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ABSTRACT
In this paper, we show that the way in which fund managers are compensated can,
under plausible conditions, lead them to act in a way that does not maximise the well-
being of their clients. Due to performance bonuses in fund managers’ rewards, there
is a highly non-linear relationship between the wealth of the client and the fees that
the manager receives. We demonstrate that jumps in equity returns can lead to a con-
flict of interest between the investor and the manager in such a setting. Specifically,
the managers’ option-type payment structure can incentivise them to not account for
the downside risk induced by jumps, especially if the fund manager is only in post for
a few years; thus managers may pursue a more aggressive asset allocation strategy
than their clients desire. Our key policy recommendation is that regulators should con-
sider imposing a negative fund fee in times of very poor absolute fund performance to
mitigate against suboptimal fund management asset allocation decisions.
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1. Introduction

The 2008 financial crisis and the recent volatile period were stark reminders that equity markets periodically
experience sudden, severe declines; such behaviour can be appropriately modelled using jump processes. In this
paper, we demonstrate that principal–agent conflicts of interest in portfolio management can arise in a setting
where jumps in asset prices are present but the fund manager has the discretion to select a portfolio allocation
that maximises her, not her client’s, interest. These conflicts are most acute when the investment horizon of the
manager is short, when risk aversion is low, andwhen investors respond in a symmetricalmanner to positive and
negative fund performance via transferring their wealth between funds. We identify the mechanisms that miti-
gate such incentives andmake policy suggestions to prevent, or at least dampen, excessive risk-taking behaviour
by the manager. Thus our work innovatively connects two distinct areas of finance: first, portfolio optimisation
under jumps in the return process and, second, principal–agent problems when managerial compensation is
performance based. Our work also has potential regulatory implications for the Financial Conduct Authority in
the UK and other regulators internationally.

We expand onHong and Jin (2018) and suggest an approximation that allows the calculation of optimal port-
folio weights for stochastic volatility jump-diffusionmodels (SVCJ) with constant arrival intensity for jumps. An
affine jump-diffusion model with a proper jump-size distribution and stochastic volatility can fit equity return
data well both before and after the crisis (Kou, Yu, and Zhong 2016), although the proper selection of a jump
distribution is an open issue. The differences in model fit stem from the differences in jump distributions, which
appear to be the governing factor behind our results. This mirrors our comparison between a manager using a
stochastic volatility model versus one who uses an SVCJ model. We build on and extend prior jump-diffusion
literature by examining a novel application to a delegated portfolio management setting.
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Our second key contribution is to show how jumps in asset prices and volatility can cause an investor–fund
manager conflict when managers receive one-sided performance bonuses. This relates to finance literature on
the compensation structure in a delegated portfolio management setting, e.g. which compensation structure
that leads to a trading strategy with the highest risk-adjusted compensation for the manager (Aivaliotis and Pal-
czewski 2014). However, equity returns are known to incorporate jumps in both returns and volatility (Kou, Yu,
and Zhong 2016), which introduce negative skewness and kurtosis in their distributions. We extend this to a
principal–agent (investor–manager) setting where jumps are present in the returns generating process to exam-
ine and illustrate how conflicts of interest can arise in such a setup. Although option-type compensation is a
known source of such conflicts (Goetzmann, Ingersoll, and Ross 2003), the additional impact of jumps in port-
folio management has received little attention. Due to the negative skewness of returns and the negative average
magnitude of jumps, such effects are not necessarily symmetric and create distinct technical and management
issues that are not addressed in the literature. We provide a new formalisation that embodies those features.

In our model, the fund manager makes a strategic asset allocation decision between an equity index and a
risk-free asset on behalf of the investor. The fund manager can choose between one of two portfolios. The first
maximises the expected utility of the investor when the volatility of equity returns is stochastic but there are no
jumps (Heston 1993). The second portfolio takes into account jumps in returns and volatility as well as stochas-
tic volatility (Eraker, Johannes, and Polson 2003); thus it is optimal in our setting since it maximises investor
wellbeing (i.e. utility from portfolio wealth). Nonetheless, a conflict of interest can arise since the fund manager
selects the portfolio thatmaximises her own expected utility, despite knowing that this choicemay notmaximise
her client’s expected welfare. Manager utility is based on fee income,1 which comprises an administration fee
plus a performance bonus. A range of simulations demonstrate that there are plausible conditions under which
the manager will prefer an allocation that ignores jumps and so places greater weight in the risky asset. Since the
manager receives a performance bonus in both cases, the main factor behind our results is jumps in asset prices,
not the option-type compensation. We thus further contribute to the literature by isolating the role of jumps in
returns and volatility and suggesting ways tomitigate its impact on conflicts of interest. This aspect is oftenmiss-
ing from the literature. For example, Goetzmann, Ingersoll, and Ross (2003), Carpenter (2000) and Rajan (2006)
note the potential danger of option-type compensation for themanager to lead to excessive risk-taking, however,
its explicit connection to returns jumps and a possible resolution have not been fully explored.

Our third important contribution is to show that when investors are able to claw back (part of) past perfor-
mance fees in the event of very poor absolute performance, then the conflict of interest is largely ameliorated.
This is intuitive since it better aligns the payoffs of the manager with those of the investor given the investor
benefits when the fund performs well but also suffers losses when the fund performs badly. Clawbacks can also
be considered as directly exposing the manager to fund performance, akin to having a stake in the fund. Clare
et al. (2022) show that when a manager has a stake they tend to choose lower exposure to the main risk factors.
The clawback approach has some similarities to portfolio manager ownership which can also serve as an incen-
tive alignmentmechanism (Ma and Tang 2019; Kaniel, Tompaidis, and Zhou 2019). In a bank setup undermalus
(clawbacks fromnon-vested bonus escrow accounts), Hoffmann, Inderst, andOpp (2022) show in a recent paper
that if the regulator correctly understands unconstrained optimal compensation design, such provisions can, in
certain setups, lead bank shareholders to incentivise welfare-superior actions frommanagers. Our paper’s find-
ings on clawbacks have important implications for regulation policy, given their remit to ensure consumers are
protected and the integrity of the financial system, as well as for resolving other principal–agent conflicts such
as shareholder–manager conflicts.

Based on our results, we recommend that regulators should seriously consider mandating clawbacks to pre-
vent this particular conflict of interest. They are a tool that can be applied to improvemanagerial decisionmaking
and address (excessive) risk-taking incentives. The latter can occur in a ‘heads I win tails you lose’ scenario or due
to peer pressure amongst managers (Rajan 2006). Although managers do need to be incentivised by compen-
sation to be better aligned with company objectives (Hoskisson et al. 2017), convex, upside only compensation
can be problematic as it generates incentives to undertake excess risk, e.g. due to peer pressure among man-
agers. It also helps us explain further why although in our model removing bonuses altogether can mitigate
the conflict of interests, but also why using clawbacks of past bonuses could be an alternative mechanism that
can even better align the objectives of principal and agent by providing appropriate incentives to generate value
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for the principal. Earlier findings on the relationship between risk and performance incentives are mixed (He
et al. 2014; Corgnet and Hernan-Gonzalez 2019). Our work takes a different perspective and demonstrates that
two-sided performance incentives offer better alignment benefits than one-sided performance incentives. This
is intuitive, since both principal and agent suffer losses when there is bad performance compared to upside only
compensation.

2. The equity index returnmodel

2.1. The SVCJ and SVmodels

Two ways to model jumps in equity returns are using a fat-tailed distribution (preferably of known probability
density function) as in Jondeau and Rockinger (2012) or adding a separate jump term in a diffusion process.
Conceptually, imposing a fat-tailed probability density function affects the hump of the distribution as well as
the tails, while at the same time it manages to capture only the final outcome in returns – a jump, in this context,
is only a drawing from the tail. On the other hand, a ‘normal’ diffusion part plus an ‘abnormal’ jump part offer a
more flexible structure that captures a host of properties both in the diffusion and the jumps. Largemovements in
returns can come from combinations of moderate, or even small, values of the diffusion and jump components.
Therefore, such a structure allows the existence of small,moderate and large discontinuities that can be enhanced
or dampened by the diffusion part. This flexibility is key in model fit and capturing subtle effects in the returns
process. Stochastic volatility is also needed to capture time variation in the second moment, which leads to
volatility clustering. Bates (2000) highlights discontinuities and sudden surges in volatility that correspond to
jumps, which call for a separate jump structure in that process, while Cartea and Karyampas (2016) use jumps
to predict volatility.

A key notion in our approach is the use of a risk neutral measure. Consequently, we use the Heston (1993)
square-root stochastic volatility (SV) model to model returns without jumps:

dYt = μ dt +√
Vt− dWY

t

dVt = κ(θ − Vt−) dt + σV
√
Vt− dWV

t

(1)

The Euler discretised versions and posterior distributions can be found in Appendix A. The Brownian motions
correspond to drawings from ε

Y ,V
t ∼ N(0, 1) while the Poisson jump process is discretised to a Bernoulli where

jump J ∼ Ber(λ) times magnitude ξ
Y ,V
t .

Our main model is the Eraker, Johannes, and Polson (2003) continuous time SVCJ model (EJP) which
incorporates both stochastic volatility and jumps:

dYt = μ dt +√
Vt− dWY

t + ξYt dNt

dVt = (κθ − κVt−) dt + σV
√
Vt− dWV

t + ξVt dNt
(2)

dYt is instantaneous log returns where Yt is the log price, Vt is the variance and Vt− the left limit of Vt (the
point in time closest to it). {WY

t }, {WW
t } are Brownianmotions with correlation ρ, {Nt} is a Poisson process with

constant arrival intensity λ that is common in the two processes, μ is diffusive mean returns and is constant,
ξYt , ξ

V
t are jump sizes of returns and volatility with correlation ρj, σV is the ‘volatility of volatility’ parameter,

κ is the speed of mean reversion for Vt and θ is the diffusive long-run volatility mean. Return jumps follow a
normal distribution N(μY + ρjξV , σ 2

Y) and volatility jumps follow an exponential distribution exp(μV) which
guarantees positivity of volatility. Some useful transformations can be applied for estimation purposes.2

The SVCJ model nests many variations of affine jump-diffusion models, including the SV model, and its
variety of applications allows wide comparisons of performance and parameters. The first paper to present and
estimate the model via Markov Chain Monte Carlo (MCMC) was Eraker, Johannes, and Polson (2003), with a
full discussion to be found in Johannes and Polson (2010). It is the best performing model of its class and has
been estimated, among others, in Raggi (2004) (technical expansion), Asgharian and Bengtsson (2006) (jump
spillovers in international markets), Li, Wells, and Yu (2006) (comparison with infinite-jump Lévy processes),
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Brooks and Prokopczuk (2013) (application to commodities markets) andWitzany (2013) (expansion to bivari-
ate framework). Stochastic equity premia or arrival intensities can be represented by stochastic processes for μ

and λ. Additional equity premium terms can be introduced linearly in the mean of the returns process, yet as
Eraker, Johannes, and Polson (2003) note a volatility premium for equity returns is negligible. The mean of the
diffusive part,μ, does not compensate for jumps and represents a risk-free rate r plus a diffusive equity premium
EP.

2.2. Model estimation and data

MCMC relies on sampling values for the unknown quantities (parameters and variables) of the model from
posterior distributions. The posteriors are derived by multiplying the likelihood of the model with a prior dis-
tribution. The prior distribution introduces any beliefs or limits about the parameter or variable. The posterior
may or may not be of a known form. By continuously circling through the unknown quantities and sampling, a
Markov chain is created for each parameter and variable that converges to a stationary distribution, given that
the chain is ergodic. Full derivations are provided in Appendix A.1 and the algorithm in Appendix A.3.

The data consists of 9132 daily log-returns of the S&P500 index from 2-1-1980 to 29-3-2016. This includes
the 2007–2009 financial crisis and the following relatively more tranquil period, which nevertheless features a
number of shocks. The results are presented together with parameters fromEraker, Johannes, and Polson (2003),
whose sample does not include the financial crisis, and Brooks and Prokopczuk (2013) which does. The param-
eters are presented in daily percentages and annual decimals. Themethodology for annualisation is described in
the Appendix and comes from Branger and Hansis (2015). The number of repetitions M is 90,000, the burn-in
period G is 45,000 and convergence is observed after about 12,000 repetitions. The derivation of the poste-
rior distributions of each variable and parameter, from which a new value is sampled in every iteration of the
algorithm, is shown in Appendix. All posteriors are conjugate apart from the posterior for volatility, for which
a Metropolis–Hastings step is used. Viable candidate choices are random walk Metropolis–Hastings, an ARMS
sampling algorithm (discussion in Li, Wells, and Yu 2006) and the ARMS improvement by Martino, Read, and
Luengo (2012), who include an additional Metropolis–Hastings step in the construction of the proposal which
allows proper sampling for regions where the proposal lies under the posterior. The choice of the paper is a
random walk Metropolis–Hastings step due to its performance in convergence, its wide use and the ease of cal-
ibration when the acceptance rate of proposed values is low. The estimated parameters are provided in Table 1
and the descriptive statistics in Table 2.

2.3. Parameter estimation results

For the SVCJmodel (Table 1), the parameters forλ, κ , θ (jump arrival intensity, speed of volatilitymean reversion
and long-run volatility mean) show that the model has the tendency to trade jump frequency for volatility. The
volatility related parameters are higher when the crisis is included in the sample but jump frequency drops.
On an annual basis, 1.66 jumps are expected each year for the pre-crisis period but only 1–1.4 jumps when the
crisis is included. θ , on the other hand, increases from 0.0135 annually to roughly 0.02. A comparison between
the EJP sample and ours shows that when the crisis is included, the mean jump magnitude is lower (−2.92% vs
−1.75%) and the jump frequency is slightly reduced. This shows that themodel uses higher volatility parameters
to match the high variation in the data instead of higher jump frequency or average jump size μY . Large jumps
are taken into account, in that fashion, but are treated asmore likely to have been generated fromhigher volatility.
Therefore, isolating frequent small jumps may be challenging.

The standard deviations of parameter estimates are very low and similar across the papers, showing that the
crisis does not significantly affect the accuracy of estimates. The reason for that is the inclusion of a sufficiently
long period before and after 2007–2009. The expectation for the post-2009 period is that it contains a sufficient
number of jumps. This establishes that extreme price movements are not overly rare or concentrated and the
pre-crisis period does not dominate the sample. The correlation of jump sizes, ρJ , is insignificantly different than
zero, which agrees with overfitting and estimation accuracy problems (Broadie, Chernov, and Johannes 2007)
and allows us to relax this assumption. The leverage effect is strong, with a Brownian motion ρ of −0.67 that is
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Table 1. MCMC parameters for the SVCJ and SV models.

SVCJ (1980–2016) SV (1980–2016) EJP (1980–1999) Br. & Pr. (1985–2010)

Daily % An. Dec. Daily % An. Dec. Daily % An. Dec. Daily % An. Dec.

λ 0.0055 1.3919 0.0066 1.6632 0.0041 1.0332
(0.0013) (0.002) (0.0012)

ρJ 0.0030 0.0030 −0.6008 −0.2384 0.0519 0.0206
(0.0329) (0.9918) (0.2012)

σY 2.6554 0.0266 2.8864 0.0289 2.2486 0.0225
(0.3902) (0.5679) (0.5251)

μV 1.0088 0.0012 1.4832 0.0374 2.7594 0.0695
(0.1265) (0.3404) (0.7914)

μY −2.9251 −0.0293 −1.7533 −0.0175 −4.4478 −0.0445
(0.6197) (1.5566) (0.9100)

μ 0.0340 0.0858 0.0289 0.0729 0.0554 0.1396 0.0421 0.1061
(0.0081) (0.008) (0.0112) (0.0100)

ρ −0.6757 −0.6757 −0.6096 −0.6096 −0.4838 −0.4838 −0.5831 −0.5831
(0.0259) (0.0244) (0.0623) (0.0395)

σV 0.1429 0.3601 0.1691 0.4262 0.0790 0.1991 0.1264 0.3185
(0.0055) (0.0086) (0.0074) (0.0098)

α(= κθ) 0.0211 0.1337 0.0265 0.0273 0.0140 0.0888 0.0177 0.1125
(0.0018) (0.0018)

κ(= −β) 0.0252 6.3561 0.0245 6.1662 0.0260 6.5520 0.0225 5.6700
(0.0021) (0.0026) (0.0041) (0.0041)

θ 0.8347 0.0210 1.0815 0.0273 0.5376 0.0135 0.7874 0.0198
(0.0539) (0.0787)

Notes: Values in daily percentages and annual decimals compared to Eraker, Johannes, and Polson (2003) and Brooks and Prokopczuk (2013).λ:
jump frequency, ρJ : correlation of jump sizes, σY (σV ): volatility of returns (volatility) jumps, μY (μV ): mean of returns (volatility) jumps, μ:
diffusive mean returns, ρ: diffusion correlation, κ : speed of volatility mean reversion, θ : long-run volatility mean.

Table 2. Descriptive statistics and simulations quantiles.

Sample summary statistics
Mean St. Dev Skewness Kurtosis Min Max Length

1980–2016 3.227 × 10−4 0.0113 −1.1435 26.2693 −0.2290 0.1096 9132
2007–2016 1.491 × 10−4 0.0137 −0.3008 9.2187 −0.0947 0.1096 2253

Simulations descriptive statistics
Mean St. Dev Skewness Kurtosis Min Max

SVCJ 4.3953 16.7194 −0.6498 3.9077 −108.8360 64.2772
SV 7.1979 16.0640 −0.6181 3.7875 −84.0969 70.3762

SVCJ (top) and SV (bottom) simulation percentiles (%)

0.1 0.5 1 2.5 5 10 25 50 75 90 95 97.5 99 99.5
−66.34 −49.84 −42.88 −33.11 −25.58 −17.59 −5.42 6.11 16.07 24.08 28.54 32.37 36.71 39.73
−59.53 −44.60 −37.95 −28.96 −21.61 −13.86 −2.28 8.77 18.41 26.14 30.55 34.31 38.58 41.50

far higher than the correlation in jump components. As expected, the variance coefficients for jump sizes and
returns jump variances demonstrate high standard deviations. This is understandable due to the rarity of jumps
and their much different magnitude, leading to a relative lack of precision in parameter estimates. The negative
sign of the returns jump follows the literature (Table 1). Compared to the SV parameters, the diffusive part of
SVCJ delivers a higher expected return but lower volatility related estimates. This is consistent with the intuition
that jumps, especially small and medium sized, can be captured to a very limited extent by SV models due to an
increase in estimated volatility.Where the SVmodel fails is in large movements and outliers, which are captured
by the SVCJ model. Finally, Eraker, Johannes, and Polson (2003) show that the discretisation bias is negligible
for daily data and establish that SVCJ fits actual data better than SV.

To illustrate the differences between the twomodels, we simulate 250,000 annual log-returns (each calculated
as the sum of 250 daily log-returns) with and without jumps and compare the sample properties. The descriptive
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Figure 1. SVCJ and SV simulations: (a) empirical probability density functions (top) and cumulative density functions (bottom); (b) SVCJ and SV
distribution tails and (c) distribution of return jump sizes (250,000 drawings).

statistics and quantiles can be found in Table 2, the (smoothed) empirical pdf and cdf plots in Figure 1(a) and a
histogram of the tails in Figure 1(b). It is very clear that the SVCJmodel hasmuch greater downside risk than the
SVmodel (Figure 1) with an elongated and thicker left tail (Figure 1 b). First, the probability of a negativemarket
return is approximately 35% in the SVCJmodel but only 30% in the SVmodel; this is connected to a mean effect
that the distribution of the model with jumps is moved to the left. Second, the downside tail is much longer in
the SVCJ model; for example the 2.5 percentile is −33.11 for SVCJ compared to −28.96 for SV. Although the
diffusive mean (μ) in the SVCJ model is higher than the diffusive mean in the SV model, the presence of jumps
in the SVCJmodel which have amean of−2.92% and occur on average 1.4 times per year leads to a lower overall
mean in the simulations of the SVCJ model. The SVCJ model also has higher standard deviation, more negative
skewness and higher kurtosis.

Theodossiou and Savva (2016) also report negative skewness in the distribution of excess returns, which is in
line with our findings, and note that its modelling is important to help recover a positive relationship between
risk and returns. Finally, to provide further understanding of the impact of mean jumps we draw 250,000 jumps
in returns (Figure 1c) from the conditional distribution using the estimated mean (μY ) and standard deviation
(σY ) parameters. The shape resembles the normal distribution it is drawn from, but the minimum −14.09 and
maximum 10.51 show that very low returns can be generated by the jump component of the model.

3. Optimal portfolio weights

The technical extension of the paper is to provide a solution for the optimal portfolio weights which does
not require numerical approximation by simulations. The two types of investors are one that takes jumps
into account and optimises using the SVCJ model to replicate the behaviour of the risky asset and one that
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chooses to ignore them by using the SV model. Each investor allocates wealth to one risk-free asset with a con-
stant annual return of 2% and one risky asset whose return is represented by the SVCJ model. The risk-free
rate is an approximation of the average yield of a 1-year bond over the length of the estimation period. The
investor has a power utility functionU(W) = W1−γ

1−γ
that manages to capture constant relative risk aversion. For

γ = 1,U(W) = ln(W). Thus the amount of wealth has no effect on the agent’s optimal weights but has an effect
on the optimal amounts. The paper assumes γ > 1.

For wealthW, return of the risky asset Yt and asset weight φ denoting the percentage of wealth allocated to
the risky asset, the wealth process under jumps is

dWt = (r + φEP)Wt dt + φWt
√
Vt dZY

t + φWtE(ξYt ) dNt . (3)

To differentiate from notation in (1) and (2), {Zt} is a Brownian motion and {Nt} is the Poisson process. The
diffusive mean μ is equal to the risk-free rate plus any risk premium captured by the model (μ = r + EP), and
volatility follows the second process in (1). The expression for the SV process omits the last jumps term. An
indirect utility function F(Wt ,Vt , t) is

F(Wt ,Vt , t) = W1−γ

1 − γ
exp(A(t) + B(t)V), (4)

where A(t),B(t) depend only upon t but notW and V. For the optimal weights, the Hamilton–Jacobi–Bellman
equation (5) must be solved (full derivation and solution in Appendix 2).

0 = Ft + max
φ

[L(F)], (5)

where L(F) = (r + φEP)WFW + 1
2φ

2W2VFWW + κ(θ − V)FV + 1
2σ

2
VVFVV + σVφWVρFWV + λE[F(W

(1 + φE(ξY)),V + E(ξV), t) − F].
The optimal weight φ for the SVCJ model is the solution to the following system:

φ = EP
γV

+ ρσVB(t)
γ

+ λE(ξY)(1 − φE(ξY))−γ

γV
exp(B(t)E(ξV)), (6)

where B(t) solves the differential equation

B′(t) − 1
2
γφ2(1 − γ ) + 1

2
σ 2
VB

2(t) + (σVφρ(1 − γ ) − κ)B(t) = 0 (7)

with initial conditions A(T) = 0, B(T) = 0. The optimal weights for the SV model are derived in a similar way
for

φ = EP
γV

+ ρσVB(t)
γ

(8)

under the same differential equation and conditions as above.
It is useful to compare our result to the solution of the SVCJ specification in Liu, Longstaff, and Pan (2003)

(LLP). LLP uses stochastic arrival intensity and is commonly used together with parameters from Pan (2002)
in research that discusses optimal weights and portfolio allocation. This is due to its ability to produce tractable
portfolioweights. The EJP formulation is commonly usedwhenmodel estimation is involved but does not yield a
convenient expression for optimal portfolia.We clarify how the technical differences affect the types of solutions
and show how a semi-closed form result can be derived for the EJP model. This eases the dependency on the
LLP formulation when optimal portfolio weights are of interest. LLP models the arrival intensity of jumps as a
linear function of volatility, thus time-varying, and introduces additional jumps premia in the drift. This allows
certain terms to be eliminated during the derivation and leads to an ordinary differential equation forB(t)which
is not a Ricatti equation and can only be solved numerically. Although the corresponding expression in EJP is
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Table 3. Optimal portfolio weights for the SVCJ and SV models
(1980–2016) for r = 2% compared to theweights corresponding to the
EJP parameters (r = 4.5%).

1980–2016 EJP

γ SVCJ SV SVCJ SV

5 0.211 0.410 0.570 0.714
4 0.263 0.520 0.712 0.890
3 0.351 0.686 0.946 1.181
2 0.524 1.022 1.410 1.757

a Ricatti equation, the presence of Vt as a variable in the denominator prevents the closed-form solution that
class of ODEs produces. The absence of the jump premium in the drift excludes λVt from appearing and the
last jumps related term is multiplied by λ only.

To circumvent this issue, V in (6) is replaced by its long-run average V = θ + μVλ/κ . The same approach is
used in Branger andHansis (2012), to transform the Eraker, Johannes, and Polson (2003) and Broadie, Chernov,
and Johannes (2007) parameters (notably λ) from the EJP to the LLP formulation. In addition, the value of κ

indicates that volatility reverts rapidly to its diffusivemean. This allows the elimination of the denominator terms
and leads to a tractable semi closed-form solution under constant arrival intensity (a similar discussion can be
found in Branger and Hansis 2015). All calculations are conducted with annualised parameters and rounded up
decimals. The resulting weights are based on log returns. The complex expression after substituting (6) in (7)
contains the product of a real and an exponential part and does not provide additional intuition, but is the closest
to a closed-form solution this model can have. A detailed discussion can be found in Appendix B.2.

Table 3 presents the portfolio weights for the risky asset.We provide results for different levels of risk aversion
for the SVCJ and SV models, and compare them to the sample parameters of EJP for 1980–1999. The solution
from (6) and (7) implies a buy-and-hold portfolio. There is a very clear difference between the SVCJ and SV
weights, which highlights much more aggressive behaviour by the investor that ignores jumps. For example, for
1980–2016 and a γ of 5 the weight in the risky asset is 0.41 for the SVmodel but only 0.21 for the SVCJ indicating
a very large difference in optimal weights once jumps are taken into account. The differences inweights are larger
for the full sample than for the Eraker et al. sample due to the inclusion of the financial crisis and a lower mean
return (and equity premium).

The solution above is our first extension and the first solution that does not require numerical approximation
by simulations. It is semi-closed only due to a product of real and exponential components. This bridges the gap
between the solutions derived from the constant and stochastic arrival intensity variations of SVCJ. Commonly,
when the LLP model is employed, either the Pan (2002) parameters or arbitrary values are used. On the other
hand, EJP is typically estimated anew. Our proposedmethodology allows EJP to be used when portfolio optimi-
sation is involved and with newly estimated parameter values. Since the LLP optimal weights solution is known
to be mathematically unstable (Korn and Kraft 2004) and given their ad-hoc parametrisation of jumps and the
absence of recent parameter estimates in the literature for their model, we opt for our selected approach.

4. Investor and fundmanager choices, and contract optimality for themanager

This section explains how investor and fund manager choices are modelled. The SVCJ parameters (Table 1)
are used to generate the returns of the risky asset. The optimal portfolio weights for the SVCJ and SV models
(Equations 6 and 8) show how the investor would wish assets to be allocated under these different scenarios.
Given the simulated return distribution is based on both jumps and stochastic volatility being present, then the
SVCJ weights are optimal for the investor. Our key analysis introduces a manager who can choose to take jumps
into consideration and invest using the SVCJ allocation, or deliberately ignore them and use the SV allocation.
Since the manager receives utility from fees rather than portfolio wealth, this can create moral hazard and an
associated conflict of interest. The manager has the discretion to offer the SV allocation to the SVCJ client (to
whom it is suboptimal).
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Themanager does not optimise her fee-based utility per se, as both contracts may well be suboptimal for her,
but she selects the one of these two which is found to be preferable. For simplicity, there is no differentiation
between the fund manager and the fund management company; for our purposes, we treat the manager as the
sole beneficiary of the fund.We examine the impact of length of investment horizon, risk aversion and investors
switching between funds upon these potential issues. Henceforth, the SVCJ agents will be referred to as ‘jumps
manager (investor)’ and the SV agents as ‘no-jumps manager (investor)’.

The option-type compensation of the manager does not allow a closed-form solution for her optimal weights
based on her utility from fees. It is, however, important to consider whether the SV weights used by the manager
are plausible choices. Thus we conduct a series of simulations for γ = 2, 3, 4, 5 and investment horizon T = 2,
3, 5, 7, 10 in four different scenarios and calculate the portfolio weights for the risky asset that are optimal for the
manager. The full results and process can be found in in Appendix 3. Panel A in Table C.1 reports our base case
scenario (fees only), which is the manager’s equivalent of Table 3. For T = 3 the simulated weights are almost
identical to the SVweights for all fee structures and can be considered optimal. ForT = 2 they are slightly higher
and for longer horizons they gradually decline but remain closer to the SV rather the SVCJ weights. This makes
the SV allocation (highly) preferable for themanager, especially at shorter horizons. Even with a 10-year horizon
and high-risk aversion (with the only exception being for γ = 5), the optimal weight is closer to the SV than
the SVCJ allocation. Overall, using SV weights as a choice for the manager is reasonable. This is especially so
for managers with short horizons and lower risk aversion, where ignoring jumps is most plausible. This justifies
our approach and our assumption, explained in the next section, that the no-jumps allocation will appeal to the
manager in at least some circumstances.

4.1. The jumps investor versus the no-jumps investor

We show that differences in the way that the principal and agent receive financial reward create an incentive for
the fund manager to take on additional risk in the hope that a severe negative outcome(s) will not be realised
before the end of her tenure in charge of the fund. For the case of the investor, we compare the performance of an
investor that takes jumps into account to one who does not, to verify that taking jumps into account is optimal
for the investor. The case of the manager is more complex. Both she and the investor have the same power utility
function but the manager receives utility from fees measured at regular (annual) intervals while the investor
from the terminal wealth of the investment. We assume that both the fund and the asset manager payments
follow the same scheme, which is a flat administrative fee plus a performance fee when portfolio returns exceed
a threshold (‘hurdle’). This is also the publicly announced fee paid by the investor.

The simulation for investors is arranged as follows. A time series of daily log returns for the equity index is
generated by using the SVCJ model and daily percentage parameters. Total returns of the risky asset are then
used to calculate annual portfolio returns of a portfolio consisting of the equity index and a risk-free asset with
return r = 2% annually. Jumps are thus present in the path of the risky asset and the portfolio, a fact that is known
to the investor. The two types of manager use the SVCJ and SV weights respectively. The measures of win are
terminal wealth, average terminal utility and number of wins for each investor. The length of the investment
period is 2, 3, 5, 7, 10 and 15 years, risk aversion γ takes values 2, 3, 5 and starting wealth is W0 = 100. Our
conclusions are invariant to the size of initial investment. The duration of the simulation is 5000 runs.3

4.2. Investor results in the absence of themanager

This section examines whether the simulation results confirm that investor prefers jumps to be taken into
account. Table 4 contains the simulation outcomes for the two types of investors for risk aversion γ = 2, 3, 4, 5.
The jumps investor always wins in terms of average terminal utility (the UDiff row is always negative); this is
exactly as expected since the return generating process contains jumps and the optimal portfolio weights for
the jumps investor’s preferences are implemented. However, interestingly, the no-jumps investor always wins
in terms of average terminal wealth (the WDiff row is always positive). This result confirms that the investor
is willing to accept a reduction in expected average return (and terminal wealth) to reduce their exposure to
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Table 4. Investor simulations.

Years 2 3 5 10 15 24 30

γ = 5
NJW & NJU Wins 61.74% 62.04% 64.06% 67.62% 71.86% 76.04% 79.84%
WDiff (NJ – J) 0.0234 0.0326 0.0582 0.1372 0.2468 0.5191 0.8209
UDiff (NJ – J) −0.0085 −0.0147 −0.0238 −0.0326 −0.0343 −0.0290 −0.0219

γ = 4
NJW & NJU Wins 60.96% 62.18% 66.26% 69.54% 71.8% 75.52% 77.82%
WDiff (NJ – J) 0.0289 0.0453 0.0857 0.1974 0.3460 0.7495 1.1356
UDiff (NJ – J) −0.0109 −0.0182 −0.0169 −0.0316 −0.0435 −0.0374 −0.0272

γ = 3
NJW & NJU Wins 62.12% 62.38% 65.28% 70.38% 71.96% 75.84% 79%
WDiff (NJ – J) 0.0460 0.0673 0.1265 0.3130 0.5560 1.2535 2.0584
UDiff (NJ – J) −0.0090 −0.0180 −0.0224 −0.0372 −0.0578 −0.0560 −0.0874

γ = 2
NJW & NJU Wins 60.2% 62.88% 64.62% 69.1% 72.58% 75.5% 77.76%
WDiff (NJ – J) 0.0728 0.1210 0.2294 0.6344 1.2038 3.1237 5.5725
UDiff (NJ – J) −0.0103 −0.0073 −0.0073 −0.0120 −0.0175 −0.0214 −0.0320

Notes: NJW: terminalWealth for theNo Jumps investor, NJU: terminal Utility for theNo Jumps investor,WDiff:
difference in average terminal wealths, UDiff: difference in average terminal utilities.

jumps, which is achieved by placing a lower weight in the risky asset following the optimal portfolio weights in
Table 3. The result is persistent across investment horizons and degrees of risk aversion.

Next, we look at the percentage of wins, which is the proportion of simulations where the terminal wealth
(utility) of the no-jumps investor is greater than that of the jumps investor. The percentage of wins for the no-
jumps investor ranges from 62% to 80% as the investment horizon ranges from 2 to 30 years, and is very similar
across varying levels of risk aversion (γ ).4 Thus in all cases the no-jumps investor wins more frequently than
the jumps investor and at longer horizons the no-jumps investor wins substantially more frequently. This helps
underline the very nature of the issue that we are examining: that the investor is concerned about suffering
several substantial downside jumps during their investment horizon which, should they occur, would lead to a
very negative outcome for them. To substantially reduce the possibility of such a bad outcome, they reduce their
weight on the risky asset, even though in the largemajority of cases their terminal wealth would be higher if they
(chose to) ignored jumps. The reason why the proportion of wins increases as the investment horizon increases
is intuitive. Given that the no-jumps investor has a larger weight in the risky asset, then his expected return is
higher and thus as the horizon increases two effects occur: (i) there is more time to recover from a large negative
return shock and thus still win in terms of terminal wealth and (ii) as the horizon increases the differences in
the expected portfolio return to holding the no-jumps weights compared to the jumps weights widen; thus the
impact of volatility and jumps is reduced at longer horizons. Thus even an investor who is interested primarily
in terminal wealth has a major motive to ignore jumps in portfolio allocation, which raises the possibility that
a fund manager may face a similar issue even more strongly. A utility-maximizing investor, on the other hand,
has a motive to take jumps into consideration when allocating wealth, since this will lead them to moderate the
amount of risk they take and moderate the effects of severe downsides should they occur.

4.3. The jumpsmanager versus the no-jumpsmanager and fee structures

The crux of this paper is that themanagermay have an incentive not to follow the best interests of the investor, i.e.
not pursue the course of actionwhich gives himhigher expected terminal utility. Specifically, themanager knows
that jumps exist but may decide to ignore them to achieve higher average fees and to achieve higher average
terminal utility of her fees. The performance fee structure implemented is that of a hurdle with a threshold of
6% and the fee is paid on the net excess return above that threshold.5

The administration fee is calculated on annual portfolio wealth (assets under management) and deducted
from profits. Afterwards, the potential performance fee is calculated based on the annual profit, for returns
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above the hurdle rate, after administration fees are deducted. To avoid complexities with average portfolio wealth
during the course of each year, only the start- and end-of-year wealth values are used for each year. The starting
wealth of the next period is the terminal wealth of the previous period minus all paid fees, deductions and
wealth movements plus any newly added funds, until the investment runs its course. Each year’s total fee is
used to calculate the utility of the manager summed across the manager’s time horizon with a zero rate of time
preference. The utility function of the manager is identical to that of the investor. This ensures that any results
cannot be attributed to differences in preferences.

For a hurdle c, annual return r, administration fee rate a, performance fee rate p and portfolio wealth for two
consecutive periodsWt−1,Wt , the base B of the performance fee, when present, is calculated as the return above
the hurdle rate minus the administration fee, or

B = (Wt − Wt−1 − aWt) = (1 + r − c)Wt−1 − Wt−1 − a(1 + r)Wt−1 = (r − c − a(1 + r))Wt−1 (9)

Thus the performance fee is equal to pB, for B ≥ 0. The three schemes of managerial compensation are 2 +
20%, 1 + 10% and 0.4 + 3%.6 They are selected to cover as much ground as possible between the high former
industry staple, a moderate level and a low level closer to that of mutual funds. The moderate level covers the
reductions and discounts recently observed in the industry. Fees between or beyond these limits, such as 1 +
20% or 0.4 + 10%, exhibit similar patterns as the fees of choice because the flat administration fee increases
compensation horizontally while the performance fee scales smoothly between 10 % and 20%. Thus the results
for intermediate schemes are easy to infer from Tables 5–7. The combinations used are able to accommodate
both observed structures and averages across industry as well as fees close to mutual funds, especially when the
recent trend of discounts and reductions in the hedge fund industry is considered. The mutual fund structure
sets the performance fee equal to zero, which leads the fees deducted at year’s end to depend only on a flat scalar,
the administrative fee, applied on terminal wealth. Thus managerial utility also scales by a constant. Preempting
our results, the mutual fund case is represented by Table 4 and discussed in Section 6.1.

An important feature is the ability of some investors to transfer their wealth from their fund to an alternative
at the end of the year. This wealth transfer function is defined as

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−10, f (x) ≤ −10
− exp(−δ1x) + 1, x ≤ 0
exp(δ2x) − 1, x ≥ 0
10, f (x) ≥ 10

(10)

where x = rNJ − rJ is the relative performance of the funds. rNJ (rJ) is the percentage return of the SV (SVCJ)
portfolio. f (x) is the percentage of assets transferred between the funds and demonstrates positive inflow (nega-
tive outflow) to (from) the no-jumps fund from (into) the jumps fund. The amount is calculated on the basis of
the end-of-year assets invested in the under-performing fund. For example, a value of 10 indicates that 10% of
the jumps fund’s assets under management are transferred to the non-jumps fund. The parameters δ1, δ2 affect
the curvature of the function and its economicmeaning is the sensitivity of wealth transfers to differences in fund
performance. For a symmetric function, δ = δ1 = δ2 and is set equal to 0.25, while in the case of asymmetry
δ1 = 0.5, δ2 = 0.25. This makes investors in the no-jumps fund to bemore sensitive to relative bad performance
than good performance. The function is truncated at 10% and −10% to prevent extreme changes of value. For
the asymmetric case, the upper bound remains the same but the lower bound is set to −15%. This produces
a stronger reaction when relative losses are observed. The introduction, structure and parametrisation of the
wealth transfer function are motivated by Getmansky (2012) while the calibration follows fund flows reported
in Liang et al. (2019). The 10% threshold ensures that themovement of funds by investors is not sufficiently large
so that it ends up as the dominating driver of our results. Themoderate level of fundmovement that results from
this 10% threshold is also consistent with investors having a longer investment horizon than the time that man-
agers are in post: a central feature of our model. Lower (higher) thresholds reduce (increase) the magnitudes of
the effects we report. We provide further details on this point in Appendix 4.

The asymmetry in this direction can be justified since, given that the no-jumps (SV) fund follows a more
aggressive allocation, it underperforms when the market excess return is negative. This is consistent with
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Table 5. Manager and investor results, γ = 3.

Panel A.I: 2 + 20% fees, symmetric wealth transfer function Panel A.II: 2 + 20% fees, asymmetric wealth transfer function

Years 2 3 5 7 10 15 2 3 5 7 10 15

TFJ 4.2175 6.2914 10.5611 14.5017 20.4789 30.8059 4.2697 6.4735 10.8965 15.3849 22.2571 34.1901
TFNJ 5.6556 8.5649 14.7247 21.3233 31.2399 50.3020 5.6915 8.4441 14.3852 20.0822 29.5835 45.4835
TUJ (×10−4) −1.0023 −1.51845 −2.57846 −3.6563 −5.3538 −8.3115 −1.0053 −1.4739 −2.4253 −3.3469 −4.6897 −6.8206
TUNJ (×10−4) −1.08821 −1.7030 −2.9904 −4.4306 −7.3276 −12.1406 −1.0908 −1.9619 −3.4927 −5.7001 −10.1857 −18.8580
TFUJ −0.2376 −0.3606 −0.5911 −0.8675 −1.2712 −1.9058 −0.2306 −0.3388 −0.5561 −0.7687 −1.0766 −1.5645
TFUNJ −0.2131 −0.3429 −0.5900 −0.8722 −1.3944 −2.4043 −0.2146 −0.3527 −0.6869 −1.1320 −2.0375 −3.7195
UJ wins (%) 33.12 32.52 31.22 30.74 31.76 31.98 32.74 36.62 40.98 45.64 48.76 53.92

Panel B.I: 1 + 10% fees, symmetric wealth transfer function Panel B.II: 1+10% fees, asymmetric wealth transfer function

TFJ 2.13797 3.2743 5.4810 7.5619 10.8563 16.9233 2.2030 3.3281 5.6650 8.0955 11.9341 18.8267
TFNJ 2.8428 4.5252 7.8443 11.1426 16.7128 28.6613 2.9369 4.4302 7.5988 11.0339 16.1726 25.7350
TUJ (×10−4) −0.9753 −1.4585 −2.432 −3.3698 −4.7774 −7.02051 −0.9583 −1.4178 −2.2775 −3.0870 −4.1899 −5.8354
TUNJ (×10−4) −1.0540 −1.4585 −2.4320 −3.3698 −4.7774 −9.4260 −1.0707 −1.7302 −3.2738 −5.0613 −8.2191 −15.4914
TFUJ −0.9206 −1.3499 −2.2417 −3.1730 −4.5041 −6.4228 −0.8840 −1.3090 −2.1036 −2.8452 −3.8425 −5.3434
TFUNJ −0.8542 −1.3322 −2.2338 −3.2725 −6.2692 −7.3952 −0.8478 −1.3677 −2.6038 −3.7717 −6.4867 −12.1956
UJ wins (%) 32.24 31.40 30.24 31.42 31.74 34.02 34.58 36.82 40.94 42.36 48.58 52.44

Panel C.I: 0.4 + 3% fees, symmetric wealth transfer function Panel C.II: 0.4+3% fees, asymmetric wealth transfer function

TFJ 0.8439 1.2702 2.1355 3.0197 4.5678 7.0637 0.8491 1.2912 2.2101 3.1748 4.9145 7.9011
TFNJ 0.9477 1.4547 2.5343 3.7295 6.8940 11.4467 0.9339 1.4350 2.4737 3.5453 6.3911 10.4341
TUJ (×10−4) −0.9544 −1.4236 −2.3343 −3.2131 −4.4505 −6.3579 −0.9426 −1.3798 −2.1914 −2.9329 −3.9213 −5.2917
TUNJ (×10−4) −1.0092 −1.5596 −2.6898 −3.9852 −5.6909 −8.6797 −1.0812 −1.6545 −2.9897 −4.7503 −7.6982 −13.2146
TFUJ −5.7493 −8.5758 −14.0709 −19.3700 −25.7350 −36.7872 −5.6867 −8.3165 −13.2151 −17.6902 −22.6785 −30.5999
TFUNJ −5.6646 −8.5582 −15.1193 −22.4586 −28.9385 −43.9368 −6.1010 −9.3003 −16.7860 −26.7524 −39.1105 −66.8447
UJ wins (%) 32 31.08 31.54 32.64 31.94 32.54 38.12 40.56 43.94 46.86 51.12 57.38

Notes: TFJ: Total Fees of JumpsManager, TFNJ: Total Fees of No-JumpsManager, TUJ: Average Jumps Investor terminal Utility, TUNJ: Average No-Jumps Investor terminal Utility, TFUJ:
Average Total Annual Utility of Jumps Manager from Fees, TFUNJ: Average Total Annual Utility of No-Jumps Manager from Fees. Bold denotes the winner.
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Table 6. Manager and investor results, γ = 5.

Panel A.I: 2 + 20% fees, symmetric wealth transfer function Panel A.II: 2+20% fees, asymmetric wealth transfer function

Years 2 3 5 7 10 15 2 3 5 7 10 15

TFJ 4.1134 6.1849 10.2783 14.3471 20.4825 30.7000 4.1370 6.2501 10.5505 14.9629 21.7597 33.5625
TFNJ 4.6657 7.0535 11.9326 16.9188 25.8152 38.5312 4.6023 6.9755 11.6072 16.3067 23.1441 35.0362
TUJ (×10−9) −4.9961 −7.4983 −12.5940 −17.7243 −25.4759 −38.5483 −4.8652 −7.1328 −11.3973 −15.2259 −20.4980 −27.9941
TUNJ (×10−9) −5.5440 −8.5622 −16.1150 −24.9694 −40.4742 −78.4165 −5.9447 −10.1570 −22.6756 −42.0754 −83.2360 −34.3981
TFUJ −0.0287 −0.0429 −0.0724 −0.1015 −0.1459 −0.2207 −0.0279 −0.0410 −0.0655 −0.0872 −0.1180 −0.1603
TFUNJ −0.0281 −0.0433 −0.0816 −0.1268 −0.2070 −0.3963 −0.0303 −0.0516 −0.1152 −0.2121 −0.4129 −1.8000
UJ wins (%) 35.96 33.68 33.42 34.52 35.54 37.28 38.36 38.92 46.72 50.53 56.04 71.39

Panel B.I: 1 + 10% fees, symmetric wealth transfer function Panel B.II: 1+10% fees, asymmetric wealth transfer function

TFJ 2.0724 3.1236 5.2519 7.4402 10.7849 16.6039 2.0843 3.1686 5.4177 7.7564 11.4589 18.1896
TFNJ 2.4334 3.6803 6.3061 9.0492 13.4652 21.7654 2.4278 3.6400 6.1313 8.6183 12.7557 19.8763
TUJ (×10−9) −4.6863 −6.9216 −11.1531 −15.0707 −20.4421 −28.1046 −4.5770 −6.5800 −10.1233 −13.1076 −16.7688 −21.1905
TUNJ (×10−9) −5.1181 −7.8263 −14.3144 −20.7885 −34.5753 −56.2418 −5.3814 −9.0194 −20.0559 −37.3340 −73.1603 −159.7510
TFUJ −0.4421 −0.6532 −1.0561 −1.4224 −1.9290 −2.6498 −0.4301 −0.6205 −0.9551 −1.2374 −1.5808 −1.9979
TFUNJ −0.4169 −0.6612 −1.1757 −1.6983 −2.5849 −4.6522 −0.4385 −0.7344 −1.6474 −3.0727 −6.0614 −13.1634
UJ wins (%) 32.56 32.92 34.08 33.68 34.18 33.72 34.1 38.76 44.46 50.68 54.6 66.78

Panel C.I: 0.4 + 3% fees, symmetric wealth transfer function Panel C.II: 0.4+3% fees, asymmetric wealth transfer function

TFJ 0.8352 1.2639 2.1373 3.0385 4.4478 6.9468 0.8417 1.2809 2.1989 3.1704 4.7314 7.6309
TFNJ 0.9528 1.4603 2.5215 3.6390 5.5201 8.8859 0.9508 1.4362 2.4429 3.4744 5.1181 8.1906
TUJ (×10−9) −4.5317 −6.5898 −10.3920 −13.7576 −18.0540 −23.7590 −4.4113 −6.2806 −9.4517 −11.9924 −14.9729 −18.2008
TUNJ (×10−9) −4.9429 −7.5250 −12.5008 −18.4346 −26.6534 −54.1424 −5.2844 −8.6666 −17.4160 −30.6114 −62.5063 −119.3590
TFUJ −17.0009 −24.6860 −38.9490 −51.5856 −67.6276 −89.1035 −16.5467 −23.5689 −35.4443 −44.9975 −56.1410 −68.2355
TFUNJ −16.2627 −24.7195 −40.8931 −60.2808 −87.1404 −175.7580 −17.2704 −28.2572 −57.1591 −100.8890 −204.0500 −389.6650
UJ wins (%) 34.2 31.8 31.88 33.68 34.04 35.05 36.08 38.64 43.46 50.04 55.52 58.66



14
I.C

H
O
N
D
RO

G
IA
N
N
IS
ET

A
L.

Table 7. Manager and investor results, γ = 2.

Panel A.I: 2 + 20% fees, symmetric wealth transfer function Panel A.II: 2 + 20% fees, asymmetric wealth transfer function

Years 2 3 5 7 10 15 2 3 5 7 10 15

TFJ 4.6098 6.9021 11.3284 15.4187 22.1232 32.4729 4.6942 7.0416 11.7170 16.5580 23.6970 36.1586
TFNJ 6.8496 10.5445 18.1778 25.9447 40.0673 64.5523 6.9736 10.5160 17.7317 25.7030 37.2764 58.9416
TUJ −0.0202 −0.0305 −0.0515 −0.0730 −0.1061 −0.1636 −0.0199 −0.0299 −0.0500 −0.0697 −0.0997 −0.1473
TUNJ −0.0211 −0.0334 −0.0560 −0.0824 −0.1225 −0.1938 −0.0214 −0.0331 −0.0639 −0.0907 −0.1383 −0.2232
TFUJ −0.9200 −1.3883 −2.3216 −3.3248 −4.8308 −7.4449 −0.9064 −1.3603 −2.2780 −3.1715 −4.5112 −6.7101
TFUNJ −0.8727 −1.3481 −2.2861 −3.3172 −4.9167 −7.7704 −0.8566 −1.3274 −2.2942 −3.6602 −5.5446 −8.9617
UJ wins (%) 33.24 32.28 33.46 33.52 34.44 33.02 33.06 34.54 40.02 42.86 47.24 50.16

Panel B.I: 1 + 10% fees, symmetric wealth transfer function Panel B.II: 1+10% fees, asymmetric wealth transfer function

TFJ 2.4174 3.6073 5.9962 8.4082 11.9654 18.2031 2.4248 3.6586 6.1931 8.8284 12.9322 20.4003
TFNJ 3.5198 5.4341 9.4714 14.6697 22.3135 37.5585 3.4959 5.2819 9.2087 13.7643 20.0967 35.1240
TUJ −0.0198 −0.0297 −0.0498 −0.0697 −0.1001 −0.1494 −0.0196 −0.0293 −0.0483 −0.0668 −0.0937 −0.1346
TUNJ −0.0207 −0.0335 −0.0576 −0.0776 −0.1154 −0.1732 −0.0217 −0.0336 −0.0644 −0.0846 −0.1479 −0.1990
TFUJ −1.7830 −2.6862 −4.5012 −6.2940 −9.0391 −13.5053 −1.7724 −2.6502 −4.3698 −6.0325 −8.468 −12.1443
TFUNJ −1.6921 −2.5606 −4.3891 −6.1437 −9.1448 −13.8565 −1.7042 −2.6365 −4.5656 −6.7817 −10.7790 −15.9058
UJ wins (%) 34.72 33.56 32.48 32.06 32.96 32.54 34.12 33.94 40.36 43.14 46.28 46.28

Panel C.I: 0.4 + 3% fees, symmetric wealth transfer function Panel C.II: 0.4+3% fees, asymmetric wealth transfer function

TFJ 0.9436 1.4260 2.3816 3.3552 4.8714 7.5451 0.9592 1.4452 2.4606 3.5290 5.2446 8.4344
TFNJ 1.3249 2.0800 3.6702 5.4692 8.6798 15.3235 1.3381 2.0259 3.5322 5.2060 8.0815 13.7529
TUJ −0.0196 −0.0293 −0.0488 −0.0679 −0.0964 −0.1409 −0.0194 −0.0289 −0.0473 −0.0650 −0.0903 −0.1278
TUNJ −0.0206 −0.0304 −0.0530 −0.0757 −0.1082 −0.16146 −0.0207 −0.0331 −0.0578 −0.0819 −0.1194 −0.1890
TFUJ −4.4947 −6.7082 −11.1742 −15.5464 −22.0529 −32.2214 −4.4346 −6.6167 −10.8402 −14.8306 −20.4514 −29.2379
TFUNJ −4.2439 −6.5197 −10.9174 −15.6221 −22.3251 −33.2666 −4.2489 −6.6011 −11.8591 −16.8714 −24.6747 −38.9700
UJ wins (%) 31.9 30.5 31.9 32.48 32.88 33.92 34.66 34.02 40.66 42.32 45 48.78
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investors adjusting their holdings more in downturns. Conceptually, this can be seen as introducing downside
risk aversion, which has a particularly strong impact when equity returns are low (i.e. lower than the risk-free
rate). The flow of capital as a percentage of portfolio wealth allows investors to punish (reward) poor (good) per-
formance. This reduces (increases) the basis uponwhichmanagerial fees are calculated, whichmanagers are very
aware of. Even without convex compensation, a manager has an incentive to increase assets under management
at the expense of performance (Yin 2016), since fees rely on portfolio wealth.

A fund is considered closed when it loses 95% of its starting wealth. A fund that falls below that level stops
operating and no extra fees are collected but its output is maintained in the simulations. This is realistic for a
number of reasons. First, closure is a real prospect both for young funds with very high leverage ratios that risk
their survival, as well as for old funds which might exhibit a series of negative results over a number of periods.
Second, excluding the closed fundswould introduce survivor bias in the simulations. Third, a fundwhich has lost
almost all its wealth beyond any recovery (i.e. facing a closure threshold equal toW = 5 or lower) is defunct for
all intents and purposes and the fees it collects cannot cover its operational expenses. However, it will continue to
generate extremely low fees and terminal utility for the remainder of the simulation, whichwould affect expected
utility. In practice, the assumption does not affect the results apart from one to five simulation runs in two cases:
(i) for very long investment periods; (ii) for γ = 2, where the risk-free asset is sold short, and thus the fund is
more susceptible to movements of the index.

5. Results

This section presents the main results and highlights where the manager’s preferred allocation is not aligned
with the investor. The first, most important, result is that the manager has an incentive to ignore jumps for
shorter investment horizons. The second result is that this incentive is more pronounced with a symmetric than
an asymmetric wealth transfer function. We also find as a third result that a decrease in risk aversion increases
the intensity and horizon of the incentive. Our fourth result is that the overall level of fees has very little effect on
the incentive. Finally, our fifth result is that expected manager compensation is higher when jumps are ignored.

Due to the large number of subcases, we focus on the most important and representative results .7 The sim-
ulation outcome can be found in Tables 5–7 for γ = 3, 5, 2. Panels labelled I (II) report the case where wealth
transfer between funds is symmetric (asymmetric). Panels labelled A (B) [C] report the 2 + 20% (1 + 10%)

[0.4 + 3%] fee structure. The notation used in the Tables and Results section is TFJ: Total Fees of Jumps Man-
ager, TFNJ: Total Fees of No-Jumps Manager, TUJ: Average Jumps Investor terminal Utility, TUNJ: Average
No-Jumps Investor terminal Utility, TFUJ: Average Total Annual Utility of Jumps Manager from Fees, TFUNJ:
Average Total Annual Utility of No-JumpsManager from Fees. Bold denotes whether the jumps or the no-jumps
fund wins by each metric.

5.1. Incentive horizons and compensation schemes

Panel A.I of Table 5 presents the case of a manager and investor with risk aversion parameter γ = 3, under a
2 + 20% fee structure and symmetric wealth transfer. The main variables to consider at this stage are Total Fee
Utility of Jumps (TFUJ) and Total Fee Utility of No Jumps (TFUNJ). The numbers in bold denote the higher
average realised utility across our simulations. From this, it is clear that the TFUNJ values are higher than the
TFUJ values when the investment period is up to 5 years long and lower for longer periods. This change denotes
the time span over which the no-jumps manager is expected to have higher utility than the jumps manager
(the winning horizon). For example, for an investment horizon of 3 years, her total utility is−0.3429 (−0.3606)
when jumps are ignored (considered) compared to −1.3944 (−1.2744) for a horizon of 10 years. Thus at the
3-year horizon, the manager is incentivised to ignore jumps as demonstrated by the less negative total utility; in
contrast, at a 10-year horizon when jumps are ignored the utility is more negative, indicating that the incentive
has disappeared at that horizon. This highlights the first result.

Panels B.I and C.I of same table show that this misalignment of incentives occurs at the same horizon under
a 1 + 10% and slightly shorter horizon for a 0.4 + 3% fee structure. This highlights the fourth result that the
incentive to ignore jumps is not very sensitive to the level of fees. For the 1 + 10% structure, the value of TFUNJ
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is −2.2338 for the 5-year period compared to the TFUJ value of −2.2417, while for the 7-year period TFUNJ is
−3.2725 compared to a TFUJ of −3.1730. This symmetry between Panels A.I and B.I holds in all the examples
we consider. Panel C.I shows that the no-jumps manager stops winning after 3 years. For a horizon of 5 years,
the jumps manager achieves total utility of −14.0709, contrary to the lower value −15.1193 of her competitor.
On the other hand, for the 3-year period the TFUNJ value is −8.5582 compared to a TFUJ value of −8.5758. A
winning horizon is, therefore, still present but reduced to 3 years for the No-Jumps manager.

The specifics of the fee structure is therefore not central to the conflict of interest, since for high andmoderate
fees the periods over which the conflict appears are highly comparable. A slight reduction in the incentive is only
apparent when the fees become very low.

5.2. Wealth transfer function effects

We next look at the difference that alternative wealth transfer functions have. This is how the investor moves
their money in response to (relative) fund performance. As discussed earlier, we consider a symmetric transfer
function and an alternative asymmetric transfer function; the asymmetric transfer function leads to greater
money transfer when the equity return is low (i.e. when the no-jumps fund underperforms). We can see the
impact of the different transfer functions by comparing Panels II in Table 5, which are based on the asymmetric
transfer function, to Panels I, which are based on a symmetric transfer function. For example, comparing the
TFUJ/ TFNUJ metrics between Panels A.I and A.II, we note that as we hold the horizon constant in all cases the
TFUJ value has increased (is less negative) while the TFUNJ value is more negative. More importantly, this has
the impact of moving the horizon where the incentives of managers and clients are aligned to 3 years compared
to 5–7 years with the symmetric transfer function. The same pattern is observed between Panels denoted B and
C for the 1 + 10% and 0.4 + 3% fees.

More severe movements of wealth at losses are still relevant even for the lowest fees in our study (Panels C),
where there is a reduction from3 to 2 years. Thewinning horizons are shorter for all degrees of risk aversion, with
the greatest effectmanifesting for γ = 2 (from7 to 3 years) and are eliminated forγ = 5; thuswhether thewealth
transfer function is symmetric or asymmetric does materially influence our results. Our second result is that
asymmetric wealth transfer functions consistently reducing the situations under which there is a principal–agent
conflict.

For managerial fees, the metrics TFJ and TFNJ for the jumps and no-jumpsmanager show that the no-jumps
manager always amasses higher average terminal wealth than the jumps manager. For all panels I of Table 5, TFJ
is lower than TFNJ across the board. This highlights the fifth result. In absolute wealth, not utility, a manager
always has an incentive to ignore jumps. Average total fees are higher when the compensation scheme is more
lucrative, when risk aversion is low and when wealth moves symmetrically between funds. A comparison across
Panels I in Table 5 reveals the effect of fees. The TFNJ values of Panel A.I range between 5.6556 and 50.3020 and
are always greater than the TFNJ values of Panel B.I, which range between 2.8428 and 28.6613, and the TFNJ
values of Panel C.I, which range between 0.9477 and 11.4467. An example of the effect of wealth transfer can be
seen in a cross-comparison of Panels A (B) [C] in Table 6. Under the same fee structure, the TFNJ values of the
symmetric case are greater than those of the asymmetric case.

5.3. The effect of varying risk aversion

The effect of risk aversion can be seen in a panel-by-panel comparison across Tables 5 – 7 for the symmetric (I)
and asymmetric (II) cases. Once more we focus on the manager’s choice and whether they receive higher utility
of fees from the no-jump (TFUNJ) or jump (TFUJ) scenario. Taking symmetry and a 1 + 10% fee structure as
an example, we compare Panel B.I across Tables 5 and 6. The movement from high to low risk aversion shows
that the horizon over which the incentives of the manager and the investor are aligned is deferred further into
the future. In Table 6, the incentives are aligned for a horizon of 3 years or longer, while in Table 5 they are
aligned for a horizon of 7 years or longer. Thus a decrease in risk aversion from 5 to 3 causes the interests of
the two agents to become aligned later; a similar delay is also witnessed for the alternative fee structures. When
the asymmetric transfer function is used then the horizon over which the incentive manifests is reduced, to the
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extent that when γ = 5 at all horizons managers incentives are aligned with those of investors. If investors are
highly risk averse (γ = 5) and respond more strongly to transfer funds when equity returns are low, then the
conflict of interest is eliminated.

Panels I in Tables 5 and 7 (γ = 3, 2) for symmetric wealth transfer show that the time at which the incentives
are aligned increases to 10 from 7 years as risk aversion decreases (and the period when the conflict of interest
manifests increases from 5 to 7 years). The same comparisons for Panels II, representing asymmetry, show that
for γ = 3 the alignment starts at 3 years, which increases to 5 years for γ = 2. This highlights the third result.
Similar results are depicted for all fee structures. There is, therefore, a negative relationship between risk aversion
and thewinning horizon of the no-jumpsmanager. As risk aversiondecreases, the timehorizon of themanagerial
incentive increases and the interests of the two agents become aligned later in time.

Finally, we consider the percentage of wins for each manager. The incentive (or temptation) to ignore jumps
can be illustrated not only on expected utility terms but also on the probability of a single favourable outcome
(e.g. ‘beating the odds’). The ‘UJ Wins’ metric reports the percentage of times the jumps manager ends up with
higher terminal utility compared to the no-jumps manager. For all our simulations, the jumps manager has a
30 − 40%win rate across all investment periods under a symmetric wealth transfer function. Under asymmetry,
however, the win rate increases from 30% to more than 70% for the longest horizons. Therefore, in the first case
the No-Jumps manager has a probability of 60 − 70% to win a single run, which creates an additional incentive
to act against her clients interest, while in the second case the incentive disappears as the investment horizon
lengthens. This highlights that an asymmetric reaction to losses acts as a penalising mechanism not only on
average terms but also on a single run. These patterns occur as a direct result of the wealth transfer pattern;
for asymmetric transfers, much more wealth is moved when there is poor performance of the fund, which is
consistent with investors being more sensitive to losses than gains.

5.4. Managerial incentives inmutual funds

Although the setup and fee compensation ismore representative of hedge rather thanmutual funds, the intuition
of our results is strikingly similar to the mutual fund tournament effect8 (Brown, Van Harlow, and Starks 1996).
When manager compensation is linked to performance, managers who are more likely to accrue losses are
also more likely to increase fund volatility, thus undertaking riskier positions, compared to managers in well-
performing funds, who tend to resort to index tracking to maintain gains. Chevalier and Ellison (1997) put
the tournament effect explicitly in the context of an agency conflict between investors, who want to maximise
risk-adjusted returns, and fund companies, who wish to maximise their own profits and value by increased fund
flows. They find that young funds have an incentive late in the year to take excess risk if their performance is
lagging behind the market; they may also have an incentive to play it safe and act more like an index fund if they
are ahead of the market. However, they find an additional, stronger, incentive of funds that are well ahead of the
market to gamble. In a parsimonious setting with managers of different skill, Berk and Green (2004) show that
investments with active managers do not outperform passive benchmarks because investors competitively sup-
ply funds to managers and there are decreasing returns for managers in deploying their superior ability. Similar
effects are also detected in mutual fund families (Kempf and Ruenzi 2008). However, Massa and Patgiri (2009)
find that increased incentives increase managerial effort as well as risk-taking, which has a positive effect on
fund survival rates. In this context, we show that jumps in asset prices, when combined with convex compensa-
tion schemes, create principal–agent conflicts that in some ways mirror those that arise between managers and
investors under the tournament effect. We also show that a set of counter-incentives in the form of clawbacks
can help mitigate this conflict.

6. Methods to align investor–manager incentives

The results thus far support the existence of an incentive for themanager to undertake excessive risk in her posi-
tions and, thus, act against her client’s interests caused by the existence of jumps in asset prices. This incentive
from jumps is distinct from the incentive caused by the manager’s option-type compensation, but both operate
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in conjunction. This entails undertaking positions that do not fully hedge against downside risk or the possibil-
ity of a rare catastrophic event. The motive manifests by continuously receiving higher fees on average, having
a horizon over which the manager’s realised expected utility is higher, and having a higher chance to succeed in
a one-off gamble compared to when that risk is taken into account.

This observation is linked to a wider debate on regulation and current shifts in industry norms and prac-
tices. From the perspectives of investors and policy makers, the discussion focuses on the clients’ loss of welfare
and increased accountability and transparency on behalf of the fund. The hedge fund sector is considered to
have been charging excessive fees, especially when there is relatively low performance. Competition between
financial firms now extends to contract clauses (preferential terms, lock-up periods for fees, fee stratas, dis-
counts) in an attempt to maintain existing clients and attract new ones. Also, many funds charge lower fees
than the staple ‘2 + 20%’ scheme and are willing to make concessions to clients, such as favourable terms
(Barclays 2017).

Such contract clausesmay providemanagers with amotivation to putmoreweight onmarket declines in their
asset allocation decisions and thus help better align manager and investor objectives. Recent literature high-
lights issues relating to benchmarking manager performance. Benchmarking may cause mutual fund managers
to weighmore heavily riskier, high beta stocks and achieve lower alphas (Christoffersen and Simutin 2017). Peer
pressure may push a manager to follow a performance benchmark (index) instead of trading against overvalua-
tion and to take excessively risky positions, according toBuffa,Vayanos, andWoolley (2014), in a framework very
different from ours (linear managerial compensation, CARA utility, constant volatility, multiple risky assets).
Agency issues create leverage effects and a situation where deviating from an overvalued index exposes the
manager to low performance. In a theoretical paper with a constant volatility model, DeMarzo, Livdan, and
Tchistyi (2013) demonstrate that, under disaster risk, a large survival bonus for the manager is not enough to
prevent excessively risky investment or remove conflicts of interest.

Instead of a bonus, we consider two possible alternatives to reduce or eliminate this conflict of interest: (i)
prohibiting performance fees payable to a fundmanager and (ii) clawbacks.While performance fees are a widely
used form of fundmanager compensation, clawbacks, in contrasts, are much less established despite their recent
adoption by a small number of funds. A clawback is an obligation on behalf of the manager to return to the
investor a portion of the past performance fees she has collected when the fund underperforms.

6.1. Performance fee prohibition

One possible way to align investor and manager preferences is for funds not to charge a performance fee.
This can be illustrated by charging only a fixed administrative fee (α), which is also the payoff structure of a
mutual fund. In that case, fees are αWt and managerial utility is (αWt)

1−γ

1−γ
= α1−γ

1−γ
U(Wt) = kU(Wt), which is

investor utility times a scalar. k is common for the jumps and no-jumps manager, so the relationship between
expected utilities follows directly from Table 4. We can see in the third panel (γ = 3) that the jumps investor
always wins in terms of average total terminal utility (TUJ>TUNJ) across all horizons, compensation struc-
tures and wealth transfer functions. A change in the fee level merely scales the manager’s utility by k, leaving the
observed pattern unchanged. This provides a clear motivation and explanation for both investors and fixed
fee managers to take jumps into account (when they are known to exist). Since utility is based on portfo-
lio wealth and the allocation is optimised in the presence of jumps, it is reasonable to see the SVCJ weights
dominate the sub-optimal SV option even for very short horizons when simulated across a large number of
samples. Consequently, this decision will be optimal for both investors and fund managers, as expected, given
our approach. We can conclude that mutual funds that do not charge a performance fee do not suffer from a
conflict of interest. The complete removal of an option-type compensation scheme for themanager also removes
the incentive to ignore jumps, since her reward is a proportion of assets under management. When both man-
agers receive only a flat percentage fee, the No-Jumps manager never wins, similar to the No-Jumps investor. As
such, this may appear as a justification to abolish performance fees of that type altogether. While this appears
to be one solution to the issue raised in this paper, it may prove to be a controversial policy for the regulator to
implement.
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6.2. Clawbacks

Clawbacks enable investors to recoup part of the performance fees they have previously paid and can moderate
the incentives for the fundmanager to take excessive risks. A clawback acts as a variant of the ‘fulcrum fee’, where
high fees (compensation) for good performance are balanced by low fees for bad performance. A key result is
that clawbacks substantially ameliorate the conflict between investors and managers. Specifically, they cause a
large reduction in the winning horizons,managerial utility and fees across the board, severely reducing instances
where manager incentives are mis-aligned and in many scenarios eliminating it altogether. This highlights how
such protective provisions are beneficial to the investor and can be a powerful tool for the regulator, if applied
correctly. In addition, they have fewer unintended consequences compared to other types of amelioration, such
as high watermarks, which are linked to fund closures since the funds lack a strong incentive to continue, par-
ticularly after large losses (Ben-David, Birru, and Rossi 2020 for an overview, Masters and Fletcher 2022 for an
example9).

We selected clawbacks due to their recent post-crisis resurgence as regulatory tools for hedge funds, both for
cases of fraud and fund liquidation (Cherry and Wong 2009; Bambach 2014), as well as their uses by industry
practitioners (Lee, Lwi, and Phoon 2004; Smith and Gupta 2017). We thus extend past literature from clawbacks
in the context of bankruptcy and litigation to their much less studied use as an incentives alignment mechanism
in normal fund operation. According to Flood and Aliaj (2020), clawback clauses are offered by approximately
16% of hedge funds, up from 10% since 2017, while they are highly sought by one-third of investors.

The form of the simulations when clawbacks are introduced is very similar to that of the previous section.We
introduce in addition the clawback threshold, which defines the level of losses that activate the clause, and the
clawback rate, which defines the amount to be returned to the investor. Themechanism assumes that if portfolio
returns fall below the threshold, the manager is bound under contract to return a percentage of the performance
fees she has amassed over a given number of past periods back to the investors.We consider two different cases.10
In the first case, the amount to be repaid is a portion of performance fees collected over a window of 5 years prior
to the year of the clawback. The amount ‘clawed back’ is paid at the end of year t by being deducted from annual
fees and added to portfolio wealth, and is also subtracted from the sum of performance fees. In the second case,
the amount is based on last year’s performance fee only (i.e. the window upon which the clawback is calculated
is 1 year instead of 5 years). The clawback threshold that activates the return of fees is when the annual portfolio
return falls below −10%. In the first case, the clawback rate is 20% of the accumulated performance fees over
the last 5 years, while in the second the clawback rate is 33% of last year’s performance fee. In this second case,
if the manager did not receive a performance fee in year t−1, then the clawback is zero; the implication is that
this clawback can only be effective if poor performance is preceded by a year when a performance fee is realized.
This makes the clause effective under quite specific conditions, but due to the higher clawback rate of 33% it
is expected to have more a severe effect on managerial utility. These structures are combined with symmetric
and asymmetric transfer of wealth, leading to four different cases. A threshold of −5% was also considered but
yielded almost identical results to those in Tables 8 and 9.

To prevent negative fees and also extremely low managerial utility that would dominate the simulation and
distort the outcome when a repayment occurs, it is necessary to include a lower limit in annual fees. The ‘floors’
(fees) are 0.1 (2%), 0.05 (1%) and 0.01 (0.4%). If there is still an amount to be repaid after the floor is reached,
it is passed on as balance in the next year.11 Lower thresholds lead to visibly lower expected utility and winning
horizons, as such implementing these ‘floors’ understates the effectiveness of clawbacks.

The trends identified in earlier results remain unchanged under clawbacks. This allows us to focus on the
baseline case of a 1 + 10% performance fee. Since the conflict of interest is greater at low and medium levels of
risk aversion, only the results for γ = 3 and γ = 2 are reported.We start with a risk aversion of 3 and symmetric
wealth transfer. A comparison of Panels I in Table 5, where clawbacks are absent, and Table 8, where clawbacks
are present and calculated on the sum of performance fees over the past 5 years, reveals a clear reduction of the
winning horizons for the No-Jumps manager. Specifically, when the clawbacks are based on the past few years
of performance fees, Table 8, Panel A (1 + 10%) shows that investor–manager incentives are now aligned for
horizons of 3 years and above; this is a substantial reduction from the 7-year changing point in Table 5, Panel
B.I. When the clawback window is limited to last year only but with a higher clawback rate of 33% (Table A1,
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Table 8. Results under 20% clawbacks over the past 5 years, 1 + 10% fees.

Years 2 3 5 7 10

Panel A: γ = 3, symmetric wealth transfer function
TFJ 2.1976 3.2870 5.5173 7.7180 11.1190
TFNJ 2.9776 4.4952 7.8220 11.1701 16.9229
TFUJ −0.8882 −1.3393 −2.2147 −3.1157 −4.3987
TFUNJ −0.8309 −1.3437 −2.4667 −4.7737 −9.8253
UJ wins (%) 33.98 34.88 38.58 44.76 45.44

Panel B: γ = 3, asymmetric wealth transfer function
TFJ 2.2046 3.3519 5.6826 8.0967 11.9464
TFNJ 2.8894 4.4658 7.4969 10.4968 15.6707
TFUJ −0.8816 −1.2946 −2.0976 −2.8491 −3.8696
TFUNJ −0.8859 −1.4750 −3.2751 −5.9698 −10.0653
UJ wins (%) 37.98 39.88 49.62 55.12 61.96

Panel C: γ = 2, symmetric wealth transfer function
TFJ 2.4005 3.6072 5.9692 8.3967 12.0538
TFNJ 3.5967 5.5873 9.5904 14.1602 21.9383
TFUJ −1.7930 −2.6921 −4.5326 −6.3510 −9.1048
TFUNJ −1.7048 −2.6698 −4.9503 −7.4477 −12.7299
UJ wins (%) 32.16 32.14 37.62 40.48 46.44

Panel D: γ = 2, asymmetric wealth transfer function
TFJ 2.4211 3.6666 6.1947 8.8179 12.9680
TFNJ 3.5431 5.4881 9.2683 13.3815 20.5961
TFUJ −1.7773 −2.6472 −4.3775 −6.0583 −8.4939
TFUNJ −1.7338 −2.6846 −5.2561 −8.3722 −14.6850
UJ wins (%) 34.38 37.06 44.60 51.86 57.56

Panel A), there is no incentive for the manager since the No-jumps manager always loses for horizons up to 10
years. Therefore, their incentives are always aligned and the existence of that particular form of clawback clause
appears to resolve the conflict of interest.

The punitive effects are even stronger with an asymmetric wealth transfer function, since the manager is
burdened not only with the reduction of her own utility but with a further loss of assets under management.
The tables to compare are 5 (Panels II), 8 and 9.Without clawbacks (Panel 5.B.II) the winning horizon is 2 years,
while for both types of clawbacks (Panels 8.B and 9.B) it is completely eradicated. The result illustrates a dramatic
reduction in the incentive of the manager and in her expected utility under a penalising mechanism.

As earlier, an increase in risk aversion reduces the time frame over which the no-jumps manager dominates
the jumps manager in terms of utility. For γ = 2, the manager that ignores jumps wins for investment periods
up to 7 years in the symmetric case without clawbacks (Table 5, Panels I), but only up to 3 years when clawbacks
are based on the last 5 years (Panel 8.C) and never wins even at the 2-year horizon when clawbacks are based
on last year (Panel 10.C). When asymmetry is introduced, the respective Panels 5.B.II, 8.D and 9.D show that
under the first type of clawbacks the no-jumps manager wins on average for horizons up to 2 years (γ = 2),
under the second type she always loses, while without them she wins for up to 3 years. The effect of risk aversion
is seen in the reduction for both symmetry and asymmetry when compared with the results for γ = 3. The new
element is that now, with asymmetric movements of wealth, the motive is eliminated for moderate and low risk
aversion, contrary to only high risk aversion when clawbacks are absent. This is a clear indication of the ability
of such clauses to eliminate the managerial incentive, either on their own or in combination with other policies
and factors.

Higher levels of risk aversion have no impact on fees, win percentages and investor utility. Total fees for the
No-Jumps manager are clearly lower under clawbacks. The percentage of wins lies constantly between 33% and
36% in the symmetric case, while it steadily increases in the asymmetric case starting from 33% and increasing
up to 70% for the 15-year horizon. On fee structures, 2 + 20% is qualitatively identical to 1 + 10% and 0.4 + 3%
has slightly lower horizons, mimicking the patterns noted earlier. In that case, however, themanager is penalised
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Table 9. Results under 33% clawbacks over the last year, 1 + 10% fees.

Years 2 3 5 7 10

Panel A: γ = 3, symmetric wealth transfer function
TFJ 2.1928 3.2865 5.5021 7.7378 11.1102
TFNJ 2.9156 4.4675 7.7708 11.2976 17.1402
TFUJ −0.8928 −1.3412 −2.2225 −3.0953 −4.3834
TFUNJ −0.9276 −1.6600 −2.9677 −4.0897 −6.3781
UJ wins (%) 36.60 36.36 37.02 37.70 38.82

Panel B: γ = 3, asymmetric wealth transfer function
TFJ 2.2097 3.3498 5.6771 8.1107 11.9525
TFNJ 2.9180 4.4188 7.4643 10.8129 16.1559
TFUJ −0.8796 −1.2961 −2.0969 −2.8328 −3.8498
TFUNJ −1.0568 −1.6768 −3.3689 −4.9712 −7.8570
UJ wins (%) 38.50 41.56 47.44 49.16 52.52

Panel C: γ = 2, symmetric wealth transfer function
TFJ 2.4217 3.6209 6.0161 8.3958 12.0095
TFNJ 3.6388 5.5698 9.7542 14.2025 21.9690
TFUJ −1.7899 −2.6965 −4.5148 −6.3554 −9.0841
TFUNJ −1.9632 −3.1884 −5.6046 −8.4066 −11.9795
UJ wins (%) 37.42 39.60 41.48 43.98 46.88

Panel D: γ = 2, asymmetric wealth transfer function
TFJ 2.4318 3.6526 6.2102 8.8327 12.8995
TFNJ 3.5707 5.3613 9.3533 13.6196 20.3224
TFUJ −1.7795 −2.6694 −4.3726 −6.0533 −8.4991
TFUNJ −2.0152 −3.2974 −5.8223 −8.7064 −13.1824
UJ wins (%) 39.66 44.64 49.50 52.96 57.30

even further. Her winning horizon is limited to 2 years, instead of 3, under symmetry and is completely erad-
icated under asymmetry. A similar, more pronounced, result was observed in the previous set of simulations,
yet it is clear that such a punitive mechanism is relevant and effective even when fees are very low. The outcome
is the same for both clawback mechanisms. A final important point is how even a small performance fee of 3%
can motivate excess risk. The effect of an option-type fee is well documented in the literature and we expand
by showing that to both maintain such a structure and eliminate the principal–agent conflict, an effective pol-
icy mechanism is needed. The complete abolition of performance fees is represented by the investor-only case.
Such a policy is highly effective, however, it might be too invasive and restrictive. On the other hand, clauses
that protect the investor on the downside tend to be almost as effective as the abolition of performance fees.

Further unreported tests (available on request) confirm the robustness of these qualitative conclusions. We
can summarize further robustness checks conducted as follows. The results for the fee structure and risk aversion
behave in the samemanner as when there are no clawbacks. High andmoderate fees demonstrate the same qual-
itative results and only very low performance fees have some effect in mitigating the incentive of the manager. A
change in the clawback threshold from −10% to −5% yields only a marginal difference. However, as expected,
an increase in the clawback rate causes a clear reduction in the winning horizons. If the hurdle threshold, at
which performance fees begin to be paid, is increased then this leads to a significant reduction in the winning
horizon, particularly in the presence of clawbacks.

6.3. The effect of clawbacks on themanager’s preferred allocations

Finally, we consider the impact of clawbacks upon the manager’s optimal weights. As discussed in Section 4, we
simulate portfolio weights for four different cases, explained in detail in Appendix C and Table C.9. Based on our
previous results, ourmain interest is in short andmedium investment horizons (T = 2, 3, 5)where themanager’s
incentive appears more often andmore pronounced.We focus on a 33% clawback rate of last year’s performance
fee, symmetric wealth transfer and a base fee structure of 1 + 10%. Our key findings are summarised in Panel C,
based on fees and wealth transfer, and Panel D, which additionally includes the impact of clawbacks. First, the
optimal weights in Panel C are similar to those in Panel A, indicating that including a wealth transfer function
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has a limited impact upon the optimal weights for short and medium investment horizons. Notably, the optimal
simulated weights match the SV weights in some cases (Panel A, T = 3). Second, we examine the impact of
clawbacks on the optimal weights; we can clearly see that the optimal weights with a clawback (Panel D) are
in many cases substantially lower than without (Panel C). The impact depends crucially on the level of risk
aversion and time horizon. For T = 2 and γ = 2 the manager’s optimal weights reduce from 100% (Panel C)
to 77% (Panel D), whereas for T = 3 and γ = 3 the reduction is from 65% to 52%. Thus, for cases where the
manager’s and investor’s optimal weights are furthest apart, clawbacks can greatly ameliorate but not eliminate,
the manager’s propensity towards a riskier allocation. For cases without a large difference in weights, such as
T = 10 and γ = 5, the clawback still reduces the manager’s optimal weight (from 28% to 25%) but by a more
modest amount. Also, the weight with clawbacks is much closer here to the investor’s optimal (SVCJ) than when
jumps are ignored (SV). The manager’s incentive is fully removed for T = 10, γ = 5 and 2 + 20% fees, where
the simulated and SV weights are equal (21%). We conclude that clawbacks do lead managers to select less risky
portfolios, which are more closely aligned with the investor’s preferred allocation, compared to an environment
where such clauses are absent.

7. Conclusion

This paper connects and expands two separate areas of finance; first, portfolio optimisation under jumps in the
return process (Hong and Jin 2018) and, second, principal–agent problems when compensation is performance-
based (Ma, Tang, and Gómez 2019). Specifically, we examine the extent of principal–agent conflicts between
an investor and their asset manager in a setting where managers receive performance bonuses and there are
substantial but infrequent jumps in equity returns. The key finding of the paper is that an asset manager whose
investment horizon is short term (less than 5 years) and who derives utility from fee income would choose to
ignore jump risk andwould therefore not invest in a way whichmaximises the utility of their client. Instead, they
pursue a more aggressive asset allocation strategy which leads to higher returns and higher fees but, crucially,
more risk than is optimal for the investor. The results are robust across different cases considered including
those where investorsmovedmoney between funds under differing schemes, differing levels of risk aversion and
differing managerial fee levels. The misalignment of incentives is more pronounced when (i) there is symmetry
in the way investors move money out of losing funds into winning funds or (ii) the manager and investor both
have a low level of risk aversion. This incentive is distinct from the incentive caused by asymmetric managerial
compensation as in hedge funds.

We demonstrate that when there are negative fees in times of low performance (‘clawbacks’) manager and
investor incentives are far more closely aligned; there is a clear reduction across the board in the time hori-
zon when the conflict is manifested. The combination of three features almost resolves the conflict of interest:
moderate clawbacks, asymmetric investor reactions and high risk aversion. With a substantial clawback mea-
sured over last year’s performance fee, the incentive is eliminated even when there is low risk aversion and
symmetry in investor reactions. Notably, the monetary value of the clawback is very low compared to portfolio
wealth. As such, the aim is not to cover investor losses but instead to penalise the underperforming manager.
Therefore, clawbacks can help align incentives without the disadvantage of diluting the investors’ fund holdings,
which occurs when managers become also fund owners (Kaniel, Tompaidis, and Zhou 2019). When the man-
ager receives only the administrative and not the performance fee (a common feature of mutual funds), then the
incentives are fully aligned with the investor and the manager will always take jumps into account. Therefore,
removing performance fees is an alternate regulatory solution to clawbacks that solves this agency conflict, but
may be more difficult to implement in practice and might have unintended consequences including reduced
managerial discipline.

While this paper points to a number of important extensions for future research, two are of particular interest.
The first is the sensitivity of management behaviour to different specifications of the utility function within the
model. While constant relative risk aversion utility functions, as applied in this paper, are the most prevalent
within this type of framework, we have not demonstrated the robustness of our results to other popular choices,
such as constant absolute risk aversion. The second is that we have not separated the rewards to the fund from
the remuneration paid to the individual fund manager. This relates to concerns on fund and manager liability,
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regulatory policy implementation and a potential difference in fund survival probabilities between funds with
clear or little separation between the fund manager and the fund company. This additional layer of potential
agency conflict is a fertile area for further study.

We conclude that regulators should seriously consider mandating clawbacks in performance fees, since
regulators have a remit to ensure consumer protection and integrity in the financial system.With proper imple-
mentation and regulatory oversight, such policies have the potential to be successful (Hoffmann, Inderst, and
Opp 2022). A clawback linked to last year’s performance would be relatively easy to enforce and monitor. Given
the large potential benefits and low anticipated costs, the case for such regulatory changes seems compelling.

Notes

1. Risk aversion and utility functions are the same for both agents. This ensures that our results are solely driven by jumps in asset
prices, which impact differently upon the investor’s utility from wealth and the manager’s utility from fees.

2. Shorthands α = κθ ,β = −κ are also used in some formulations. By rewriting the volatility error term in (1) as εVt = ρεYt +
ζt
√
1 − ρ2, where ζ is a randomnormal variable independent of εYt , andω = σ 2

V (1 − ρ2) and φ = σVρ are defined, then direct
Gibbs sampling via conjugate priors is possible. Trivially, ρ = φ

σV
, σ 2

V = ω + φ2. This is a standard statistical transformation
and is used in this context by Jacquier, Polson, and Rossi (2004), among others.

3. In unreported results, we conducted test simulations of 20,000, 50,000 and 100,000 runs for 2–10 years and the results did not
materially change.

4. The percentage of wealth and utility wins is the same because wealth is calculated at the end of the investment and used to
calculate terminal utility.

5. Assuming a threshold of 10% but calculating the performance fee on the entire amount of profits if the threshold is surpassed,
yields the same results with slightly more pronounced numerical effects and the winning horizons for γ = 2 exceeding to 10
years. The same holds if performance fees are calculated on gross (total) rather than net (above the hurdle) profits.

6. The option-type structure of a flat administration fee plus a performance fee is the most common and simplest compensation
scheme. Although it has been enhanced with other types of incentives and payoffs, it is still widely representative. Apart from
industry sources such as Preqin (2017) and Barclays (2017), reports show a recent trend for flat reductions and a shift of balance
in favour of investors (Fortado 2016). The selected fees cover a wide range of empirical values and the middle ground between
hedge and mutual funds, who typically do not charge a performance fee or rely on symmetric compensation (fulcrum). The
industry staple 2% + 20% is maintained only by the largest hedge funds.

7. For γ = 4, the results formanagerial fees and investor utility are the same, while the winning horizon for the no-jumpsmanager
is 3 years for 2 + 20% and 1 + 10% fees, and 2 years for 0.4 + 3% fees.

8. We are grateful to an anonymous referee for the suggestion.
9. As an example on how our setup can be implemented by a hedge fund, we refer to Aperture Investors, the new firmby the former

chief executive of AllianceBernstein Peter Kraus. It implements a 30% performance bonus under a fixed hurdle rate, half of the
performance bonus is held in escrow for several years and pays out only if the gains aremaintained, and the performance clock is
reset annually. According to Kraus, ‘such [water]marks also push some fundmanagers to shut down and start over, crystallising
losses for current investors and handing any new gains to a different set of investors’. The escrow provides managers ‘time to
recover from deep losses while returning money to investors if the gains prove illusory [··· ] and helps with staff retention’. This
bears a striking similarity to our setup and provides an example of how past performance fees can be clawed back in practice,
covering the concerns of Hoffmann, Inderst, and Opp 2022.

10. We also considered the case where the amount to be returned is based on the entire length of the investment up to that time
(i.e. calculated upon total performance fees collected by the manager during the investment up to time t) with a clawback rate
of 10%. The winning horizons for the same levels of γ followed the same patterns, ranging between 2 and 3 years. Also, for
brevity the tables for higher risk aversion are omitted since a winning horizon manifests only in the symmetric case for γ = 4
with a length of 2 years

11. The values were shown not to be disruptive in terms of expected utility. They are similar to the administration fees paid when
the fund has lost 95% of its initial wealth and, according to our conditions in the previous section, becomes defunct.
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Appendices

Appendix 1. Posterior distributions

A.1 SVCJ posteriors
The discretised version of the SVCJ model described by (2) is

Yt = μ +√
Vt−1ε

Y
t + ξYt Jt

�Vt = Vt − Vt−1 = α + βVt−1 +√
Vt−1σVεVt + ξVt Jt

(A1)

where α = κθ ,β = −κ , εY , εV ∼ N(0, 1) with correlation ρ, log returns Yt = log(St/St−1), Jt ∼ Ber(λ), ξV ∼ exp(μv), ξY ∼
N(μY + ρjξ

V , σ 2
Y ) jump sizes with correlation ρj. The model can be discretised with either α = κθ and β = −κ or directly κ , θ .

Here the first method is used. In this form, Metropolis–Hastings sampling is needed for Vt , ρ, σV . If the volatility error term is
rewritten as εVt = ρ × εYt +

√
1 − ρ2 × ζt , where ζt ∼ N(0, 1) independent of εYt , and ω = σ 2

V (1 − ρ2),φ = σV × ρ are defined,
then they can be sampled directly from the resulting posteriors due to conjugacy and get ρ = φ

σV
, σ 2

V = ω + φ2.
The parameters to be sampled are θ = (μ,α,β , ρ, ρj, σ 2

V ,μY ,μV , σ 2
Y ), the vectors (sets) to be sampled are (Vt , Jt , ξYt , ξ

V
t ), the

notation (··· ) denotes all other quantities and all sums are from t = 1 to t = N. The likelihood function is the bivariate normal

p(Yt ,�Vt|Vt−1, . . .) = 1
2πσVVt−1

√
1 − ρ2

Exp
[
− 1
2(1 − ρ2)

(
A2
t

Vt−1
+ B2t

σ 2
VVt−1

− 2ρAtBt
σVVt−1

)]

where Yt − μ − ξYt Jt = At and Vt − Vt−1 − α − βVt−1 − ξVt Jt = Bt
Volatility yields the most complex posterior.

p(Vt|Vt−1,Vt+1,Yt , . . .)

∝ 1
Vt

Exp

[
−1
2

(
V2
t − 2Vt(α + βVt−1 + JtξVt + 2ρσVAt)

(1 − ρ2)σ 2
VVt−1

+ (Bt+1 − ρσVAt+1)
2

σ 2
V (1 − ρ2)Vt

+ A2
t+1
Vt

)]

It is updated according to a random walk Metropolis–Hastings step. The proposal is e that followsN(0, σ 2) centred on the previous
value, so Vprop = Vold + e. Setting σ = 0.05 works well in practice. It has the advantage of being completely agnostic and with a
pace σ that can be easily calibrated.

The posteriors for ρ, σ 2
v are non-standard. The transformation ω = σ 2

V (1 − ρ2),φ = σV × ρ allows the elimination of those
terms and separate direct sampling due to conjugacy for N(0, 12ω) for φ and IG(2,200) for ω as priors. Formally, p(φ|Vt ,ω, . . .) ∝
p(Yt ,Vt|Vt−1, . . .)p(φ|ω) and p(ω|Vt ,φ, . . .) ∝ p(Yt ,Vt|Vt−1,φ, . . .)p(ω). The results are an Inverse Gamma posterior for ω with
parameters IG(D,C)

D = T
2

+ 2, C =
∑ 1

2
(Vt − Vt−1 − α − βVt−1 − JtξVt )2

Vt−1
+ 1

200

−
(∑ 1

Vt−1
(Yt − μ − JtξYt )(Vt − Vt−1 − α − βVt−1 − JtξVt )

)2
2
∑ 1

Vt−1
(Yt − μ − JtξYt )2 + 2

and a Normal (Z,X) posterior for φ with mean

Z =
∑ 1

Vt−1
(Yt − μ − JtξYt )(Vt − Vt−1 − α − βVt−1 − JtξVt )∑ 1

Vt−1
(Yt − μ − JtξYt )2 + 2

and variance X = ω∑ 1
Vt−1

(Yt − μ − JtξYt )2 + 2

The prior for Jt is a Bernoulli distribution Ber(λ) with J having two states: 0 and 1. Therefore, P(1) = P(J = 1|Yt ,Vt , . . .) =
λ × p(Vt ,Yt|J = 1, . . .)while P(0) = P(J = 0|Yt ,Vt , . . .) = (1 − λ) × p(Vt ,Yt|J = 0, . . .) and the resulting posterior is p(Jt|Vt ,Yt ,
. . .) ∝ Ber(q), where

q = P(1)
P(1) + P(0)

.

The remaining posteriors are mostly Normal or Inverse Gamma.With lax notation ofX, Z corresponding to N(mean, variance) and
IG(shape, scale)

https://doi.org/10.1111/jofi.12413
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p(μ|Vt , . . .) ∼ N(X,Z) with prior N(k = 2,K = 40) for mean and variance, and

Z =
(∑ 1

(1 − ρ)2Vt−1
+ 1

K

)−1
and X =

(∑ Yt − JtξYt − ρ
σV

(Vt−1+α+βVt−1+JtξVt
)

(1 − ρ)2Vt−1
+ k

K

)
× Z

For α = κθ , p(α|Vt , . . .) ∝ (N,Z) where

X =
(∑ Vt − (1 + β)Vt−1 − JtξVt − ρσV (Yt − μ − JtξYt )

σ 2
V (1 − ρ2)

)
× Z and Z =

∑ 1
σ 2
V (1 − ρ2)Vt−1

For β = −κ , p(β|Vt , . . .) ∝ (N,Z) where

X =
(∑ Vt − Vt−1 − α − JtξVt − ρσV (Yt − μ − JtξYt )

Vt−1σ
2
V (1 − ρ2)

)
× Z and Z =

∑
Vt−1

σ 2
V (1 − ρ2)

+ 1

For λ the prior is a Beta (k,K), so λ ∼ Beta(X,Z) with parameters

X = k +
∑

Jt and Z = K + T −
∑

Jt

For σ 2
Y , p(σ

2
Y |Vt , . . .) ∝ p(ξYt | · · · )p(σ 2

Y ) ∝ IG
(
1
2
T + e,

1
2

∑
(ξYt − ρJξ

V
t − μY )2 + E

)

with IG(e = 10,E = 40) as prior. For μY , p(μY |Vt , . . .) ∝ p(ξYt | · · · )p(μY ) with prior N(z = 0, 100), which yields a Normal
distribution N(X,Z) with variance

Z =
(

T
σ 2
Y

+ 1
100

)−1
and mean X =

(∑
(ξYt − ρJξ

V
t )

σ 2
Y

+ z
100

)
× Z

For μV , the pdf of an exponential distribution with mean μV is

1
μV

Exp
(

− ξVt
μV

)

since the general form is λExp[−λx] and mean λ−1

With an Inverse Gamma (d = 10, D = 20) as prior and ignoring constants,

p(μV | · · · ) ∝ p(ξVt )p(μV ) ∝
(

1
μV

)T
Exp

(
−
∑

ξVt
μV

)
μ−d−1
V Exp

(
− D

μV

)
∝ IG(T + d,

∑
ξVt + D)

For ξYt , the posterior is p(ξY |�Vt ,Y , J = 1, . . .) ∝ p(Yt ,�Vt|ξY , J = 1, . . .)p(ξYt ) which leads to a Normal distribution N(X,Z)

with

Z =
(

1
(1 − ρ2)Vt−1

+ 1
σ 2
Y

)−1
and X =

(
Yt − μ − ρ

σV
Bt

(1 − ρ2)Vt−1
+ μY − ρJξ

V
t

σ 2
Y

)
× Z

When J = 0, ξY cones from the unconditional distribution ξY ∼ N(μY + ρjξ
V , σ 2

Y )

For ξVt , the posterior is again standard. p(ξVt |�Vt ,YT , J = 1 · · · ) ∝ p(Yt ,�Vt|ξVt , J = 1)p(ξYt |ξVt , . . .)p(ξVT ). Ignoring the
constants, this can be written as

∝ Exp
[
− 1
2(1 − ρ2)

(
σ 2
VA

2
t + B2t − 2ρσVAtBt

σ 2
VVt−1

)]
Exp

[
− (ξYt − μY − ρJξ

V
t )2

2σ 2
Y

]
Exp

(
− ξVt

μV

)

leading toN(X,Z), where Z =
(

1
σ 2
V (1 − ρ2)Vt−1

+ ρ2
J

σ 2
Y

)−1

and

X =
(

(Vt − Vt−1 − α − βVt−1) − ρσV (Yt − μ − ξYt )

σ 2
V (1 − ρ2)Vt−1

+ ρJ(ξ
Y
t − μY )

σ 2
Y

− 1
μV

)
× Z

When J = 0, the drawing of ξV ∼ exp(μv) which is again the unconditional distribution.
The posterior for ρJ is a Normal distribution with a prior of N(0, 4)
p(ρJ |ξYt , . . .) ∝ p(ξYt |ξVt , . . .)p(ρJ), which yields N(X,Z)

Z =
(∑

ξ 2V ,t

σ 2
Y

+ 1
4

)−1

and X =
∑

ξVt (ξYt − μY )

σ 2
Y

× Z
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Table A1. Simulated optimal weights for the manager.

2 + 20% fees 1 + 10% fees 0.4 + 3% fees

Years 2 3 5 7 10 2 3 5 7 10 2 3 5 7 10

Panel A: Fees only, no clawbacks/ wealth transfer
γ = 2 108% 100% 92% 84% 78% 107% 102% 94% 85% 80% 106% 102% 89% 84% 81%
γ = 3 78% 61% 64% 57% 53% 75% 70% 64% 57% 54% 71% 68% 61% 59% 53%
γ = 5 46% 44% 36% 33% 27% 47% 45% 37% 34% 33% 45% 44% 38% 35% 32%

Panel B: Fees and 33% clawbacks over last year, no wealth transfer
Years 2 3 5 7 10 2 3 5 7 10 2 3 5 7 10
γ = 2 83% 74% 69% 66% 62% 80% 73% 70% 66% 63% 84% 79% 77% 67% 66%
γ = 3 63% 57% 53% 51% 48% 62% 56% 51% 49% 46% 65% 59% 55% 51% 50%
γ = 5 42% 36% 35% 30% 26% 44% 39% 34% 32% 31% 44% 39% 37% 34% 31%

Panel C: Fees and symmetric wealth transfer, no clawbacks
Years 2 3 5 7 10 2 3 5 7 10 2 3 5 7 10
γ = 2 104% 98% 89% 82% 72% 100% 98% 92% 78% 71% 98% 95% 86% 78% 68%
γ = 3 75% 68% 56% 47% 46% 71% 65% 56% 50% 46% 74% 65% 54% 49% 46%
γ = 5 42% 37% 28% 24% 21% 43% 38% 33% 29% 28% 39% 38% 33% 31% 27%

Panel D: Fees, 33% clawbacks over last year and symmetric wealth transfer
Years 2 3 5 7 10 2 3 5 7 10 2 3 5 7 10
γ = 2 78% 70% 66% 63% 59% 77% 72% 65% 64% 61% 79% 77% 73% 65% 62%
γ = 3 58% 51% 49% 43% 42% 60% 52% 50% 45% 43% 63% 56% 47% 45% 44%
γ = 5 36% 32% 27% 23% 21% 38% 35% 31% 28% 25% 37% 36% 32% 28% 26%

A.2 SV posteriors
The easiest way to get the posteriors for the SV model is to take the SVCJ expressions and set the missing parameters equal to 0.
This yields exactly the same result as conditioning from the beginning. As a word of caution, this holds only for the model at hand
and should not be used in general. To verify, the posteriors were properly derived and then compared to the SVCJ formulas when
setting the missing parameters equal to 0.

MCMC algorithm
The MCMC algorithm employed in the paper is as follows.

• Set initial values for all parameters τ = (μ,α,β ,ω, ρj,φ,μY ,μV , σ 2
Y , λ) and vector Vt , number of iterations M and burn-in

period G.
For iterationm = 1, . . . ,M.

• Sample parameters from their respective distributions τ = (μ ∼ N,α ∼ N,β ∼ N,ω ∼ IG, ρj ∼ N,φ ∼ N,μY ∼ N,μV ∼
Exp, σ 2

Y ∼ IG, λ ∼ Beta), where m−1 the values of the previous iteration or the initial values if m = 1. Formally,
p(τ (m)

i |τ (m−1)
−i ,V(m−1)

t , ξV ,(m−1)
t , ξV ,(m−1)

t , Jt)
• Sample jump occurrence vector p(J(m)

t |V(m−1)
t ,V(m−1)

t−1 , . . . , τm) ∼ Bernoulli
• Sample return jump size vector p(ξY ,(m)

t |V(m−1)
t ,V(m−1)

t−1 , . . . , τm) ∼ N
• Sample volatility jump size vector p(ξV ,(m)|V(m−1)

t ,V(m−1)
t−1 , . . . , τm) ∼ N

• Sample volatility vector p(V(m)
t |V(m−1)

t ,V(m−1)
t−1 , . . . , τm) with random walk Metropolis Hastings as described above.

Appendix 2. Optimal portfolio weights

A.3 The Bellman equation
A direct application of the n-dimensional Ito’s lemma is applied to the wealth process (3) and the volatility process in (1) with an
additional jumps term generated. The result is

L(F) = (r + φEP)WFW + κ(θ − V)FV + 1
2
φ2W2VFWW + 1

2
σ 2
VVFVV

+ σVφWVρFWV + λE[F(W(1 + φE(ξY )),V + E(ξV ), t) − F]

The last term comes from the Poisson jump term.
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The solution to the Bellman Equation (5) is to conjecture and then verify that F(Wt ,Vt , t) is of a certain form, namely

F(Wt ,Vt , t) = W1−γ

1 − γ
exp(A(t) + B(t)V)

where A(t), B(t) depend only upon t but not W and V. Substitution of (18) into (7) and differentiation with respect to φ yield
EP × WFW + φW2VJWW + ρσVWVJWV + λK = 0

where K = ∂F(· · · )
∂φ

= E(ξY )W1−γ (1 + φE(ξY )γ exp(A(t) + B(t)V + B(t)E(ξV ))

Solving for the optimal portfolio weight φ yields

EP × W × W−γ exp(A(t) + B(t)V) − φW2VγW−1−γ exp(A(t) + B(t)V) + ρσVWVB(t)W−γ

× exp(A(t) + B(t)V) + λE(ξY )W1−γ (1 + φE(ξY ))−γ exp(A(t) + B(t)V + B(t)E(ξV )) = 0

⇔ EP × W1−γ − φγVW1−γ + ρσVW1−γVB(t) + λE(ξY )W1−γ (1 − φE(ξY ))−γ exp(B(t)E(ξV )) = 0

⇔ EP − Vφγ + ρσVVB(t) + λE(ξY )(1 − φE(ξY ))−γ exp(B(t)E(ξV )) = 0

⇔ EP
γV

+ ρσVB(t)
γ

+ λE(ξY )(1 − φE(ξY ))−γ

γV
exp(B(t)E(ξV )) = φ

The final step is to derive the ordinary differential equations for B(t) and A(t) for which the assumed form of the indirect utility
function is indeed a solution. In order for that assumption to hold, the solution forφ needs to validate theHamilton–Jacobi–Bellman
equation and set it equal to zero. After substituting φ and F into (7), it is possible to eliminate W1−γ

1−γ
exp(A(t) + VB(t)) from all

terms. This allows us to separate the terms that contain V from those who do not. The general form is thus D + H × V = 0 where
both D and H need to be 0, or else

H = B′(t) − 1
2
γφ2(1 − γ ) + 1

2
σ 2
VB

2(t) + (σVφρ(1 − γ ) − κ)B(t) = 0

and the expression for A(t) is added below for completeness, although it does not affect the system of equations.

D = A′(t) + (1 − γ )(r + φEP) + κθB(t) + λE
(

(1 + φE(ξY ))1−γ

1 − γ
exp(B(t)E(ξV )) − 1

)
= 0.

A.4 Differences in solutions between LLP and EJP
The returns process in LLP is specified in arithmetic terms, the jumps arrival intensity is λVt , the diffusive parts in the returns and
volatility processes become (r + ηVt − μλVt)dt and (α′ − β ′Vt − κ ′λVt)dt respectively and r is the risk-free rate. The new terms
are the volatility premium ηVt , the stochastic arrival intensity of the Poisson process λVt , the returns jump premium μλVt and the
volatility jump premium κ ′λVt . Arrival intensity is specified as a Cox process of the general form λ = λ0 + λ1Vt . Setting λ0 = 0
leads to the LLP formulation while setting λ1 = 0 leads to the EJP constant rate specification in (1). The LLP solution for φ is

φ = η − μλ

γ
+ ρσVB(t)

γ
+ λE(ξY )(1 − φE(ξY ))−γ

γ
exp(B(t)E(ξV )) (A2)

where B(t) solves the differential equation

B′(t) − 1
2
γφ2(1 − γ ) + 1

2
σ 2
VB

2(t) + (σVφρ(1 − γ ) − κλ − β)B(t)

+ (η − μλ)(1 − γ )φ + λE(ξY )(1 − φE(ξY ))−γ exp(B(t)E(ξV )) = 0 (A3)

with initial conditions A(T) = 0, B(T) = 0
The reason for selecting a Cox process for arrival intensity and including the additional premia in the drift is that they allow the

time-varyingVt terms to be eliminated from the denominators. λVt appears as additional factor in the numerators of each fraction,
which leads to (A2) and (A3) after eliminating. Expression (A2) forB(t) is not a Riccati equation and can only be solved numerically.
However, setting λ1 = 0 (or defining the arrival rate as λ) leads to constant arrival intensity as in EJP. This leads to expression (7)
for B(t), which has the form of a Riccati equation (Branger and Hansis 2015). Although that class of ODEs does have a closed-form
solution, Vt cannot be eliminated: the absence of the jump premium in the drift prevents λVt from appearing and the last jumps
related term is multiplied by λ only. We thus alleviate the issue by using the long-run volatility mean in the place of Vt . The final
expression is a complicated product of a real and an exponential function, which constitutes a semi-closed form solution and can
only be solved numerically. Using (6) and (7) in the numerical solution after substituting the long-run mean is perhaps the most
convenient choice.
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Appendix 3. Simulated optimal weights for themanager
Based on the SVCJ parameters, we simulate a sample of 100,000 annual returns and draw T = 2, 3, 5, 7, 10 returns with resampling
for each simulation. For the first round, a vector of 0–100%weights in 10 percent increments is constructed and, when the simulation
finds which weight yields the highest utility, the second round repeats the process in 1 percent increments around the first weight
(e.g. if the optimal weight in the first round was 50%, the vector of the second round will contain 21 weights between 40% and 60%).
The wealth transfer function is symmetric and the clawback rate is 33% applied over last year’s performance fee. The number of
simulations in each case is 100,000 and all the definitions and specifications are identical to the main paper.

For T = 2, 3, 5 clawbacks lower the optimal weights of the manager considerably and to a greater extent than wealth transfer,
while for T = 7, 10 the reduction caused by each mechanism is similar. This pattern is observed for all fee structures for γ = 2, 3.
For γ = 5, clawbacks and wealth transfer have a similar impact on optimal weights for short horizons but wealth transfer reduces
weights more for T = 7, 10. The optimal weights are virtually the same across all fee structures for γ = 2, 3 but somewhat lower
for γ = 5,T = 7, 10 and 2 + 20% compared to the respective values for 1 + 10% and 0.4 + 3%.

Appendix 4. The wealth transfer function
In this appendix, we justify the features of the wealth transfer functionwe employ and examine the effect of different upper and lower
bounds in wealth movement between funds. Our key aim is to demonstrate further that our main findings are neither calibration or
specification artefacts nor governed by parametrisation. The shape and calibration of the wealth transfer function are motivated by
Liang et al. (2019), who find an inverted S-shape relationship between hedge fund asset flows and returns. The flow-performance
relationship is upwards sloping with a slight curvature at the edges. To formalise this curvature, we apply a sigmoid function; the
main difference is that we use relative performance and fund flows, rNJ − rJ , rather than absolute. On calibration, Liang et al. (2019)
report quarterly equally weighted (EWF) and asset weighted (AWF) fund flows across different investment styles of hedge funds.
The AWFmeans are around 20% and the EWFmeans are close to 5% annually. We thus select intermediate values of 10% and 15%
for the bounds in our paper.

We examine the robustness of our main results under a higher bound to verify that the incentive we detect is not eliminated if
larger amounts of wealth are allowed to move between funds. We find that if the bound is increased then the incentive becomes
stronger rather than weaker, as it manifests over a longer period in time and leads to more pronounced differences between fund
utilities. Table A2 contains the simulation results when the bound is set according to the higher AWF mean at +/−20% under
2 + 20% fees, γ = 2, and a symmetric wealth transfer function for 2- to 7-year investment horizons. Panel A refers to the case
without clawbacks, similar to Table 7 in the main paper. Panels B and C refer to the cases of a 5-year 20% clawback and a 1-year 33%
clawback, respectively, similar to Tables 8 and 9. Without clawbacks, the manager not only always has an incentive to ignore equity
market jumps but the difference in average utilities between the No Jumps and the Jumps manager keeps increasing over time. In
Panel A, the difference TFUNJ−TFUJ is positive and increases from 0.0612 for a 2-year horizon to 0.1212 for a 7-year horizon,

Table A2. Results under a−/+20% wealth transfer bound.

Years 2 3 5 7

Panel A: No clawbacks
TFJ 4.6328 6.9293 11.3600 15.7284
TFNJ 6.1984 9.5790 16.3005 23.7795
TFUJ −0.9168 −1.3825 −2.3458 −3.3268
TFUNJ −0.8556 −1.2951 −2.2505 −3.2056

Panel B: 20% clawbacks over 5 years
TFJ 4.6228 6.8763 11.4179 15.7399
TFNJ 6.1395 9.2859 16.3562 23.0790
TFUJ −0.9212 −1.3969 −2.3586 −3.3930
TFUNJ −0.8820 −1.4476 −2.9394 −6.1152

Panel C: 33% clawbacks over 1 year
TFJ 4.6622 6.9203 11.3600 15.7820
TFNJ 6.2473 9.4165 16.0892 23.5875
TFUJ −0.9171 −1.3943 −2.3644 −3.3426
TFUNJ −0.9075 −1.4208 −2.5545 −3.5506

Note: Indicative results under a symmetric wealth transfer function, 2 + 20%manager
fees, γ = 2 and an upper (lower) bound of 20% (−20%) at the amount of portfolio
wealth transferred from the losing to the winning fund each year in Equation (10).
Bold denotes the winning manager.
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which shows a persistent and increasingly strong incentive. On the contrary, in Table 7 (10% bound) the same difference would
gradually decrease between 2 and 7 years where it would turn negative in year 10, showing that the No Jumps manager would lose
for such a long investment horizon and thus an elimination of the inventive. Introducing a 20% clawback applied over the previous
5 years, however, removes the incentive for all horizons apart from 2 years. This is in line with Table 8, where the same finding is
repeated for a 10% cap. For a 1-year 33% clawback below, the incentive is also greatly eliminated, as it manifests only over a 2-year
horizon. For the same case, it is completely removed in Table 9. Our results are equally robust throughout all other specifications,
demonstrating that the main bound values of +/10% lead to a relatively conservative managerial incentive, compared to the one
appearing under higher values. Higher wealth transfers between funds, therefore, would give rise to a greater motivation to ignore
equity market jumps.
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