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The Askaryan Radio Array (ARA) is an ultra-high energy (UHE) neutrino (�a > 1017 eV) detector
at South Pole. ARA aims to utilize radio signals detected from UHE neutrino interactions in
the glacial ice to infer properties about the interaction vertex as well as the incident neutrino.
To retrieve these properties from experiment data, the first step is to extract timing, amplitude
and frequency information from waveforms of different antennas buried in the deep ice. These
features can then be utilized in a neural network to reconstruct the neutrino interaction vertex
position, incoming neutrino direction and shower energy. So far, vertex can be reconstructed
through interferometry while neutrino reconstruction is still under investigation. Here I will
present a solution based on multi-task deep neural networks which can perform reconstruction of
both vertex and incoming neutrinos with a reasonable precision. After training, this solution is
capable of rapid reconstructions (e.g. 0.1 ms/event compared to 10000 ms/event in a conventional
routine) useful for trigger and filter decisions, and can be easily generalized to different station
configurations for both design and analysis purposes.
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1. Introduction

The Askaryan Radio Array (ARA) is an UHE neutrino detector currently under construction
at South Pole. This proceeding describes a multi-task convolutional neural network (CNN) trained
on simulated data to provide rapid and accurate reconstructions in the case of candidate neutrino
events. The CNN takes extracted event features as input and outputs an estimate of the incident
neutrino direction and the position of the interaction vertex in the south pole ice.

As of 2021, ARA includes 5 stations. An ARA station has 4 strings each with 4 measurement
antennas. The 16 antennas form a rectangular solid with sides of 15× 15× 20 m as shown in Fig. 1.
To measure polarization of incoming signals, 8 of the antennas are vertically polarized (VPol) and
the other 8 are horizontally polarized (HPol), mounted alternatively on each string. Details of the
station configuration and performance can be found in [1] [2].

Figure 1: Neutrino radio detection by an ARA station.

When a neutrino interacts in ice, a cascade of electrons and positrons is created. This relativistic
“spark” generates a radio frequency pulse via the Askaryan effect [3]. Due to the low temperature
in the ice, the attenuation length of the radio signals is of order of 1 km, which allows the detector
to be deployed sparsely [4]. Each ARA station is designed to detect these signals from a volume of
order a hundred km3 of ice, which provides an aperture of 104 m2sr at 1018.5 eV [2].

To reconstruct a neutrino vertex in a conventional way, relative timing of signals from antennas
at different locations is used to reconstruct the arrival direction of rays, which can be traced back
to find the interaction vertex. Relative amplitudes from pairs of polarized antennas are used to
reconstruct the polarization of the incident electric field, which is used to resolve the direction of
the ray relative to the shower axis and, in turn, the neutrino momentum.
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The data set used in this proceeding is generated with a Monte Carlo simulation tool for UHE
neutrino experiments, NuRadioMC [5] [6]. It can simulate the full chain from Askaryan radio
signal generation all the way to recording of waveforms by a user defined detector. NuRadioMC is
a python-steered, modular framework for general detector configurations, e.g. it can simulate and
be used to study a variety of future detector designs. In this proceeding, A2 configuration is used
in simulation to generate the data set.

The proceeding first describes how the data set is produced and processed to meet the require-
ment of a convolutional neural network. The choice of some network features, e.g. its architecture,
input and output structure, loss functions is then justified in Sec. 3. The reconstruction results and
some performance measurements are illustrated in Sec. 4. Finally, a summary and some future
works conclude the proceeding.

2. Data

The data set is generated with NuRadioMC. Simulations are produced run by run by throwing
100k events with an energy spectrum ranging from 1016.5 eV to 1020 eV with a step of 100.5. The
thrown events in each run are distributed evenly in a cylinder around the station center, while the
directions of neutrinos are isotropic in azimuth and cos(zenith). Depending on the specific station
design, the distribution of the vertex locations and the neutrino direction may vary. With the A2
configuration, the distribution of simulated events at 1018.5 eV is shown in Fig. 2. Fig. 2a shows
that triggered events are symmetrically distributed in azimuth and within a certain distance due to
ice attenuation. There is a shadow line in Fig. 2b above which no event can illuminate the detector
due to refraction in the ice. Fig. 2c shows that only those neutrinos coming in a specific zenith
range can trigger the station. Neutrinos coming from below, i.e. those with zenith angles greater
than 100 deg, are absorbed by the Earth, while those down-going, i.e. with zenith less than 50 deg
cannot radiate towards the detector due to the restriction of the Cherenkov angle [3].

A typical set of waveforms with noise is in Fig. 3. Each antenna records either 0 or 2 pulses
from the simulation [7]. In the case of 2 pulses, the first is called the direct pulse (D) and the
second the refracted/reflected pulse (R). To extract timing and amplitude information, a 31.25 ns
window around each pulse is taken according to true simulation information at this stage, and a
corresponding Hilbert envelope is calculated. An integral of the envelope within each window is
used as amplitude information. The +/- sign of the polarized electric field is supplied as a feature
to improve reconstruction of the incident neutrino direction. To get timing, channel 0 D pulse is
chosen as the reference, and is assigned 0 ns timing. The relative signal arrival time from all other
pulses is then calculated with respect to the reference waveform by a cross-correlation technique.

With a full data set of about 274k events in 320 runs, those events with missing signals in any of
the channels are excluded, which happens mostly at the boundary of the vertex phase space. After
cleaning, a remaining 243k events suggests an efficiency of 89% of the events with discernible D
and R pulses. The cleaned data set is then split into 90%, 5%, 5% for training, validation and test
respectively. A scaling of the input features by subtracting the training mean and dividing by the
standard deviation is applied to all three sets before providing the data to the neural network so that
all the features are of the same order and are weighted by their significance.
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Figure 2: Triggered events from a simulation of A2 by NuRadioMC. The events are at 1018.5 eV.

Figure 3: Waveforms from a 1018.5 eV neutrino event at 1768 m from the detector.
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3. Method

In this proceeding, a multi-task convolutional neural network is developed to reconstruct
neutrino vertex and direction. The architecture of the network is inspired by the work in IceCube [8]
and is shown in Fig. 4. The first part consists of convolutional layers with 3×3 kernels to learn hidden
characteristics and handle the high dimensional nature of the input features. The total number and
the number of filters of the convolutional layers are hyper-parameters that can be tuned to improve
the performance. The second half includes only dense layers after flattening the 3d intermediate
output from the first part, of which the total number and number of nodes are hyper-parameters as
well. The input layer is a (4, 4, 6) matrix to better reflect the detector configuration. The output is
a vector of length 7 to predict both neutrino vertex and neutrino direction in the same model.

Figure 4: A diagram of the optimized network architecture.

According to the discussion in Sec. 1, the relevant input features are timing, amplitude and
ratio of amplitudes from HPol and VPol antenna pairs. The features are aligned as shown in Fig. 5.
For each type of feature, they are aligned string by string in column direction with VPol antennas
in the top two rows and HPol antennas in the bottom two. Different types of features are aligned
along the channel axis in a sequence of timing from D pulses, timing from R pulses, amplitude from
D pulses, amplitude from R pulses, ratio of corresponding VPol and HPol from D pulses, ratio of
corresponding VPol and HPol from R pulses. In addition, a periodic padding is applied by inserting
string 3 features ahead of string 0 and appending string 0 features to string 3 to account for azimuth
continuity.

The outputs are the measurements of neutrino vertex and direction, which is described in
Tab. 1. Mean squared percentage error (MSPE) loss "(%� = 1

=
Σ=
8=1((HCAD4,8 − H?A43,8)/HCAD4,8)

2

is used for A to give similar training weights to near and far events. Mean squared error (MSE) loss
"(� = 1

=
Σ=
8=1(HCAD4,8 − H?A43,8)

2 is applied to all the angular outputs since the uncertainty in a
vector should not depend on the direction of the vector. The application of trigonometric functions
to azimuth angles of both vertex and direction is to avoid the discontinuity at 0/360 deg caused by
the MSE loss.
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Figure 5: The input feature structure.

Label Explanation Loss
A Horizontal distance from the station center to a vertex MSPE

sinU, cosU Azimuth angle from the station center to a vertex MSE
V Zenith angle from the station center to a vertex MSE

sin q, cos q Azimuth angle pointing back to where a neutrino comes from MSE
\ Zenith angle pointing back to where a neutrino comes from MSE

Table 1: A description of outputs.

4. Results

After training a neural network, its performance is estimated by applying it to the 5% test data
set. The test set is never used in training, so it is a good source to check the model performance on
unseen data. The error distributions are shown in Fig. 6. A is measured in relative error as ΔA/A =
(A?A43 − ACAD4)/ACAD4, while all the angular outputs are measured in error, e.g. ΔV = V?A43 − VCAD4.
All the distributions are normalized to 1. The width of an error distribution f is calculated as
half of the difference between the 84 percentile and the 16 percentile to measure the reconstruction
accuracy of the middle 68% events. The median of the error distribution < is the 50 percentile.

All the distributions are centered around zero, suggesting there is no systematic offset between
predicted and true values. fA is well below 10%. fV and fU are within 0.5 deg. The use of
true information for timing seed and polarity requires further investigation. The neutrino direction
reconstruction has wider error distributions with f\ of 4 deg and fq of 6 deg. These may be
correlated, depending on the orientation of the Cherenkov cone. On the other hand, a small scale
detector like A2 relies on frequency to determine the launch direction relative to the Cherenkov
cone, so lack of frequency information as inputs may further degrade the performance.

In addition to the test on unseen data to assess generalization, the model stability is estimated
by applying 10 fold cross validation. The results of < and f of all the outputs with error bars are
in Fig. 7. <A , <V , <U, <q’s going across zero within one standard deviation shows there’s no
systematic bias. <\ is 0.1 deg above zero. Although the error bars for f\ and fq are wider than
those of fA , fV and fU, the width of all the error bars in Fig. 7b are small, suggesting the model is
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Figure 6: The error distribution.

stable in terms of training and testing on different data sets.

(a) (b)

Figure 7: Median < and width f from 10 fold cross validation.

The relationship between data size and performance is also studied for the purpose of estimating
the performance limit. The whole data set contains 320 runs. A set of network models is trained
with 40, 80, 160 and 320 runs and the performance is estimated. The results in Fig. 8 are normalized
according to the performance of the model with 40 runs. According to the figures, having more
data can potentially lower f.

5. Summary and Outlook

As illustrated herein, the multi-task convolutional neural network can give a stable and precise
reconstruction results for both neutrino vertex and neutrino direction for a majority of triggered
neutrino events. However, there are still some future works to do. First, the method of extracting
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Figure 8: Width f from a set of models trained with 40, 80, 160 and 320 runs.

timing and amplitude features from waveforms can be replaced by another neural network, which
can then be connected to the reconstruction network to make an end-to-end model. In that case,
the model won’t rely on simulated true information about the pulse window and polarity. Quality
cuts can then be applied to keep only high SNR events, which can lower the efficiency illustrated
in Sec. 2. Second, frequency features should be investigated to reconstruct shower energies. Third,
due to the flexibility of a neural network model, it can be generalized to other station configurations
to study reconstruction, e.g. IceCube-Gen2 [9]. Finally, the model should be applied to real data
set for test. One possibility is to apply the trained network to SpiceCore data that was taken in 2018.
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