

PhenoExam obtains a list of statistically significant enriched phenotypes in a given set of 
gene G within a phenotype/disease database annotation of reference D. In order to cal-
culate whether a gene set G shows enrichment in a given phenotypic term p belonging 
to D, let g be the number of genes in G associated with p. Let also gdb be the number of 
genes associated with p and GDB the total number of genes in the database, we model 
the enrichment probability with a hypergeometric distribution such that:

Fig. 1 Schematic representation of PhenoExam integrated databases and offered analyses. We can use 
PhenoExam with human or mouse genes. PhenoExam annotation databases include HPO, MGI, CRISPRBrain, 
CTD, ClinGen, OrphaNET, UniProt PsyGeNET, CGI and Genomics England. The tool offers a variety of analyses. 
Given a gene set of interest, G, the user can evaluate its enrichment for phenotypes and disease in all or a 
subset of the offered databases. Given two gene sets, G and G′, the user can evaluate whether the phenotype 
terms enriched in G are also enriched in G′ when G and G′ do not overlap e.g., G′ was predicted from G, with 
the Conditional Enrichment Analysis. If G and G′ show some gene overlap, the user can assess whether the 
gene sets show any differential phenotypes through the Differential Phenotype Analysis. We acknowledge 
all the sources for their contributions and we are grateful to those who permitted us to use their logos in this 
figure



Page 7 of 19Cisterna et al. BMC Bioinformatics          (2022) 23:567  

Any phenotype with P < 0.05 will be enriched in the G gene set. We compute this prob-
ability for each phenotypic term ph associated with 1 gene or more in G and use these 
probabilities as P values. PhenoExamWeb reports the raw, Bonferroni [35] and false dis-
covery rate (FDR) [36] adjusted P values.

Phenotypic Overlap Ratio score

PhenoExam´s approach to measuring the similarity between two gene sets G and G´, 
within an annotation database D, is based on a score called the Phenotypic Overlap Ratio 
(POR). Let Gp be the number of significantly enriched terms in D for genes in G, and 
analogously for G′p. The POR could be computed using the widely used Jaccard index or 
the Forbes similarity coefficient corrected by Alroy [37] on the agreement between the 
subsets of significant phenotypes. PhenoExam allows users to choose between these two 
options accordingly to Salvatore et al. [38]. conclusions.

Jaccard index:

Forbes similarity coefficient corrected by Alroy:

POR (G, G′) takes values in [0,1], resulting in 0 when no phenotype is shared and 1 
when the sets share all phenotypes (Jaccard index) or at least share all phenotypes from 
one set (Forbes coefficient).

Statistically significant Phenotypic Overlap Ratio

PhenoExam assess whether the POR between gene sets G and G′ is statistically signifi-
cant by means of randomization. We will have two modalities of the POR, depending on 
whether G and G′ share genes or, on the contrary, they are disjunct (e.g., G′ was predicted 
from G). When G and G′ are thought to share genes, POR (G, G′) is compared with POR 
(G, R) and with POR (G′, R′), where R has the same size as G and R′ the same as G′. Genes in 
both R and R′ are chosen randomly within the whole set of protein coding genes. We repeat 
this process for m random gene sets (R1,R2, . . . ,Rm) and 

(

R′
1,R

′
2, . . . ,R

′
m

)

 to obtain an 
empirical P value with the proportion of random gene sets whose POR is greater than the 
observed one. On the other hand, when G′ is obtained by using G as input of the generation 
process, we say G′ is conditioned to G. Therefore, the significance test of the POR (G, G′) is 
reduced now to obtain an empirical P value based on the proportion of times a randomized 

P X = g =

gdb
g

GDB − gdb
|G| − g

GDB
|G|

POR
(

G,G′) =
Gp ∩ G′p

Gp ∪ G′p

N = Gp ∩ G′p+ Gp\G′p+ G′p\Gp

POR
(

G,G′) =
Gp ∩ G′p ∗ (N +

√
N )

[(Gp ∩ G′p+ Gp\G′p) ∗ (Gp ∩ G′p+ G′p\Gp)+ Gp ∩ G′p ∗
√
N + (Gp\G′p ∗ G′p\Gp)/2]
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POR (G, R), with R any of (R1,R2, . . . ,Rm) all with the same size of G while keeping G con-
stant, shows higher values than the observed POR (G, G′).

Relaxed Phenotypic Overlap Ratio

The POR only considers phenotypes that were assessed as statistically significant. Some-
times, it may be of interest to relax this restriction to incorporate all phenotype/disease 
terms associated with G. In this case, the score is called Relaxed Phenotypic Overlap Ratio 
(RPOR). It is calculated in a similar way to the POR but with all phenotypes, whether these 
are enriched or not. In the same way, as with the POR, we can determine whether the 
RPOR is statistically significant by using randomization.

Phenotype relevance association analysis for gene sets

Once it has been determined that two sets of G and G’ genes share some enrichment of 
phenotypic terms, and focusing only on the shared terms, we can measure the correlation 
of the number of genes of each phenotypic term as measured in G and G′ by a linear regres-
sion model and report the  R2 as the strength of this correlation together with the associa-
tion P value. Higher values of  R2 would suggest a linear association between importance of 
phenotypic terms in G and importance of the same genes in G′.

Generation of the web interface

We have developed PhenoExamWeb, a web-based tool for performing phenotypic analyses 
using R. PhenoExamWeb shiny app is accessible at https:// aleja ndroc ister na. shiny apps. io/ 
pheno examw eb/. R and the shiny R package [39] were used for front-end scripting of the 
web interface. R scripts were used for back-end execution and analysis with the develop-
ment environment of R version 3.6.3. The R package is available at https:// github. com/ alexc 
is95/ Pheno Exam. Note that although we offer PhenoExam through a Web application, it 
might be a better option to consider installing and using the R package locally for the sake 
of flexibility or to deploy the shiny app locally in your local workstation for computationally 
demanding analyses like, for example, a “comparator phenotype analysis” with more than 
40 random tests. Simply download the software from https:// github. com/ alexc is95/ Pheno 
Exam/ blob/ master/ Pheno ExamW eb. zip and run the Rmd file locally.

Analysis with PhenoExamWeb

PhenoExamWeb requires gene symbols, human or mouse, as the input file. Then, we need 
to select the type of analysis: Phenotype Enrichment Analysis (One gene set) or Phenotype 
Comparator (Two gene sets). We also need to specify the database or databases. The work-
flow of PhenoExamWeb is summarized in Fig. 2. Users can follow the web tutorial on the 
website (https:// aleja ndroc ister na. shiny apps. io/ pheno examw eb/# secti on- help) and the R 
package tutorial on GitHub (https:// raw. githa ck. com/ alexc is95/ Pheno ExamW ebTut orials/ 
main/ tutor ial. html).

Results and discussion
PhenoExam controls type I error when used with all phenotype databases

We assessed PhenoExam for type I error given all phenotype/disease databases consid-
ered in the task of phenotypic enrichment analysis of gene sets. Firstly, we evaluated the 
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possibility of finding a phenotypic term erroneously enriched, due to random chance, 
amongst all the terms at the database, for gene sets of varying sizes. For such purpose 
we performed simulations of phenotype enrichment analysis for different random gene 
sets with a variable number of protein coding gene sizes (5, 10, 20, 40, 80, 160, 320, 640) 
tested in all annotation databases. Each combination of gene set size and database was 
simulated 1000 times, yielding a total of 80,000 simulations. A graphical representation 
of the summary of results appears in Fig. 3. PhenoExam maintains type I error under 
control, see Fig. 3, (a) plot, with a significance level of 0.05 as the number of significant 
tests is always under 0.05 ratio. We observed a negative correlation between gene set 
size and proportion of false positive tests, r = −0.453, P = 0.026. Type I error is harder to 
control with Genomics England Panel App (GEL) and Orphanet gene sets. PhenoExam 
only controls type I error when the gene set size is greater than 80 for Orphanet and 180 
for Genomics England. We believe that the difficulties in keeping under control type I 
error are due to the number of average disease terms associated with each gene, i.e. 4.39 
for GEL and 7 for Orphanet when for the rest of the disease databases is, on average, 

Fig. 2 PhenoExamWeb shiny app possible workflows. a Phenotype Enrichment Analysis: requires one gene 
symbol file as input file, which gene symbol nomenclature (Organism nomenclature: Human or Mouse) we 
use, the phenotype/disease annotation databases to be considered and the top number of terms shown in 
the graph. The results generate an interactive table and graph which include phenotypes, genes implicated 
with each term and P values as output. b The Phenotype Comparator requires two gene sets as input 
together with the gene symbol nomenclature (Human or Mouse) used, the annotation databases of interest 
for the analysis and the number of random tests to obtain empirical P values, the relevant P value threshold 
and whether our analysis is a conditional case (i.e., if one gene set was generated after a prediction analysis 
from the other and they are totally different gene sets). Finally, we obtain the summary of the analysis with 
the similarities phenotype scores, the differential phenotypes, interactive tables and graphs with phenotypes, 
genes and P values as output for detailed inspection and result presentation. We acknowledge all the sources 
for their contributions and we are grateful to those who permitted us to use their logos in this figure
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17.7. Moreover, there is a negative correlation between the number of genes per ran-
dom gene set and the type I error, r = −0.381, P = 0.0038. Therefore, both the number of 
terms associated with each gene and the size of the gene sets used as input are crucial to 
obtain enough gene-phenotype relationships to maintain in this way, type I error under 
control. For these reasons, we recommend using CTD, HPO, MGD or CRB for analy-
ses implying gene sets of size 10. These are, roughly, less than the number of genes we 
can find in many biological pathway. We recommend using PsyGeNET, ClinGen, UNI-
PROT or CGI with 40 genes or more. These usually are less than the number of genes 
detected at most genome-wide association studies. We only recommend the inclusion of 
the Orphanet and GEL when we have at least 80 and 180 genes respectively. Users can 
find more information about what database they need to use at https:// aleja ndroc ister 
na. shiny apps. io/ pheno examw eb/# secti on- help

PhenoExam differentiates between gene sets with very similar phenotypes

We evaluated how accurate PhenoExam is when computing the POR (detecting pheno-
type similarities) between gene sets by comparing genetic forms of epilepsy (261 genes 
from NIMGenetics epilepsy panel) and “artificial” gene sets constructed with variable 
POR with the original epilepsy gene set and additional genes with similar phenotypic 
connectivity not associated to epilepsy. In these additional genes we injected a 5% of 
noise with genes associated with epilepsy phenotypic terms. We performed 1000 simula-
tions for the artificial genes sets (261 genes) constructed with different proportions of 
epilepsy genes between (0–100%) and different proportions of other genes (0–100%). We 

Fig. 3 False positive rate of phenotype (a) and disease (b) terms enrichment across varying gene set sizes (5, 
10, 20, 40, 80, 160, 320, 640) per phenotype/disease database. As the simulation points out, CRB, HPO, MGD, 
are perfectly usable for any gene set size, CTD is recommended for gene set sizes over 10, PsyGeNET for 20, 
CGI, ClinGen and Uniprot for 40, Orphanet for 80 and GEL for gene set sizes over 180



Page 11 of 19Cisterna et al. BMC Bioinformatics          (2022) 23:567  

calculated the POR significance test between the real and the artificial gene sets (Fig. 4). 
PhenoExam is sensitive in detecting differences between gene composition changes 
(≅ 1%) in different gene sets, which in this case are 3 genes. We observed a positive lin-
ear relationship between POR and the proportions of epilepsy genes in the artificial gene 
sets, 0.9674  R2 (P < 2.2 ×  10−16) (Fig. 4a). We assessed that PhenoExam can distinguish 
well amongst the epilepsy real genes and the artificial gene sets constructed with high 
proportions of epilepsy genes (94–99% epilepsy genes) that gather very similar pheno-
types with a t-test in all cases (P < 2.2 ×  10−16) (Fig. 4b).

Case 1: The analysis between juvenile‑onset Parkinson’s disease (PD) and early onset 

dystonia (EOD) reveals they hold phenotype‑level similarities but also potentially 

interesting differential phenotypes

We applied PhenoExam to the detection of differential phenotypes between gene sets by 
comparing two genetic diseases with similar symptoms: juvenile-onset Parkinson’s dis-
ease (PD) and early-onset dystonia (EOD). PD and EOD both are movement disorders, 
PD is caused by a degeneration in the basal ganglia, and it has predominant symptoms 
consisting of tremor, rigidity, bradykinesia, postural instability and progressive dementia 

Fig. 4 POR significance test between the real and the artificial gene sets constructed with different 
proportions of epilepsy genes (a) and detailed zoom of POR score between the real and the artificial gene 
sets constructed with different proportions of epilepsy genes (94–99% epilepsy genes). a We observed a 
positive linear relationship between POR and the proportions of epilepsy genes in the artificial gene sets, 
0.9674  R2 (P < 2.2 ×  10−16). b PhenoExam can distinguish well amongst the epilepsy real gene set and the 
artificial gene sets constructed with high proportions of epilepsy genes (94–99% epilepsy genes) that gather 
very similar phenotypes with a t‑test in all cases (P < 2.2 ×  10−16)
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[40]. EOD is a disease characterized by involuntary muscle contractions leading to 
abnormal posturing and movements and postures, occurring with or without other neu-
rological symptoms [41]. In our case we compared 35 PD genes and 50 EOD genes from 
Genomics England PanelApp (Additional file  1), with 19 genes in the overlapping set 
(54.3% of genes on PD gene set). We ran a separate phenotype enrichment analysis 
for PD and EOD, using HPO, MGD, CTD and CRISPRBrain databases simultaneously 
(given the simulation analyses performed above, these are the databases recommended 
by PhenoExam) (Fig. 5). We obtained a table for PD (Additional file 2: Table S1) and EOD 
(Additional file 3: Table S2). The top two most enriched phenotypes, in each input data-
base, for PD genes were Bradykinesia (HP: 0002067; P = 2.16 ×  10−60) and Parkinsonism 
(HP: 0001300; P = 2.62 ×  10−51) for HPO, Abnormal gait (MP: 0001406; P = 3.78 ×  10−13) 
and Neuron degeneration (MP: 0003224; P = 9.98 ×  10−13) for MGD, Parkinsonism, 
Juvenile (C0752105; P = 7.49 ×  10−28) and Ramsay Hunt Paralysis Syndrome (C0242423; 
P = 7.49 ×  10−28) for CTD, and no enrichment found for CRISPRBrain. All the enrich-
ment terms found are supported by the literature [42–45]. At the EOD analysis, we found 
Dystonia (HP: 0001332; P = 3.51 ×  10−42) and Dysarthria (HP: 0001260; P = 5.38 ×  10−41) 
for HPO, impaired coordination (MP: 0001405; P = 7.4 ×  10−14) and Abnormal gait (MP: 
0001406; P = 3.17 ×  10−10) for MGD, Parkinsonism, Juvenile (C0752105; P = 7.4 ×  10−13) 
and Ramsay Hunt Paralysis Syndrome (C0242423; P = 7.4 ×  10−13) for CTD, and again 
no enriched term for CRISPRBrain. Above mentioned phenotype terms are associated 
with dystonia according to several articles [46–50].

We wanted to compare PD and EOD gene sets, through the Phenotype Compara-
tor analysis in PhenoExamWeb (see Fig. 6) using HPO, MGD, CTD and CRISPRBrain 
as the databases selected, and a randomization based on 1000 null tests. This com-
parison yielded 139 shared significant phenotypic terms (out of 273 unique significant 
phenotypic terms in both, POR = 0.509 (P < 0.001). Phenotype relevance association 
analysis for PD and EOD (i.e., whether the shared phenotypes are similar in relevance, 
i.e., in the number of genes associated with them, within each gene set) results in an 
adjusted R squared of 0.643 (P < 9.23 ×  10−63) which suggests that an important portion 

Fig. 5 Phenotype Enrichment Analysis in PhenoExam for each gene set. The graph shows the 25 most 
enriched terms for PD genes (a) and for EOD genes (b)
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of the common phenotypes are similar in relevance. We actually see they share pheno-
typic terms such as Tremor (HP: 0001337), Bradykinesia (HP: 0002067), Rigidity (HP: 
0002063), Dystonia (HP: 0001332), Abnormal gait (MP: 0001406) or Neuron degenera-
tion (MP: 0003224) (Additional file 4: Table S3). But we also detect differential pheno-
types that can be displayed by interactive graphs and tables on the web. For example, 
significant terms exclusive from the PD gene set phenotypes include Astrocytosis (MP: 
0003354; P < 5.17 ×  10−12), Substantia nigra gliosis (HP: 0011960; P < 4.15 ×  10−11), Neu-
ronal loss in central nervous system (HP: 0002529; P < 3.74 ×  10−6), Orthostatic hypo-
tension due to autonomic dysfunction (HP: 0004926; P < 9.96 ×  10−6) and Lewy Body 
Disease (C0752347; P < 1.11 ×  10−3) (Additional file 5: Table S4). Above mentioned phe-
notype terms are associated more or only with PD according to several articles [51–56]. 
The same analysis identified Writer’s cramp (HP: 0002356; P < 1.37 ×  10−9) as exclusive 
to EOD and this refers to a type of focal dystonia [57]. We also found Hypoplasia of 
the corpus callosum (HP: 0002079; P < 3.56 ×  10−5), a controversial and not widely stud-
ied phenotype in dystonia [58, 59] and Acanthocytosis (HP: 0001927; P < 2.76 ×  10−3) 
a term normally associated with chorea‐acanthocytosis, other disease with dystonia’s 
similar symptoms [60]. Microcephaly (HP: 0000252; P < 4.17 ×  10−4) is associated with 
dystonia and several genes such as KMT2B [61, 62]. We also found Intellectual disability, 
mild (HP: 0001256; P < 4.68 ×  10−3), Dystonia, Primary (C0752203; P < 3.26 ×  10−7) and 
Hyperactive deep tendon reflexes (HP: 0006801; P < 4.31 ×  10−2) that is associated with 
Paroxysmal dyskinesia (PxD) [63] (Additional file 6: Table S5).

Case 2: New likely epilepsy genes predicted by G2PML recapitulate phenotype terms 

of known epilepsy genes

Let us suppose it is possible to discover new Mendelian genes associated with a specific 
disease (congenital epilepsy in this case) by finding non-linear patterns of the genes in 

Fig. 6 Phenotype Comparator analysis view. We selected PD genes as gene set 1, EOD genes as gene set 2, 
HPO, MGD, CRISPRBrain and CTD databases and 1000 random tests. We obtained as output interactive tables 
with the shared phenotypes and the differential phenotypes, plots, PhenoExam phenotype similarities scores 
and information
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that panel based on their description through properties based on genomic, transcrip-
tomic and genetics of each gene with machine learning techniques. Therefore, in order 
to discover new genes, we aim at finding very similar genes in terms of those properties 
(see G2PML paper at biorxiv [64]). The question we face is: do those genes predicted 
to be linked to congenital genetic forms of epilepsy recapitulate similar phenotypes to 
the genes in the panel of origin? The more supportive the answer points to a phenotype 
recapitulation, the better the predictions made by G2PML. This is an example of what 
we call a conditional case, comparing phenotypes in gene sets G and G′ when they are 
disjunct and G′ was generated using G as seeds. More specifically, G refers to epilepsy 
genes from an in-house maintained epilepsy panel (261 genes) at NIMGenetics. Moreo-
ver, G′ is a set of 209 new genes as predicted by G2PML.

We carried out the Phenotype Comparator analysis in PhenoExamWeb with the con-
ditional case option marked, gene set 1 was the epilepsy genes, gene set 2 was the new 
likely epilepsy genes predicted by G2PML, HPO, MGD, CRISPRBrain and CTD data-
bases selected at the same time and we chose 1000 random tests. We obtained the 
Pheno Message from PhenoExamWeb that they shared 106 significant phenotypic terms 
(out of 734 unique significant phenotypic terms in both), which yields a POR of 0.144 
(P < 0.001). Phenotype relevance association analysis for epilepsy associated genes and 
epilepsy predicted genes (i.e., whether the shared phenotypes are similar in relevance, 
i.e., in the number of genes associated with them, within each gene set) results in an 
adjusted R squared of 0.331 (P < 4.35 ×  10−66) which suggests that an important por-
tion of the common phenotypes are similar in relevance. The P values were obtained 
through the randomization of 1000 random gene sets. We also obtained a table with the 
phenotypes shared between gene sets (Additional file 7: Table S6). New likely epilepsy 
genes predicted by G2PML, e.g., DDX3X, KCNH1, TBL1XR1, DLG4 or PDE2A, reca-
pitulate phenotype terms of known epilepsy genes, we check they share epilepsy signifi-
cant phenotypic terms such as Seizures (HP: 0001250), Global developmental delay (HP: 
0001263), Microcephaly (HP: 0000252), abnormal brain morphology (MP: 0002152), 
hyperactivity (MP: 0001399) and diseases terms without Bonferroni adjust Epilepsy 
(C0014544) and Autistic Disorder (C0004352). We also found they recapitulate interest-
ing CRISPRBrain terms such as Association with Labile Iron (FeRhoNox Intensity) in 
Glutamatergic Neuron (CRB: 0000004) and Positive hit with Peroxidized Lipids (Liper-
fluo Intensity) in Glutamatergic Neuron (CRB: 0000008). Above mentioned phenotype 
terms are associated with epilepsy according to several articles [65–73]. We also pro-
vided the number of genetic variants from the Epi25 whole-exome sequencing (WES) 
case–control study of each epilepsy gene predicted, we obtained 665 genetic variants in 
cases and 446 in controls (OR = 1.49) (Additional file 8: Table S7) [74].

Conclusions
We developed PhenoExam, a freely available R package and Web application, which per-
forms phenotype enrichment and disease enrichment analysis on gene set G, measures sta-
tistically significant phenotype similarities between pairs of gene sets G and G′ and detects 
statistically significant exclusive phenotypes or disease terms, across different databases. 
PhenoExam just required the names of genes in the gene sets as input and which data-
bases to test for enrichment. It allows us to switch from the gene space and the phenotype 
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space. PhenoExam integrates phenotype data from different databases. And each database 
is focused on specific diseases and organisms. Therefore, choosing a database for the analy-
ses requires of a basic knowledge of the user about the diseases used there to appropriately 
understand the analysis outcome. PhenoExam can identify the statistically significant and 
differential phenotypes of a gene set as we showed with PD, EOD, epilepsy, and likely epi-
lepsy predicted genes. We proved with simulations that it is useful to distinguish between 
gene sets or diseases with very similar phenotypes through projecting genes into their 
annotation based phenotypical spaces. With the PD and EOD example above, we clearly 
see they hold phenotype-level similarities but also potentially interesting differential phe-
notypes. The conditional case studied between epilepsy associated and epilepsy predicted 
genes show they hold epilepsy phenotype terms in common, which is useful for the valida-
tion of computationally epilepsy predicted disease genes. Therefore, PhenoExam effectively 
discovers links between phenotypic terms across annotation databases by integrating differ-
ent annotation databases. All these findings are supported with interactive plots (see tutori-
als at GitHub project) to foster the visualization and interpretation of findings.

Availability and requirements

Project name: PhenoExam.
Project home page: https:// aleja ndroc ister na. shiny apps. io/ pheno examw eb/
Source code is available at https:// github. com/ alexc is95/ Pheno Exam
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License: GPL-2|GPL-3 Any restrictions to use by non-academics: none.
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