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Simple Summary: Sepsis is a major clinical problem with high incidence and mortality. While
nutrition is routinely provided to critically ill patients, this essentially consists of a one-size-fits-
all balanced protein-carbohydrate-fat diet given with little regard to the changing immunological,
bioenergetic and metabolic status in sepsis. Besides being an important source of calories, nutrition
also has a pharmacological impact. Fatty acids, such as butyrate, impact upon immune function,
mitochondrial function and metabolism in different ways, and their individualised use may con-
tribute to a personalised medicine approach depending on the patient’s immune and bioenergetic
status. In this research, we combined immunomodulatory effects of butyrate with metabolism. We
showed anti-inflammatory effects of butyrate in our ex vivo study on PBMCs isolated from healthy
human volunteers. We took this forward in a clinically relevant faecal peritonitis rat model of sepsis
with butyrate infusion, but rather demonstrated possible cardiometabolic stress with no impact on
immune function.

Abstract: Mitochondrial dysfunction and immune cell dysfunction are commonplace in sepsis and
are associated with increased mortality risk. The short chain fatty acid, butyrate, is known to
have anti-inflammatory effects and promote mitochondrial biogenesis. We therefore explored the
immunometabolic effects of butyrate in an animal model of sepsis. Isolated healthy human volunteer
peripheral mononuclear cells were stimulated with LPS in the presence of absence of butyrate,
and released cytokines measured. Male Wistar rats housed in metabolic cages received either
intravenous butyrate infusion or placebo commencing 6 h following faecal peritonitis induction. At
24 h, splenocytes were isolated for high-resolution respirometry, and measurement of mitochondrial
membrane potential (MMP), reactive oxygen species (mtROS), and intracellular cytokines (TNF alpha,
IL-10) using flow cytometry. Isolated splenocytes from septic and septic butyrate treated rats were
stimulated with LPS for 18 h and the effects of butyrate on cytokine release assessed. Ex vivo, butyrate
(1.8 mM) reduced LPS-induced TNF alpha (p = 0.019) and IL-10 (p = 0.001) release by human PBMCs.
In septic animals butyrate infusion reduced the respiratory exchange ratio (p < 0.001), consistent
with increased fat metabolism. This was associated with a reduction in cardiac output (p = 0.001),
and increased lactate (p = 0.031) compared to placebo-treated septic animals (p < 0.05). Butyrate
treatment was associated with a reduction in splenocyte basal respiration (p = 0.077), proton leak
(p = 0.022), and non-mitochondrial respiration (p = 0.055), and an increase in MMP (p = 0.007) and
mtROS (p = 0.027) compared to untreated septic animals. Splenocyte intracellular cytokines were
unaffected by butyrate, although LPS-induced IL-10 release was impaired (p = 0.039). In summary,
butyrate supplementation exacerbates myocardial and immune cell mitochondrial dysfunction in a
rat model of faecal peritonitis.
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1. Introduction

Sepsis defined as life-threatening organ dysfunction caused by a dysregulated host
response to infection [1], is a major global health problem [2]. The immunological response
to sepsis is characterised by excessive pro- and anti-inflammatory responses, the balance
of which fluctuates over the course of the illness [3]. An overall immunosuppressive state
often dominates following an early pro-inflammatory phase, with both depletion and loss
of functionality of both innate and adaptive immune cells increasing the risk of secondary
infection [4].

Different metabolic phases in the course of sepsis and recovery are also described [5–8].
An early hypermetabolic response, with increased total body oxygen consumption, is fol-
lowed by a hypometabolic phase with downregulation of many cellular metabolic activities
and mitochondrial functionality [9,10]. Recovery coincides with a hypermetabolic phase
with increases in oxygen and substrate utilisation to drive tissue repair and restoration of
organ function [11,12]. Sepsis is also known to alter mitochondrial functionality of immune
cells [13–15].

Butyrate is a short-chain fatty acid (SCFA) that regulates immune responses [16–19].
SCFAs have predominant anti-inflammatory effects and are involved in chemotaxis, apop-
tosis, proliferation, differentiation and gene expression [20]. Butyrate stimulates mito-
chondrial respiration and fatty acid oxidation (FAO) in several in vitro and murine stud-
ies [21–23], though others have shown a depressant effect on ATP synthesis [24]. We
therefore examined the impact of supplemental butyrate on mitochondrial and immune
function, and cardiovascular effects, in in vivo, ex vivo and in vitro models of sepsis.

2. Materials and Methods
2.1. Study Design

To investigate the effect of butyrate on immune and mitochondrial function in sepsis,
corresponding in vivo and ex vivo experiments were performed:

(i) peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers were
stimulated overnight with lipopolysaccharide (LPS) in the presence and absence of butyrate
(Sigma-Aldrich, St. Louis, MO, USA) (1.8 mM) for 18 h. TNF alpha and IL-10 release were
measured by ELISA.

(ii) butyrate (or an isocaloric placebo) infusion was commenced 6 h after induction of
faecal peritonitis in an instrumented rat model receiving background fluid resuscitation.
Whole body oxygen consumption (VO2), carbon dioxide production, and the respiratory
exchange ratio (RER, ratio of CO2 produced to O2 consumed) were monitored continu-
ously by calorimetry. At 24 h, arterial blood gas analysis and cardiac echocardiography
were performed under anaesthesia followed by sacrifice of the animals to enable splenic
removal. After isolation of splenocytes. measurements were made of intracellular cytokine
(TNF alpha, IL-10) production (using flow cytometry), mitochondrial reactive oxygen
species (mtROS) and mitochondrial membrane potential (MMP, using flow cytometry), and
mitochondrial respiration (high-resolution respirometry).

(iii) Isolated splenocytes from healthy rats were incubated for 18 h in the presence of
lipopolysaccharide (LPS) with TNF alpha and IL-10 and release quantified by ELISA.

2.2. Methodologies

More detail can be found in the Appendix A.

2.3. Ex Vivo Human Peripheral Blood Mononuclear Cell Isolation and Incubation

Ethics was obtained from University College London Research Ethics Committee
(REC ref 19181/001). In brief, PBMCs isolated from healthy subjects were cultured for
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18 h in RPMI cell culture medium (Gibco) with LPS with or without butyrate. PBMCs
(300,000 cells/mL) were incubated in triplicate overnight either alone or with (i) LPS
(100 ng/mL, Invivogen) in the presence or absence of butyrate (1.8 mM). This concentration
was based on the three-fold elevation in plasma butyrate concentration measured in human
sepsis [25]. At the end of the incubation period, plates were centrifuged and supernatants
collected to quantify TNF alpha and IL-10 release by ELISA, and cellular viability was
assessed using the MTT assay (Thermo Fisher Scientific, Waltham, MA, USA).

2.4. In Vivo Rat Model of Sepsis

A well-established fluid-resuscitated rat model of faecal peritonitis was used for this
study [26,27]. All experiments were performed in accordance with relevant guidelines
and regulations under a Home Office Project License (PPL 70/7029) and local UCL Ethics
Committee approval. An overview is presented in Figure 1.
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Figure 1. Schematic overview of rat model of sepsis.

In brief, male Wistar rats weighing between 300–450 g were acclimatised overnight in
separate metabolic cages allowing continuous monitoring of oxygen (O2) consumption and
carbon dioxide (CO2) production. Under brief isoflurane anaesthesia, animals underwent
tunnelled right internal jugular cannulation and induction of sepsis using an intraperitoneal
(IP) injection of 6 µg/kg of a faecal slurry preparation. A healthy control group of animals
received no injection. Animals were returned to their metabolic cages. At two hours,
fluid administration was commenced using a 1:1 ratio of 5% glucose/Hartmann’s solution
infused at a rate of 10 mL/kg/h.

At 6 h, echocardiography (Vivid-I, GE Healthcare) was performed under isoflurane
anaesthesia to measure baseline heart rate, stroke volume and cardiac output. Following
this, the septic animals received a fluid bolus of 10 mL/kg administered over five minutes
followed by an infusion of sodium butyrate (0.6 g/kg/h, Sigma-Aldrich, St. Louis, MO,
USA) given at a rate of 10 mL/kg/h for 18 h. The concentration selected was based on a
pharmacokinetic study in mice and rats suggesting it would generate a concentration of
1.8 mM butyrate in peripheral blood [28]. Septic control animals received an isovolumic
and isocaloric glucose/Hartmann’s solution.

At 24 h, echocardiography was performed under isoflurane anaesthesia followed by
sacrifice by cardiac puncture with sampling of blood for measurement of lactate, glucose,
and pH. The spleen was removed for ex vivo analyses.
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2.5. Rat Splenocyte Isolation and Culture

Spleens were removed from healthy and septic animals under terminal anaesthesia.
Spleens were passed through a 100 µm cell strainer and collected in RPMI cell culture
medium. The cell suspension was centrifuged and red blood cells were lysed for 10 min in
1× NH4Cl lysing solution. Splenocytes were washed with PBS, resuspended in RPMI cell
culture medium and then underwent high resolution respirometry and flow cytometry to
assess mitochondrial function and intracellular cytokine production.

In separate studies, the isolated splenocytes from healthy and septic animals described
above were suspended in RPMI cell culture medium, seeded into 96-well plates at a density
of 300,000 cells per ml, and stimulated overnight with 100 ng/mL lipopolysaccharide
(LPS) (Invivogen, San Diego, CA, USA). Viability was measured by trypan blue staining.
Supernatants were stored for subsequent cytokine analyses (TNF alpha, IL-10) by ELISA.

2.6. High-Resolution Respirometry

Isolated rat splenocytes underwent high-resolution respirometry (Seahorse XFe96
Analyzer, Agilent Technologies, Santa Clara, CA, USA) following the manufacturer’s
instructions [29]. Oxygen consumption rate (OCR) was measured at baseline (for total
mitochondrial and non-mitochondrial respiration), following addition of the uncoupler,
FCCP (for maximal respiration), and then addition of the electron transport chain inhibitors,
rotenone and antimycin A (to block mitochondrial respiration). Three measures were made
at each timepoint and averaged. Data were normalised to number of viable cells assessed by
Hoechst dye (Thermo Fisher Scientific, Waltham, MA, USA) using the ImageXpress Micro
XL system with MetaXpress software version 5.3.0.5 (Molecular Devices, San Jose, CA,
USA). This protocol enabled calculation of basal and maximal mitochondrial respiration,
non-mitochondrial respiration and proton leak.

2.7. Flow Cytometry

Isolated rat splenocytes were resuspended in HBSS and stained with fixable violet
live/dead (Thermo Fisher Scientific, Waltham, MA, USA). MitoSOX red (2.5 µM, Thermo
Fisher Scientific, Waltham, MA, USA) or tetramethylrhodamine methyl ester (TMRM;
25 nm, Thermo Fisher Scientific, Waltham, MA, USA) were added to measure mitochon-
drial ROS production and mitochondrial membrane potential, respectively, after 20 min’
incubation at 37 ◦C in 5% CO2.

For intracellular cytokine quantification, cells were stained with fixable violet live/dead
and fixed and permeabilised using fix/permeabilize solution (BD Biosciences, Franklin
Lakes, NJ, USA) for 20 min at room temperature in the dark. Cells were washed with
permeabilization/wash buffer (BD Biosciences, Franklin Lakes, NJ, USA) and stained with
antibodies directed against TNF alpha (Thermo Fisher Scientific, Waltham, MA, USA) and
IL-10 (BD Biosciences, Franklin Lakes, NJ, USA) for another 20 min at room temperature in
the dark prior to flow cytometry.

Flow cytometry data was analysed using FlowJo (version 10.7.1, BD Biosciences,
Franklin Lakes, NJ, USA). After the exclusion of doublets and debris, live cells were
analysed for mitochondrial markers and intracellular cytokine production and quantified
by geometric means of the mean fluorescence intensity (MFI; arbitrary units) (Appendix A
Figure A1).

2.8. Measurement of Released Cytokines

TNF alpha and IL-10 concentrations in cell culture supernatants were determined by
ELISA according to the manufacturers’ protocols (BD Biosciences, Franklin Lakes, NJ, USA
and R&D Systems, Minneapolis, MN, USA respectively).

2.9. Statistical Analysis

GraphPad Prism version 8.4.0 (GraphPad Software, San Diego, CA, USA) was used for
statistical analyses and graphs. Non-parametric tests were performed. Data are presented
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as scatter plots with the median (horizontal bar). Wilcoxon tests were used for comparison
between two groups. Kruskal–Wallis and Friedman tests were used to compare variables
between more than two groups for unpaired and paired data, respectively. A p-value < 0.05
was taken as statistically significant.

3. Results
3.1. Butyrate Impaired Cytokine Release in Human Peripheral Blood Mononuclear Cell Studies

Human PBMCs incubated with cell culture medium only produced low levels of
cytokines and addition of LPS increased both TNF alpha (p = 0.001) and IL-10 (p = 0.001)
release. Butyrate significantly decreased both TNF alpha (p = 0.019) and IL-10 (p = 0.001)
release induced by LPS. PBMC viability was not altered by either LPS stimulation or
butyrate treatment (Figure 2).

Life 2022, 12, x FOR PEER REVIEW 5 of 19 
 

 

2.8. Measurement of Released Cytokines 
TNF alpha and IL-10 concentrations in cell culture supernatants were determined by 

ELISA according to the manufacturers’ protocols (BD Biosciences, Franklin Lakes, NJ, 
USA and R&D Systems, Minneapolis, MN, USA respectively). 

2.9. Statistical Analysis 
GraphPad Prism version 8.4.0 (GraphPad Software, San Diego, CA, USA) was used 

for statistical analyses and graphs. Non-parametric tests were performed. Data are pre-
sented as scatter plots with the median (horizontal bar). Wilcoxon tests were used for 
comparison between two groups. Kruskal–Wallis and Friedman tests were used to com-
pare variables between more than two groups for unpaired and paired data, respectively. 
A p-value < 0.05 was taken as statistically significant. 

3. Results 
3.1. Butyrate Impaired Cytokine Release in Human Peripheral Blood Mononuclear Cell Studies 

Human PBMCs incubated with cell culture medium only produced low levels of cy-
tokines and addition of LPS increased both TNF alpha (p = 0.001) and IL-10 (p = 0.001) 
release. Butyrate significantly decreased both TNF alpha (p = 0.019) and IL-10 (p = 0.001) 
release induced by LPS. PBMC viability was not altered by either LPS stimulation or bu-
tyrate treatment (Figure 2). 

 
Figure 2. Impact of butyrate on cytokine release and MTT absorbance by human PBMCs after over-
night exposure to LPS. Each symbol represents one healthy human donor (blue circle: control; red 
square: LPS; purple triangle: LPS + butyrate). Bar at median. * p < 0.05, *** p < 0.001. 

3.2. In Vivo Rat Model of Sepsis 
While butyrate at a concentration of 1.8 mM showed anti-inflammatory effects in our 

human PBMC model, we took this dose forward in our rat model of faecal peritonitis. 
Survival in both placebo- and butyrate-treated animals at 24 h was 100%. Compared to 
naïve animals, sepsis increased heart rate (p < 0.001), temperature (p = 0.015), decreased 
glucose (p = 0.003) (Figure 3a) and decreased the respiratory exchange ratio (RER) from 
0.99 to 0.84 (p < 0.001) (Figure 3b). 

Compared with untreated septic animals, at 24 h septic rats receiving butyrate 
showed falls in stroke volume (p = 0.010) and cardiac output (p = 0.001) with a metabolic 
alkalosis indicated by increases in pH (p = 0.010) and bicarbonate concentration (p = 0.003). 
Core temperature was lower (p < 0.001) while lactate levels (p = 0.031) were significantly 
higher (Figure 3a). Butyrate infusion also increased fatty acid metabolism in septic 

co
ntr

ol
LP

S

LP
S + bu

tyr
ate

0

1000

2000

3000

4000

5000

TN
F 

al
ph

a 
(p

g/
m

l)

TNF alpha

✱✱✱ ✱

co
ntr

ol
LP

S

LP
S + bu

tyr
ate

0

2000

4000

6000

8000

10000

IL
-1

0 
(p

g/
m

L)

IL-10
✱✱✱ ✱✱✱10,000

co
ntr

ol
LP

S

LP
S + bu

tyr
ate

0.0

0.2

0.4

0.6

0.8

1.0

M
TT

 a
bs

or
ba

nc
e

MTT absorbance

Figure 2. Impact of butyrate on cytokine release and MTT absorbance by human PBMCs after
overnight exposure to LPS. Each symbol represents one healthy human donor (blue circle: control;
red square: LPS; purple triangle: LPS + butyrate). Bar at median. * p < 0.05, *** p < 0.001.

3.2. In Vivo Rat Model of Sepsis

While butyrate at a concentration of 1.8 mM showed anti-inflammatory effects in our
human PBMC model, we took this dose forward in our rat model of faecal peritonitis.
Survival in both placebo- and butyrate-treated animals at 24 h was 100%. Compared to
naïve animals, sepsis increased heart rate (p < 0.001), temperature (p = 0.015), decreased
glucose (p = 0.003) (Figure 3a) and decreased the respiratory exchange ratio (RER) from
0.99 to 0.84 (p < 0.001) (Figure 3b).

Compared with untreated septic animals, at 24 h septic rats receiving butyrate showed
falls in stroke volume (p = 0.010) and cardiac output (p = 0.001) with a metabolic alkalosis
indicated by increases in pH (p = 0.010) and bicarbonate concentration (p = 0.003). Core
temperature was lower (p < 0.001) while lactate levels (p = 0.031) were significantly higher
(Figure 3a). Butyrate infusion also increased fatty acid metabolism in septic animals as
indicated by a further fall in respiratory exchange ratio from 0.84 to 0.78 (p < 0.001) at 24 h
(Figure 3b).

3.3. Butyrate Infusion Increased Mitochondrial Stress in Isolated Splenocytes

Splenocytes isolated from animals at 24 h following induction of sepsis showed falls
in maximal respiration (p = 0.008) and spare capacity (p = 0.048) compared to non-operated
healthy controls (Figure 4a). Butyrate treatment given to the septic animals decreased basal
respiration (p = 0.077), proton leak (p = 0.022) and non-mitochondrial oxygen consumption
(p = 0.055). Sepsis increased splenocyte mtROS (p = 0.075) but had no effect on mitochondrial
membrane potential; addition of butyrate however increased both membrane potential
(p = 0.007) and mtROS (p = 0.027) (Figure 4b).
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3.4. Butyrate Infusion Did Not Impact upon Sepsis-Induced Increased Intracellular Cytokine but
Reduced LPS- Induced IL-10 Release

Intracellular TNF alpha was increased (p = 0.004) in splenocytes isolated from septic
animals at 24 h compared to healthy controls but no change was seen in IL-10 levels
(Figure 5). Butyrate treatment had no impact on intracellular TNF alpha and IL-10 levels.
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Figure 3. Echocardiographic, blood gas and respiratory exchange ratio (RER) for naïve, septic control
and septic butyrate infused rats. Rats were either unoperated (naïve, blue circles) or injected with
6 µg/kg of faecal slurry preparation (septic) with or without infusion of 0.6 g/kg/h sodium butyrate
started 6 h after the onset of faecal slurry infection (septic control, red squares; septic butyrate-treated,
purple triangles). Cardiac and metabolic parameters and temperature were collected 24 h after the
infectious challenge (a, heart rate (a i.); stroke volume (a ii.); cardiac output (a iii.); temperature
(a iv.); pH (a v.); bicarbonate (a vi.); glucose (a vii.); lactate (a viii.) and PaCO2 (a ix.)). Each symbol
represents one rat, and the horizontal bar the median. * p < 0.05, ** p < 0.01, *** p < 0.001. Continuous
RER measurements started after surgery (mean ± SD) (b). Blue circles: naïve; red squares: septic
controls; purple triangles: septic butyrate-treated. p < 0.001 naïve vs. sepsis from 6–24 h. p = 0.0005
septic control vs. septic butyrate at 24 h.



Life 2022, 12, 2034 7 of 17

Life 2022, 12, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 4. Mitochondrial respiratory variables (a; basal respiration (a i.); maximal respiration (a ii.); 
spare capacity (a iii.); ATP production (a iv.); proton leak (a v.); non-mitochondrial O2 consumption 
(a vi.)), membrane potential (b i.) and ROS production (b ii.)of rat splenocytes isolated from healthy 

Naïv
e

Sep
tic

 co
ntr

ol

Sep
tic

 bu
tyr

ate
0

100

200

300

400

500

O
C

R
 (p

m
ol

/m
in

/c
el

l)

Maximal respiration

✱✱

Naïv
e

Sep
tic

 co
ntr

ol

Sep
tic

 bu
tyr

ate
0

50

100

150

O
C

R
 (p

m
ol

/m
in

/c
el

l)

Non-mitochondrial O2 consumption

0.055

Naïv
e

Sep
tic

 co
ntr

ol

Sep
tic

 bu
tyr

ate
0

5000

10000

15000

20000

25000

TM
R

M
 M

FI
 (A

.U
.)

Membrane potential

✱✱
25,000

20,000

15,000

10,000

Naïv
e

Sep
tic

 co
ntr

ol

Sep
tic

 bu
tyr

ate
0

50

100

150

200

O
C

R
 (p

m
ol

/m
in

/c
el

l)

ATP production

Naïv
e

Sep
tic

 co
ntr

ol

Sep
tic

 bu
tyr

ate
0

50

100

150

O
C

R
 (p

m
ol

/m
in

/c
el

l)

Proton leak

✱

Naïv
e

Sep
tic

 co
ntr

ol

Sep
tic

 bu
tyr

ate
0

2000

4000

6000

8000

10000

M
ito

SO
X 

R
ed

 M
FI

 (A
.U

.)

Mitochondrial ROS

✱✱0.075
10,000

Naïv
e

Sep
tic

 co
ntr

ol

Sep
tic

 bu
tyr

ate
0

100

200

300

O
C

R
 (p

m
ol

/m
in

/c
el

l)

Basal respiration

0.077

Naïv
e

Sep
tic

 co
ntr

ol

Sep
tic

 bu
tyr

ate
0

100

200

300

400

O
C

R
 (p

m
ol

/m
in

/c
el

l)

Spare capacity

✱*
a i. a ii. a iii.

a iv. a v. a vi.

b i. b ii.

Figure 4. Mitochondrial respiratory variables (a; basal respiration (a i.); maximal respiration (a ii.);
spare capacity (a iii.); ATP production (a iv.); proton leak (a v.); non-mitochondrial O2 consumption
(a vi.)), membrane potential (b i.) and ROS production (b ii.) of rat splenocytes isolated from healthy
rats or after 24 h of sepsis. Each symbol represents one rat. Blue circles: naïve; red squares: septic
controls; purple triangles: septic butyrate-treated. Bar at median. * p < 0.05, ** p < 0.01.
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Figure 5. Intracellular cytokine levels (a; TNF alpha (a i.); IL-10 (a ii.)) and released cytokines after
LPS stimulation (b, TNF alpha (b i.); IL-10 (b ii.)) of splenocytes isolated from healthy control rats
(blue circles), septic control rats (red squares) and butyrate-treated septic rats (purple triangles) at
24 h. Each dot represents one rat. Bar at median. * p < 0.05, ** p < 0.01.
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Cytokine release by splenocytes was affected by butyrate with a reduction in released
IL-10 in unstimulated (p = 0.031) and LPS-stimulated (p = 0.039) cells. TNF alpha release
was unaffected by butyrate treatment. LPS stimulation on its own failed to induce TNF
alpha and IL-10 release by isolated splenocytes from septic animals.

4. Discussion

Sepsis induces derangements in metabolic, immune and mitochondrial function. Here,
we showed ex vivo, butyrate reduced LPS-induced cytokine (TNF alpha and IL-10) release
by human PBMCs. We therefore took this forward in our rat model of faecal peritonitis,
were we showed that intravenous butyrate infusion reduced the respiratory exchange ratio
(p < 0.001). This was associated with a reduction in cardiac output, and increased lactate
compared to placebo-treated septic animals (p < 0.05). Butyrate treatment did not affect
mitochondrial respiration nor intracellular cytokine production in splenocytes after 24 h
of sepsis, although both MMP and mtROS increased. Butyrate lowered splenocyte IL-10
release following LPS stimulation ex vivo. However, LPS stimulation on its own failed to
induce TNF alpha and IL-10 release by isolated splenocytes from septic animals, which
may indicate an immune exhaustion phenotype that is not restored by butyrate.

Derangements in metabolic, immune and mitochondrial function were observed in
our established rat model of faecal peritonitis. Intravenous butyrate infusion however
failed to show any obvious clinical benefit at a whole-body level in our established rat
model of faecal peritonitis. Butyrate infusion was associated with decreased cardiovascular
function and higher lactate levels. While this may indicate a deleterious effect of this SCFA,
conversely a counter-argument may be made towards normalisation of cardiovascular
parameters with butyrate, and the rise in lactate explained by substrate reprioritisation
away from glucose and by the induced alkalosis (see below). Though mitochondrial
respiration and total body oxygen consumption were suppressed at 24 h, there was an
increase in splenocyte mitochondrial reactive oxygen species levels. Others have reported
that SCFA supplementation (including butyrate) reduced inflammation and increased
survival in septic rats [30], but we were unable to reproduce this effect. Many of these prior
studies however differed in setup or did not deliver a realistic in vivo septic insult but
instead administered a single injection of LPS [31]. Butyrate was also given by intermittent
injection [30] rather than by continuous infusion, or as pre-treatment, either in the feeding
regimen [32] or intraperitoneally [33] which does not follow a clinical setting where patients
first get ill and then receive treatment. Fluid resuscitation was also highly variable and
continuous infusions were not administered. In clinical practice, treatment (e.g., fluid
resuscitation, immunomodulatory therapy) would not commence until the patient presents
with established sepsis. In this context, our model better reflects the clinical scenario. In our
model we attempted to mimic a more realistic clinical scenario, with butyrate administration
commenced at 6 h after the induction of sepsis when animals were manifesting clinical
features, plus maintenance of an adequate volaemic status.

In our septic model there was a significant reduction in RER, indicating a shift towards
lipid metabolism. This was exacerbated by infusion of butyrate. In a study performed
in septic or trauma patients, a large glucose load did not impact upon fat oxidation but
did increase conversion of glucose to glycogen [34]. FA uptake and blood levels were not
measured. The higher blood glucose level seen in our study in butyrate-treated septic rats
suggests increased utilization of fat and, perhaps, more insulin resistance. Similar findings
were reported in a dog sepsis model [35]; butyrate was infused in the form of the ketone
body, β-hydroxybutyrate but this failed to suppress glucose production or lower plasma
free FAs.

The rise in lactate seen with butyrate treatment may reflect worse tissue perfusion
and/or mitochondrial impairment of oxidative phosphorylation. Depressed cardiac func-
tion is a major complication of sepsis [36] yet cardiac output was lowered further with
butyrate treatment. These results differ from those from obtained in a murine endotoxin
model [37]. A butyrate diet, given as pre-treatment, attenuated septic myocardial de-
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pression, and this was associated with an anti-inflammatory effect and a reduction in
oxidative stress. An additional cause of hyperlactataemia is the significant metabolic al-
kalosis induced by butyrate in the septic rats. MacLeod and Hoover observed a century
ago that alkalosis, either metabolic or respiratory, increases aerobic production of lac-
tate [38]. The alkalosis-induced rise in lactate production is linked in part to the sensitivity
of phosphofructokinase (PFK). PFK is involved in the sequential conversion of glucose to
lactate (Embden-Meyerhof pathway) and enhances glycolysis [39]. Alkalosis may impair
mitochondrial oxidation and the activity of the Krebs’ cycle [40].

We observed that butyrate increased both mitochondrial membrane potential and
mitochondrial reactive oxygen species within splenocytes isolated from the septic rats.
Unexpectedly, however, there was an overall depressant effect on bioenergetics. Butyrate
is generally associated with increased mitochondrial respiration [21] though decreased
ATP turnover has been reported [24]. By contrast, butyrate treatment was associated with
lower splenocyte proton leak compared to untreated septic rats, suggesting that this SCFA
decreased mitochondrial uncoupling. Uncoupling may elevate core temperature which was
blocked by butyrate treatment. Uncoupling will also reduce mitochondrial ROS production
through decreasing mitochondrial membrane potential. The underlying redox status
may be relevant in determining whether butyrate treatment is protective or potentially
damaging; opposing effects may be seen in health or stressful conditions such as sepsis. Of
note, FAs reduced ROS generation due to their weak inhibition of electron flow at complexes
I and III [41] and their protonophore action on the inner mitochondrial membrane [42]. The
latter effect increases as FA chain length increases. SCFAs such as butyrate, which has a
chain length of 4 carbon atoms, will thus have less protonophore activity. Low physiological
levels of butyrate did not affect functioning of the electron transport chain nor did it have
any protonophore effects on the inner mitochondrial membrane [41].

Another consideration is dose dependency, since butyrate may have variable effects
on respiration depending on the dose [43]. We took forward our dose of 1.8 mM as this
concentration was based on the three-fold elevation in plasma butyrate concentration
measured in human sepsis [25], and was effective in our ex vivo human PBMC study. A
pharmacokinetic study in mice and rats suggested our infusion of 0.6 g/kg/h butyrate
would generate a concentration of 1.8 mM butyrate in peripheral blood [28]. Unfortunately,
despite efforts, we were unable to measure the plasma butyrate concentrations in our
septic rats. We acknowledge the possibility of toxicity which may not occur at lower
doses. This may be in part related to the metabolic alkalosis generated by the butyrate
infusion with median 24 h plasma bicarbonate levels rising above 40 mmol/L. While
this extracellular increase may not necessarily reflect intracellular pH changes in vivo,
mitochondrial function is tightly regulated by pH [44]. There is a marked pH difference in
control (5.0–7.0 for Hartmann’s solution, 4.0 for 5% glucose) versus butyrate-containing
(pH 7.7) fluid so there will be considerably greater buffering capacity with butyrate.

While sepsis increased intracellular TNF alpha and IL-10 production in our rat model,
butyrate infusion had no effect. IL-10 release was reduced by butyrate in our ex vivo
model, yet TNF alpha release remained unaltered. Although models differ, suppression of
pro-inflammatory cytokine secretion by butyrate [45–50], and an increase in monocyte IL-10
secretion [48] have previously been reported. Butyrate is a potent inhibitor of nuclear factor
(NF)-κB, which offers a potential explanation for the reduced IL-10 release [51,52]. Butyrate
inhibits activity of histone deacetylases (HDACs) [50] and activates G protein-coupled
receptors GPRs [53,54], thereby promoting Treg development and function, and shaping
differential T cell responses [55], yet we did not study underlying mechanisms.

While LPS stimulation in the absence of butyrate did not increase cytokine release
by isolated splenocytes from septic rats, this may indicate immune cell exhaustion (i.e.,
sepsis induced immunosuppression). We have not however explored this in our study.
Boomer et al. reported a profound depletion of T, B and dendritic cells in both murine
models of sepsis [56,57] and septic patients [58–61]. Post-mortem analyses of spleen
and lymph nodes taken from patients who died from sepsis showed a significant loss
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of CD4+ and CD8+ T cells [59]. Additionally, T cells showed increased expression of
the immune checkpoints, programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-
associate antigen-4 (CTLA-4) [59], possibly accounting for the increased lymphocyte death
and cellular unresponsiveness to inflammatory stimuli [62]. Similarly, B and T lymphocyte
attenuator (BTLA) and programmed death ligand (PD-L1) are upregulated in B cells, and
monocytes [58,59]. Furthermore, expression of CD28 is decreased in T cells isolated from
septic patients compared to healthy controls [59]. Without co-stimulation through CD28/B7
when the T cell receptor engages antigen, T cells become functionally unresponsive [63].
Our data are consistent with immune cell exhaustion, although we have not studied this.
Treatment with butyrate did not affect these changes.

Future work should analyse the impact of potential confounders such as blood (extra-
cellular) pH. Other investigations could include mechanistic studies such as expression or
activity of NF-κB, HDACs, GPRs or uncoupling proteins (UCPs). UCP2 is expressed on
immune cells and involved in cell activation, mitochondrial ROS production and fatty acid
oxidation [64]. The effects of butyrate could be tested on peripheral blood purified mono-
cytes or lymphocytes rather than isolated splenocytes, though recognising that cell numbers
fall markedly during sepsis so adequate yields may become problematic. Comparisons
between cell types may reveal important differences, and addition of immunosuppressive
markers including PD-(L)1, CTLA-4 and/or HLA-DR may provide further insight. Our
rat model has been long established to mimic a clinically relevant sepsis situation with
impaired mitochondrial function and myocardial depression [26,27]. However, preclinical
models including ours generally use young and healthy animals while sepsis predomi-
nantly affects elderly co-morbid patients with impaired immune functionality.

5. Conclusions

Although intravenous butyrate infusion reduced the inflammatory response in our rat
model of faecal peritonitis-induced sepsis, supplemental butyrate may be associated with
deleterious effects in early sepsis as butyrate administration was associated with cardio
depressant effects, increased lactate levels, increased splenocyte ROS, and impaired LPS-
induced IL-10 release. Hence, the therapeutic utility of butyrate is doubtful. Further studies
are needed to determine whether the butyrate regimen given to this model was optimal.
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Appendix A. Detailed Methods

A.1. Butyrate Stock Preparation

Butyrate stock solution (100 mM) was prepared by dissolving butyrate powder (Sigma-
Aldrich, St. Louis, MO, USA) into prewarmed distilled water. Stocks were kept at −20 ◦C
until use for human PBMC experiments.

A.2. Human PBMC Isolation and Culture

Venous blood from healthy volunteers was obtained by phlebotomy and diluted 1:3
with PBS. Diluted blood was layered on Ficoll-Paque (GE Healthcare, Uppsala, Sweden)
and centrifuged for 30 min at 400× g without brake at room temperature. The PBMC
layer was transferred into a clean tube and washed twice with PBS, after which the cells
were counted and used in experiments. Freshly isolated PBMCs from healthy donors were
cultured in RPMI 1640 GlutaMAX medium supplemented with 10% fetal bovine serum and
1% penicillin/streptomycin (all Thermo Fisher Scientific Waltham, MA, USA) in a round
bottom 96-wells plate at 37 ◦C in 5% CO2 at a density of 300,000 cells/mL.

A.3. MTT Assay

Viability of human PBMCs was confirmed by using the MTT assay. MTT solution was
prepared by dissolving MTT dye in IMDM (Thermo Fisher Scientific Waltham, MA, USA,
1 mg MTT per ml IMDM). At the end of incubation, supernatant was collected as described
before and cells then incubated for 2 h at 37 ◦C, 5% CO2 with 100 µL MTT solution per well.
MTT solution was removed and 100 µL lysing solution (a mixture of isopropanol, SDS 20%
and HCl 5 N, ratio 10:5:0.1) per well was added to dissolve the cells. Plates were covered
and incubated overnight on a plate shaker. Absorbance was measured at 570 nm.

A.4. In Vivo Rat Model of Sepsis

Male Wistar rats (Charles River UK) weighing between 300–450 g were acclimatised
overnight in separate metabolic cages (CLAMS Oxymax, Columbus Instruments, Ohio, PA,
USA), allowing continuous monitoring of oxygen (O2) consumption and carbon dioxide
(CO2) production. Under 2% isoflurane anaesthesia the right jugular vein was cannulated
and tunnelled to exit at the nape of the neck. Sepsis was induced by an intraperitoneal (IP)
injection of 6 µg/kg of a faecal slurry preparation dissolved in 3–4 mL of 0.9% saline. Con-
trol animals received no injection. A subcutaneous injection of 0.5 mg/kg buprenorphine
(Vetergesic, Reckitt Benckiser, Slough, UK) was given at the time of surgery to provide
long-acting analgesia. Animals were then put back in their metabolic cages and allowed to
recover. At two hours, a fluid (1:1 ratio of 5% glucose/Hartmann’s solution) infusion was
started at a rate of 10 mL/kg/h. At six hours, echocardiography (Vivid-I, GE Healthcare)
was performed under isoflurane anaesthesia to measure heart rate, stroke volume and
cardiac output.

At this 6 h timepoint, a fluid bolus of 10 mL/kg administered over five minutes fol-
lowed by an infusion of sodium butyrate (0.6 g/kg/h, Sigma-Aldrich, St. Louis, MO, USA)
at a rate of 10 mL/kg/h for the following 18 h. To match the caloric intake of the butyrate-
treated animals, control animals received an isovolumic and isocaloric glucose/Hartmann’s
solution by increasing the glucose:Hartmann’s ratio.

At 24 h, echocardiography was performed under isoflurane anaesthesia followed by
sacrifice by cardiac puncture with sampling of blood and splenic tissue. Arterial blood gas
was performed to measure lactate, glucose, and pH.

A.5. Rat Splenocyte Isolation

After sacrificing the animal by cardiac puncture, the complete spleen was isolated
and put in a Petri dish filled with fridge-cold culture medium. The spleen was broken in
pieces in the Petri dish and then passed through a 100-µm cell strainer to obtain a single
cell suspension by crushing with a 5 mL syringe and collecting the cell suspension in 5 mL
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culture medium. Culture medium was added on top of the strainer to keep the tissue under
medium throughout. The cell suspension was centrifuged at 4 ◦C, 130 RCF for 5 min. Cells
were resuspended in 15 mL 1× NH4Cl lysing solution, incubated at room temperature for
10 min and centrifuged again to lyse and wash out erythrocytes. Splenocytes were washed
twice in 15 mL PBS and re-suspended in culture medium.

A.6. Respirometry

The Seahorse XFe96 Analyzer (Agilent Technologies, Santa Clara, CA, USA) was used
according to the manufacturer’s protocol to measure the oxygen consumption rate (OCR)
of isolated rat splenocytes. Splenocytes were seeded in triplicate at a density of 300,000 cells
per well. After overnight incubation, plates were centrifuged and supernatant was stored at
−20 ◦C to quantify cytokines. Cells were resuspended in Seahorse XF DMEM medium (Ag-
ilent Technologies, Santa Clara, CA, USA) supplemented with 5 mM glucose XF (Agilent
Technologies), 1 mM pyruvate XF (Agilent Technologies, Santa Clara, CA, USA) and 2 mM
glutamine (Sigma-Aldrich, St. Louis, MO, USA) in specialised XF96 cell culture microplates
(Agilent Technologies) pre-treated with Cell Tak (VWR international, Radnor, PA, USA).
Plates were centrifuged at 200× g for 1 min without break and then incubated for 30 min at
37 ◦C without CO2. Plates were loaded onto the Seahorse analyser. Three baseline OCR
measurements were taken for each well, after which oligomycin (2 µM, Sigma-Aldrich,
St. Louis, MO, USA), carbonycyanide p-(trifluoromethoxy) phenylhydrazone (FCCP, 2 µM,
Cambridge Bioscience), antimycin A and rotenone (1 µM, Insight Biotechnology) were se-
quentially injected. Three OCR measurements were taken after each injection. Hoechst dye
(Thermo Fisher Scientific Waltham, MA, USA) was added to normalise OCR measurements
according to cell number using the ImageXpress Imaging System (Molecular Devices). To
calculate OCRs for basal respiration, proton leak, ATP production, maximal respiration and
non-mitochondrial respiration, the area under the curve (AUC) prior to the next injection
was calculated.

A.7. Flow Cytometry

Isolated rat splenocytes were stained with fixable violet live/dead (Thermo Fisher
Scientific Waltham, MA, USA) to assess viability.

MitoSOX red (2.5 µM) and TMRM (25 nM, both Thermo Fisher Scientific Waltham,
MA, USA) were added 20 min prior to flow cytometry for measurement of mitochondrial
reactive oxygen species (ROS) and mitochondrial membrane potential, respectively.

Intracellular cytokine staining was performed using the BD fixation/permeabilization
kit as per manufacturer recommendations. Briefly, cells were resuspended in 100 µL/well
fixation/permeabilization solution, incubated for 20 min at 4 ◦C before being washed and
resuspended in permeabilization/wash buffer with intracellular cytokines TNF (Thermo
Fisher Scientific Waltham, MA, USA) and IL-10 (BD Biosciences, Franklin Lakes, NJ, USA).
Following incubation for 30 min at 4 ◦C, cells were washed and resuspended in staining
buffer in preparation for analysis (Appendix A Table A1).

Table A1. Antibodies for flow cytometry.

Cell Marker Cat. No Clone Laser Filter Fluorophore Dilution

TNF-a 11-7423-82 TN3-19.12 Blue (488 nm) 530/30 FITC 1:50

IL-10 555088 A5-4 Yellow (561 nm) 585/15 PE 1:50

Live dead L34963 Violet (405 nm) 450/50 violet 1:1000

MitoSOX Yellow (561 nm) 585/15 2.5 µM

TMRM T668 Yellow (561 nm) 585/15 25 nM
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Isolated rat splenocytes were analysed using flow cytometry. Compensation con-
trols were applied to all samples prior to analysis. Cell surface marker compensation
controls used single-stained unstimulated healthy donor cells. Healthy donor cells for the
Live/Dead (Thermo Fisher Scientific Waltham, MA, USA) single stain were heat-treated at
60 ◦C for 10 min.

Cells were initially gated using forward and side scatter and at least 5000 splenocyte
gate events were acquired for each sample (LSR II flow cytometer and FACSDiva software,
BD Biosciences, Franklin Lakes, NJ, USA). Flow cytometry data was analysed using FlowJo
(version 10.7.1, BD Biosciences, Franklin Lakes, NJ, USA). Cell populations of interest were
identified using the following Boolean gating strategy: lymphocytes or PBMCs, singlets,
live cells, and cell surface markers (Appendix A Figure A1).

After the exclusion of doublets and debris, live cells were analysed for mitochondrial
markers and intracellular cytokine production and quantified by geometric means of the
mean fluorescence intensity (MFI; arbitrary units).
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