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Abstract

With this work, we investigate the use of Reinforcement Learning (RL) for gen-
eration of spatial assemblies, by combining ideas from Procedural Generation
algorithms (Wave Function Collapse algorithm (WFC) [8]) and RL for Game Solv-
ing. WFC is a Generative Design algorithm, inspired by Constraint Solving [3]. In
WFC, one defines a set of tiles/blocks and constraints and the algorithm generates
an assembly that satisfies these constraints. Casting the problem of generation
of spatial assemblies as a Markov Decision Process whose states transitions are
defined by WFC, we propose an algorithm that uses Reinforcement Learning and
Self-Play to learn a policy that generates assemblies which maximize objectives set
by the designer. Finally, we demonstrate the use of our Spatial Assembly algorithm
in Architecture Design.

1 Introduction
We present a novel application of Deep Reinforcement Learning, coupled with a bespoke Constraint
Solving algorithm for learning to generate spatial assemblies.

Constraint Satisfaction Problems (CSPs) consist of a finite set of rules and objects, whose compo-
sition/combination must satisfy a number of constraints [2]. CSP solvers have been effective in
computation logic problems across many domains including decision making, game development,
logic puzzles [6, 7, 10]. Design innovation through constraint solving has been extensively explored
by Killian et al. [4], whose research has focused on constraints in design exploration and specifically
bidirectional constraint solving methods [4]. Our approach explores building design as a multi-
objective CSP, trained to evaluate each local decision based on the current state of the assembly to
effectively negotiate evolving socioeconomic and environmental goals.

We begin by modeling architecture design as a CSP, extending the approach of Texture Synthesis and
Model Synthesis [5], and Wave Function Collapse [8, 3], primarily applied to image-based procedural
content creation and modeling in gaming. The algorithm extracts features and their relations from
images and attempts to recreate similar distributions of those features procedurally creating images
that resemble a prototypical image.

However, using such algorithms to generate assemblies 1 that optimize certain criteria, additionally to
the constraints solving, is a difficult task because of the lack of differentiability and their dependency
on black-box methods. To elevate this limitation, we equip the search space of possible assemblies
with an efficient learnable search operator/policy π(a|s).

1assemblies, designs, and structures will be used interchangeably
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Figure 1: Spatial Assembly process.

2 Algorithm
First, we define a set of geometric tiles that form a dictionary D of building blocks (Di represents
the i-th tile of the set). Next, we set a rule of constraints, C, according to which these tiles can be
combined. The problem then becomes to sequentially combine the tiles in order to create structures
that are valid (no constraint is invalidated) and maximally cover the available canvas.

Wave Function Collapse starts with an empty state and selects an initial tile at random. Meanwhile,
for each possible expansion node (expansion node is a connection point of a tile which is free) it
keeps track of the number of tiles that can be connected which do not invalidate the constraints,
termed entropy. WFC works by selecting the node with the least degrees of freedom (most constraint
node) and expanding the node by randomly selecting a tile that satisfies the constraints. We can
see the problem of generation of an assembly as solving a Markov Decision Process (MDP), where
the state transitions are defined by WFC algorithm, actions are the tiles from the dictionary D, and
rewards are defined according to the designer’s goals.

Algorithm 1 Spatial Assembly - Rollout

1: S ← ∅ . Initialize empty
2: while structure not complete or invalid do
3: node = SelectNode(S) . Select the most constraint node
4: tiles = GetValidTiles(node, C, D) . Get the set of tiles that satisfy the constraints
5: Sample Tnew from policy π(a|S, tiles)
6: Update S by connecting the new tile Tnew at node

Spatial Assembly algorithm, replaces the random selection of the tiles with the policy π(a|s), which
returns a distribution over the available tiles (action a) according to their potential to maximize the
future expected reward. We learn the policy with Proximal Policy Optimization [9], a Reinforcement
Learning algorithm which has enjoyed success in various domains of Artificial Intelligence. The
complete rollout algorithm can be found in alg. 1.

Training the system occurs as follows. We start generating rollouts with an initially untrained policy
until we reach a terminal state. We evaluate the terminal state according to the success and reward
accordingly. For example, one reward signal we used was the maximum displacement observed
on the final structure after it got simulated by the physics engine of Unity3D (reward capturing the
structural stability of the assembly). We then use Proximal Policy Optimization to update the value
function and the policy for the next round. We let the system self-play until convergence. This
approach can be seen as Policy Gradient Search [1].
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A Application: Spatial Assembly in Architecture Design
This methodology was applied in three design projects, ArchiGo(2018), Nomas(2019), and
ISIRLA(2020), at Bartlett School of Architecture, Living Architecture Lab.

The ArchiGo (fig. 3) project was developed by iteratively designing and testing many spatial part sets
with different characteristics and relations evaluated for their ability to avoid contradictions and meet
user-defined spatial objectives (Figure 2).

In the NOMAS project (fig. 2), we investigate the potential for this method to re-think housing
strategies and invent new spatial languages composed of simple prefabricated parts. The strategy is
demonstrated through the digital process applied to the physical production of a 3.5-meter-tall spatial
prototype assembled with human labor from coconut fiber composite parts.

IRSILA (fig. 4) applies the methodology to a reconfigurable cultural center where spatial parts are
constructed from smaller prefabricated units assembled and reconfigured by autonomous distributed
robots. Both demonstrate the potential for buildings with reconfigurable and adaptive life cycles.
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Figure 2: NoMAS Project (2018)

Figure 3: ArchiGo Project (2019)

Figure 4: IRSILA Project (2020)
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