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a b s t r a c t 

Despite their impressive performance in object recognition and other tasks under standard testing con- 

ditions, deep networks often fail to generalize to out-of-distribution (o.o.d.) samples. One cause for this 

shortcoming is that modern architectures tend to rely on ǣshortcuts ǥ superficial features that correlate 

with categories without capturing deeper invariants that hold across contexts. Real-world concepts often 

possess a complex structure that can vary superficially across contexts, which can make the most intu- 

itive and promising solutions in one context not generalize to others. One potential way to improve o.o.d. 

generalization is to assume simple solutions are unlikely to be valid across contexts and avoid them, 

which we refer to as the too-good-to-be-true prior . A low-capacity network (LCN) with a shallow architec- 

ture should only be able to learn surface relationships, including shortcuts. We find that LCNs can serve 

as shortcut detectors. Furthermore, an LCN’s predictions can be used in a two-stage approach to encour- 

age a high-capacity network (HCN) to rely on deeper invariant features that should generalize broadly. In 

particular, items that the LCN can master are downweighted when training the HCN. Using a modified 

version of the CIFAR-10 dataset in which we introduced shortcuts, we found that the two-stage LCN-HCN 

approach reduced reliance on shortcuts and facilitated o.o.d. generalization. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

“If you would only recognize that life is hard, things would be so 

uch easier for you.”—Louis D. Brandeis 

Deep convolutional neural networks (DCNNs) have achieved no- 

able success in image recognition, sometimes achieving human- 

evel performance or even surpassing it [16] . However, DC- 

Ns often suffer when out-of-distribution (o.o.d.) generaliza- 

ion is needed, that is, when training and test data are drawn 

rom different distributions [2,9,10] . This limitation has multiple 

onsequences, such as susceptibility to adversarial interventions 

13,19,39] or to previously unseen types of noise [10,18] . 

Failure to generalize o.o.d. may reflect the tendency of mod- 

rn network architectures to discover simple features, so-called 

shortcut” features [9,35] . While the perils of overly-complex so- 

utions are well appreciated, overly-simplistic solutions should 
� Preprint. Under consideration at Pattern Recognition Letters. 
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e viewed with equal skepticism . In this work, we assume that 

eatures that are easy to learn are likely too good to be true. 

or instance, a green background may be highly correlated with 

he “horse” category, but green grass is not a central feature. A 

orse detector relying on such simplistic features–i.e. shortcuts–

ay perform well when applied in Spain—where the training set 

riginates—but will fail when deployed in snow-covered Siberia. In 

ffect, shortcuts are easily discovered by a network but may be 

nappropriate for classifying items in an independent set where 

uperficial features are distributed differently than in the training 

et. Thus, the sensitivity to shortcuts may have far-reaching and 

angerous consequences in applications, like when the pneumonia 

redictions of a system were based on a metal token placed in ra- 

iographs [42] . 

In general, one cannot a priori know whether shortcuts will 

e helpful or misleading, nor can shortcut learning be reduced to 

verfitting the training data. While overfitting can be estimated 

sing an available test set from the same distribution, assessing 

hortcuts depends on all possible unseen data. A model relying 
n shortcuts can show remarkable human-level results on test sets 

nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. The standard and too-good-to-be-true prior approaches to learning. (A) In the standard approach, a single high-capacity network (HCN) is trained and is susceptible 

to shortcuts, in this case relying on color as opposed to shape. Such a network will generalize well to i.i.d. test items but fail on o.o.d. test items (the last item for each 

class; shown in red). (B) In contrast, implementing the too-good-to-be true prior by pairing a low-capacity network (LCN) with an HCN leads to successful i.i.d. and o.o.d. 

generalization. Items that the LCN can master, which may contain shortcuts, are downweighted when the HCN is trained, which should reduce shortcut reliance and promote 

use of more complex and invariant features by the HCN. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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here shortcut features are distributed identically to the training 

et (i.i.d.), but fail dramatically on o.o.d. test sets where shortcuts 

re missing or misleading [32] . 

Shortcuts can adversely affect generalization even when they 

re not perfectly predictive. Because shortcuts are easily learned 

y DCNNs, they can be misleading even in the presence of more 

eliable but complex features [20] . To illustrate, shape may be per- 

ectly predictive of class membership but networks may rely on 

olor or other easily accessed features like texture [5,11] when 

ested on novel cases (see Fig. 1 A). 

Although what is and is not a shortcut cannot be known with 

erfect confidence, all shortcuts are simple. We find it unlikely 

hat difficult learning problems will have trivial solutions when 

hey have not been fully solved by brains with billions of neurons 

haped by millions of years of natural selection nor by engineers 

orking diligently for decades. Based on this observation, we are 

keptical of very simple solutions to complex problems and believe 

hey will have poor o.o.d. generalization. This inductive bias, which 

e refer to as the “too-good-to-be-true prior”, can be incorporated 

nto the training of DCNNs to reduce shortcut reliance and promote 
165
.o.d. generalization. At its heart, the too-good-to-be true prior is 

 belief about the relationship between the world, models, and 

achine learning problems, which places limits on Occam’s razor. 

everal recent contributions on o.o.d. generalization are consistent 

ith the too-good-to-be-true prior [8,31,34] . In various ways, these 

uthors suggest that simple solutions should be treated with cau- 

ion and avoided. 

How does one identify solutions that are probably too-good-to- 

e-true? Here we suggest to make use of a learning system wit- 

ingly simplistic for the problem at hand and capable of only triv- 

al solutions, which includes shortcuts. First, we show that such 

ow-capacity systems can be used to detect shortcuts in a dataset. 

econd, we suggest a simple and general method aimed at dis- 

arding training examples that are suspected of containing short- 

uts. We hypothesize that, in order to prevent shortcut learning 

y a high-capacity network (HCN), the predictions of a much sim- 

ler, low-capacity network (LCN) could be used to guide the train- 

ng of the target network. Namely, a trained LCN would provide 

igh-probability predictions precisely for the training items con- 

aining these shortcuts. Such probabilistic predictions can be trans- 
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Table 1 

Overview of approaches to preventing shortcut reliance most relevant to the present study. Task abbreviations: IR - 

image recognition, AR - action recognition, NLI - natural language inference, QA - question answering, VQA - visual 

question answering. 

Approach Simple solutions are shortcuts Requires knowing a shortcut Task 

Reduce texture bias [11] No Yes IR 

DRiFt [15] Yes Yes NLI 

Don’t take the easy... [7] Yes Yes QA , VQA , NLI 

REPAIR [26] No No IR, AR 

Learning not to learn [23] No Yes IR 

RUBi [6] No Yes VQA 

ReBias [1] No Yes IR, AR 

LfF [31] Yes No IR 

DIBS [38] No No IR 

Learning from others... [34] Yes No QA, NLI 

MCE [8] Yes No IR, VQA, NLI 

Our approach Yes No IR 
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Table 2 

LCN and HCN mean accuracies (in %; averaged across 10 independent runs) on 

colored MNIST; standard deviations are in parentheses. 

Architecture Regular training Colored training 

Regular test Colored test Colored test Regular test 

LCN 90.80 (1.23) 89.91 (1.50) 97.04 (0.71) 61.73 (8.21) 

HCN 99.62 (0.10) 96.91 (1.74) 99.90 (0.11) 38.41 (12.82) 

w

f

g

t

(

i

s

3

t

d

a

t

r

3

s

b

d

m

i

I

w

t

3

(

t

t

g

m

d

i

ormed into importance weights (IWs) for training items, and these 

Ws can be further used in a loss function for training an HCN by 

ownweighting the shortcut items ( Fig. 1 B). We demonstrate our 

ethod’s efficiency by applying it to all possible CIFAR-10-based 

inary classification problems with synthetic shortcuts, permitting 

ell-controlled experiments. 

. Related work 

Shortcut learning and robust generalization. Multiple ap- 

roaches have been suggested for preventing shortcut reliance and 

ncreasing generalization robustness in deep neural networks [9] . 

e succinctly summarize eleven studies which we find most rel- 

vant to our work in Table 1 , using two criteria: whether an ap-

roach (1) assumes that simple solutions are probably shortcuts 

nd (2) requires a priori knowledge of the shortcut. We also spec- 

fy the task domains considered. 

In contrast to Nam et al. [31] , we use an LCN, not a full-capacity

arget model, to identify shortcuts and train the LCN separately 

rom the target HCN. In comparison to Clark et al. [8] , our ap-

roach is less demanding computationally and, again, the LCN and 

CN are trained separately. We demonstrate that, in our partic- 

lar implementation of the too-good-to-be-true prior, the limited 

apacity of a secondary model plays a key role, thus complement- 

ng the results of Sanh et al. [34] . We also extend the findings of

anh et al., who introduced a similar de-biasing approach in the 

anguage domain, to the domain of image recognition. In contrast 

o all of the aforementioned studies, we show that an LCN can be 

mployed to detect the presence of shortcuts in a dataset. Further, 

e empirically examine the relationship between the difficulty of 

 classification problem and the effectiveness of shortcut-avoiding 

raining via our two-stage LCN-HCN procedure. 

Huang et al. [21] suggested a heuristic, Representation Self- 

hallenging (RSC), to improve o.o.d. generalization in image recog- 

ition. This method impedes predicting class from features most 

orrelated with it and thus encourages a DCNN to rely on more 

omplex combinations of features. RSC, however, is not directly de- 

igned to prevent shortcut learning but rather attempts to expand 

he set of features learned. 

Sample weighting. Re-weighting of data samples is a well- 

nown approach to guiding the training of DCNNs and machine 

earning models in general, and corresponding methods differ 

n terms of which examples must be downweighted/emphasized. 

ome authors suggested to mitigate the impact of easy examples 

nd focus on hard ones [28,36] . In contrast, in other research direc- 

ions, such as curriculum learning [3,14,41] and self-paced learning 

25,29] , it is recommended to stress easy examples early in train- 

ng. It was also shown that the self-paced and curriculum learning 

an be combined [22] . 
166 
Although in our two-stage LCN-HCN procedure we assign 

eights to the training items, this method is fundamentally dif- 

erent from typical re-weighting schemes. Stemming from the too- 

ood-to-be-true prior, our approach exploits not the predictions of 

he target network itself but of an independent simpler network 

LCN). In other words, we are not interested in the difficulty of an 

tem per se, but in whether this item can be mastered through 

imple means. 

. Example applications of the too-good-to-be-true prior 

Below, in the context of image recognition tasks, we illustrate 

he too-good-to-be-true prior with two example applications: (1) 

etecting the presence of a shortcut in a dataset and (2) training 

 de-biased model. Both examples rely on an LCN being limited 

o learning a superficial shortcut as opposed to a deeper invariant 

epresentation. 

.1. The performance of a low-capacity network as an early warning 

ignal 

Considering that an LCN is only able to discover simple, proba- 

ly shortcut, solutions, its high performance on a dataset may in- 

icate the presence of a shortcut. When an LCN achieves a perfor- 

ance level comparable to an HCN, this should serve as a warn- 

ng signal that the HCN may have succumbed to a shortcut [20] . 

n such cases, the HCN will likely fail to generalize robustly. Here 

e present two illustrative examples of such an application of the 

oo-good-to-be-true prior. 

.1.1. Color as a shortcut 

We trained an LCN (softmax regression; [4] ) and an HCN 

ResNet-56; [17] ) to classify the colored MNIST dataset. The lat- 

er was implemented exactly as in [26] , with the standard devia- 

ion of color set to 0.1. Both networks were trained with stochastic 

radient descent for 50 epochs (learning rate was set to 0.1 and 

ini-batch size was set to 256). 

Results are provided in Table 2 . The presence of a shortcut in- 

eed impairs o.o.d. generalization: both the LCN and HCN, after be- 

ng trained on the colored data (shortcut is present), reveal poor 
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Table 3 

LCN and HCN mean accuracies (in %; averaged across 10 independent runs) on 

stylized Tiny ImageNet; standard deviations are in parentheses. 

Architecture Regular training Stylized training 

Regular test Stylized test Stylized test Regular test 

LCN 8.54 (0.22) 1.30 (0.11) 70.10 (0.30) 0.70 (0.11) 

HCN 41.43 (1.80) 2.21 (0.31) 88.0 (4.94) 0.50 (0.10) 
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erformance on the regular test data (no shortcut). The poor o.o.d. 

eneralization is particularly pronounced for the HCN - the differ- 

nce between colored (99.90%) and regular (38.41%) test accuracies 

s 61.49%. The difference in performance between the HCN and LCN 

fter training and testing on the colored data is only 2.86%, which 

erves as a warning that there may be a shortcut present. 

.1.2. Texture as a shortcut 

We constructed a stylized version of Tiny ImageNet [40] by fol- 

owing a generalization 

1 of the procedure introduced by Geirhos 

nd colleagues [11] . Each of 200 classes was assigned its unique 

tyle and thus had a prominent texture shortcut. 

The LCN was represented by a single 4-channel convolutional 

ayer (3-by-3 kernels, linear activation function, no downsampling) 

ollowed by a fully-connected softmax classification layer. The HCN 

as represented by a 10-layer ResNet designed for Tiny ImageNet 

40] . Both networks were trained for 40 epochs with a stochas- 

ic gradient descent, a momentum of 0.9, and a weight decay of 

 × 10 -4 . A mini-batch size was set to 256. The initial learning 

ate was set to 0.001 and 0.1 for the LCN and HCN, respectively, 

nd was decreased by a factor of 10 on epochs corresponding to 

0% and 75% of the total duration of the training. 

Again, our results ( Table 3 ) indicate an applicability of the LCN 

o the shortcut detection: the LCN and HCN show relatively close 

igh accuracies on stylized data (70.1% and 88.0%, respectively) 

hile performing dramatically different on regular data (8.54% and 

1.43%, respectively). 

.2. Utilizing predictions of a low-capacity network to navigate the 

raining of a high-capacity network 

Next, we demonstrate that it is possible to make use of an LCN 

o avoid learning the shortcut by an HCN. Reliable features neces- 

ary for a robust generalization are relatively high-level and short- 

uts are usually low-level characteristics of an image. Given this 

ssumption, the LCN will primarily produce accurate and confident 

redictions for images containing shortcuts. 

Given a training dataset D = { x i , y i } , the corresponding IW ( w i )

or a training image x i is its probability of misclassification as given 

y an LCN, 

 i = 1 − p(y i | x i ) . (1) 

IWs are then employed while training an HCN: for every train- 

ng image, the corresponding loss term is multiplied by the IW of 

his image. We normalize IWs with respect to a mini-batch: IWs 

f samples from a mini-batch are divided by the sum of all IWs in

hat mini-batch. The mini-batch training loss L B is thus the follow- 

ng: 

 B = 

∑ 

k ∈B 
˜ w k L k , (2) 

here L k indicates the loss of the k th sample in the mini-batch. 

he mini-match normalized IW is 

˜ 

 j = 

w j ∑ 

k ∈B w k 

. (3) 
1 https://github.com/bethgelab/stylize-datasets 

e
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.2.1. Overview of experiments 

Generally, whether a dataset contains shortcuts is not known 

eforehand. In order to overcome this issue and test the too-good- 

o-be-true prior, we introduced synthetic shortcuts into a well- 

nown dataset [cf. 27] . We then applied our approach and inves- 

igated whether it was able to avoid reliance on these shortcuts 

nd generalize o.o.d. This testing strategy allowed us to run well- 

ontrolled experiments and quantify the effects of our method. 

We ran a set of experiments on all possible pairs of classes from 

he CIFAR-10 dataset [24] . In every binary classification problem, a 

ynthetic shortcut was introduced in each of the two classes. To 

ave a better understanding of our method’s generalizability, we 

nvestigated two opposite types of shortcuts as well as two HCN 

rchitectures, ResNet-56 [17] and VGG-11 [37] . Note that our too- 

ood-to-be-true prior is readily applicable to multi-class problems. 

For both shortcut types and both HCN architectures, we ex- 

ected the two-stage LCN-HCN procedure to downweight the ma- 

ority of shortcut images. Therefore, compared to the ordinary 

raining procedure, better performance should be observed when 

hortcuts in a test set are misleading (i.e., o.o.d. test set). We also 

xpected that the two-stage LCN-HCN procedure may suppress 

ome non-shortcut images. Thus, a slightly worse performance was 

xpected for a test set without shortcuts as well as for a test set 

ith helpful shortcuts (i.e., i.i.d. test set). 

The main objective of these experiments was to compare an or- 

inary and a weighted training procedure in terms of the suscep- 

ibility of resulting models to the shortcuts. However, crucially for 

ur idea of the too-good-to-be-true prior, it was also important to 

alidate our reasoning concerning the key role of the low-capacity 

etwork in the derivation of useful IWs. For this purpose, we intro- 

uced another training condition where IWs were obtained from 

robabilistic predictions of the same HCN architecture as the target 

etwork. We refer to the IWs obtained from an HCN as HCN-IWs 

nd to the IWs obtained from an LCN as LCN-IWs. We expected 

CN-IWs either to fail to suppress shortcut images, resulting in 

oor performance on a test set with misleading shortcuts (o.o.d. 

est set), or to equally suppress both shortcut and non-shortcut im- 

ges, resulting in poor performance on any test data. Using HCN- 

Ws mirrors approaches that place greater emphasis on challenging 

tems. 

.2.2. Shortcuts 

For the sake of generality, we introduced two shortcut types: 

he “local” was salient and localized, and the “global” was subtle 

nd diffuse. The local shortcut was intended to capture real-world 

ases such as a marker in the corner of a radiograph [42] and the

lobal was intended to capture such situations as subtle distortions 

n the lens of a camera. 

The local shortcut was a horizontal line of three pixels, red for 

ne class and blue for the other ( Figure 2 , second column). The 

ocation of the line was the same for all images: upper left corner. 

he shortcut was present in randomly chosen 30% of training as 

ell as validation images in each class. 

The global shortcut was a mask of Gaussian noise, one per class 

 Fig. 2 , right). The mask was sampled from a multivariate normal 

istribution with zero mean and isotropic covariance matrix, with 

ariance set to 25 × 10 −4 , and then added to randomly chosen 30% 

f training and validation images of a corresponding class. 

Based on CIFAR-10 test images of the selected classes, we pre- 

ared three test sets for each shortcut type (examples shown 

n Fig. 3 ). Congruent (i.i.d.): all images contained shortcuts, each 

ssociated with the same class as in the training set. Incongru- 

nt (o.o.d.): all images contained shortcuts but each shortcut was 

laced in the images of the opposite class compared to the training 

et. Neutral : original CIFAR-10 images without shortcuts. 

https://github.com/bethgelab/stylize-datasets
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Fig. 2. Examples of shortcut types used in our experiments: local and global. The global shortcut is subtle to humans, so original images and additive masks are also 

depicted. For the subset of images containing a shortcut, a network could learn to rely on these superficial features at the expense of more invariant properties, which has 

consequences for generalization. 

Fig. 3. Expected effects of the LCN-IWs training on classifying different test cases by the HCN. Correct HCN decisions are in green, incorrect are in red. Training images 

containing local shortcuts are outlined in magenta. Whereas ordinary (w/o LCN-IWs) training should lead to poor o.o.d. performance on Incongruent test items where 

the shortcut is now misleading, LCN-IWs should selectively downweight training items with the shortcut allowing the HCN to generalize well across the spectrum. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.2.3. Model architectures and training details 

The LCN was a single convolutional layer of 4 channels with 3- 

y-3 kernels, a linear activation function, and without downsam- 

ling, followed by a fully-connected classification layer. 

In two separate sets of simulations, we tested two different 

CN architectures: ResNet-56 for CIFAR-10 [17] and VGG-11 [37] . 

he first two fully-connected layers of VGG-11 had 1024 units each 

nd no dropout was used. 

Network weights were initialized according to [12] . We used 

tochastic gradient descent to train both LCN and HCN. The initial 

earning rate was set to 0.01 for the LCN. The HCN’s initial learning 

ate was set to 0.01 for VGG-11 [37] and to 0.1 for ResNet-56 [17] .

he HCNs were trained with a momentum of 0.9 and a weight de- 

ay of 5 × 10 -4 for 150 epochs. To avoid overfitting, the HCN’s per- 

ormance on validation data (see below) was tested at each epoch, 

nd best-performing parameters were chosen as the result of train- 

ng. The LCN was trained for 40 epochs. For both LCN and HCN, 

he learning rate was decreased by a factor of 10 on epochs cor- 

esponding to 50% and 75% of the total duration of the training. 

ini-batch size for both networks was set to 256. 

For each class, the original 50 0 0 images from the CIFAR-10 

raining set were divided into 4500 training images and 500 val- 

dation images. Thus, the training set of every class pair included 

0 0 0 images and the validation set included 10 0 0 images. 

IWs were introduced to the training process as described in the 

eginning of this section, and for every mini-batch a weighted- 
I

168 
verage loss was calculated. During ordinary training without IWs, 

 simple average loss was calculated. 

For every binary classification problem, the results reported be- 

ow are the averages of 10 independent runs. 

.2.4. Results 

The overall pattern of results was in accord with our 

redictions–downweighting training items that could be mastered 

y a low-capacity network reduced shortcut reliance in a high- 

apacity network, which improved o.o.d. generalization at a small 

ost in i.i.d. generalization. As no disagreement in the results of 

he two HCN architectures was observed, hereinafter we focus 

n ResNet-56, whereas results for VGG-11 can be found in Ap- 

endix C. 

To compare the potentials of LCN-IWs and HCN-IWs to separate 

ut shortcut-containing images, we used logistic regression to clas- 

ify IWs as shortcut or regular. With both local and global short- 

uts, classification accuracies for LCN-IWs were greater than for 

CN-IWs ( Table 4 ). Thus, the distribution of LCN-IWs much better 

iscriminates between shortcut and regular images than the dis- 

ribution of HCN-IWs. In fact, we found that for the majority of 

lass-pairs LCN-IWs and HCN-IWs were only moderately correlated 

see Appendix B). An example of HCN-/LCN-IWs distributions for a 

pecific pair of classes can be found in Appendix B as well. 

Effects of the training condition (ordinary, HCN-IWs, and LCN- 

Ws) on the HCN’s performance on every test set (incongruent, 
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Table 4 

Results for classifying IWs as corresponding to shortcut/regular images, with logistic regression 

as a classifier. Accuracies (in %) are the averages across 45 class-pairs; 95% confidence intervals 

are in brackets. 

Local shortcut Global shortcut 

LCN-IWs HCN-IWs LCN-IWs HCN-IWs 

91.53 [82.60, 93.45] 70.02 [70.01, 70.03] 90.4 [86.16, 94.66] 70.1 [70.00, 70.03] 

Fig. 4. Accuracies on incongruent, neutral, and congruent test sets after ordinary and HCN-/LCN-weighted training, with (A) local or (B) global shortcuts in training set. HCN 

is ResNet-56. Across shortcut types, LCN-IWs result in almost equally high accuracy on all sets. HCN-IWs constantly result in accuracies inferior to LCN-IWs; moreover, on 

neutral and congruent test sets, accuracies after HCN-IWs training are lower than after ordinary training. Thus, LCN-IWs are successful in avoiding shortcut reliance and 

preserving useful features, while HCN-IWs are not. 
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eutral, and congruent) are shown in Fig. 4 . HCNs are prone to rely

n our shortcuts, as evidenced by low incongruent accuracies and 

ery high congruent accuracies after the ordinary training. Incon- 

ruent accuracies are improved after the LCN-IWs training, com- 

ared to those after the ordinary training. Importantly, after LCN- 

Ws training, incongruent, neutral, and congruent accuracies are 

ll similarly high. Together, these results suggest that LCN-IWs are 

uccessful in reducing shortcut reliance in the target network. 

Although exceeding performance on the incongruent test set 

fter the ordinary training condition, incongruent accuracies after 

he HCN-IWs training are substantially lower than after the LCN- 

Ws training. The neutral and congruent accuracies are lower than 

n both ordinary and LCN-IWs training conditions. At the same 

ime, incongruent accuracies are still noticeably lower than neu- 

ral and congruent conditions. These results indicate that HCN-IWs 

re not effective as LCN-IWs in suppressing shortcut learning. 

The main results shown in Fig. 4 indicate that LCN-IWs re- 

uce shortcut reliance with little cost to performance on other 

tems, whereas HCN-IWs are less effective because they remove 

on-shortcut items as well. Key to the LCN-IW efficacy is properly 

atching network capacity to the learning problem. Out of the 45 

lassification pairs considered, there should be natural variation in 

roblem difficulty that affects target network performance. In par- 

icular, we predict that overall benefit will be lower when the LCN 

erforms better on a class pair, indicating that its capacity is suffi- 

ient to learn non-shortcut information for this classification task. 

We define Overall Benefit ( OB ) as a combination of Gain ( G ) and

oss ( L ): 

B = G + L, (4) 

ith 

 = logit (p(y corr |D 

incon , T IW )) − logit (p(y corr |D 

incon , T ord )) (5) 

nd 

 = logit (p(y corr |D 

neut , T IW )) − logit (p(y corr |D 

neut , T ord )) (6) 

here y corr is a correct label, D 

incon and D 

neut are incongruent and 

eutral test sets, respectively, and T ord and T IW are ordinary and 

W-based training procedures, respectively. We compute average 

B for each class pair and contrast those against corresponding 

eutral test accuracies after ordinary training. The latter are in- 

roduced to reflect the default classification difficulty of each class 
169
air. These comparisons are shown in Fig. 5 . Two evident trends 

re important. First, recapitulating the previous results, LCN-IWs 

esult in greater OB than HCN-IWs. OB corresponding to LCN-IWs 

s almost always positive, while OB corresponding to HCN-IWs is 

ften negative. Second, OB is negatively correlated with the neutral 

est accuracy after ordinary training; that is, as the difficulty of a 

lassification problem increases, benefits of using IWs generally in- 

rease as well. One possibility is that for easy to discriminate pairs, 

uch as frog and ship, the LCN was able to learn non-shortcut in- 

ormation which reduced the overall benefit of the LCN-IWs. 

. Discussion 

In general, using Occam’s razor to favor simple solutions is a 

ensible policy. We certainly do not advocate for adding unneces- 

ary complexity. However, for difficult problems that have evaded 

 solution, it is unlikely that a trivial solution exists. The problems 

f interest in machine learning have taken millions of years for na- 

ure to solve and have puzzled engineers for decades. It seems im- 

lausible that trivial solutions to such problems would exist and 

e should be skeptical when they appear. 

For such difficult problems, we suggest adopting a too-good-to- 

e-true prior that shies away from simple solutions. Simple solu- 

ions to complex problems are likely to rely on superficial features 

hat are reliable within the particular training context, but are un- 

ikely to capture the more subtle invariants central to a concept. To 

se a historic example, people had great hopes that the Perceptron 

33] , a one-layer neural network, would master computer vision 

o only have their hopes dashed [30] . When such simple systems 

ppear successful, including on held-out test data, they are most 

ikely relying on shortcuts that will not generalize out of sample 

n somewhat different test distributions, such as when a system is 

eployed. 

We proposed and evaluated two simple applications of the 

oo-good-to-be-true inductive bias. First, we made use of a low- 

apacity network (LCN) to detect the presence of a shortcut in a 

ataset. Second, we used an LCN to establish importance weights 

IWs) to help train a high-capacity network (HCN). The idea was 

hat the LCN would not have the capacity to learn subtle invariants 

ut instead be reduced to relying on superficial shortcuts. For the 

econd application, by downweighting the items that LCN could 

aster, we found that the HCN was less susceptible to shortcuts 
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Fig. 5. Effects of the LCN-/HCN-IWs training procedure for each of the 45 class pairs depending on a difficulty of the respective binary classification problem. HCN is 

ResNet-56; (A) local and (B) global shortcut types are considered separately. The effects of training are represented by the Overall Benefit measure ( OB ; gain + loss; see 

Section 3.2.4 ); the difficulty of a pair is represented by the neutral test accuracy after ordinary training. Recapitulating previous results, LCN-IWs are more effective than 

HCN-IWs. Furthermore, the easier learning problem, the less OB from IWs: the relatively higher capacity of a network supplying IWs leads to downweighting non-shortcut 

items. 
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nd showed better o.o.d. generalization at little cost when mislead- 

ng shortcuts were not present. 

Although we evaluated the de-biasing application of the too- 

ood-to-be-true prior on the CIFAR-10 dataset, the basic method 

f using an LCN to establish IWs for an HCN is broadly applicable. 

e considered two network architectures for the HCN, ResNet-56 

nd VGG-11, which both showed the same overall pattern of per- 

ormance. Interestingly, ResNet-56 appeared more susceptible to 

hortcuts, perhaps because its architecture contains skip connec- 

ions that are themselves a type of shortcut allowing lower-level 

nformation in the network to propagate forward absent interme- 

iate processing stages. 

One key challenge in our approach is matching the complexity 

f the LCN to the learning problem. When the LCN has too much 

apacity, it may learn more than shortcuts and downweight in- 

ormation useful to o.o.d. generalization (see Fig. 5 ). It is for this 

eason that LCN-IWs are much more effective than HCN-IWs (see 

ig. 4 ). Unfortunately, there is no simple procedure that guaran- 

ees selecting an appropriate LCN. The choice depends on one’s be- 

iefs about the structure of the world, the susceptibility of models 

o misleading shortcuts, and the nature of the learning problem. 

evertheless, reasonable decisions can be made. For example, we 

ould be skeptical of a Perceptron that successfully classifies med- 

cal imagery, so it could serve as an LCN. 

Since the too-good-to-be-true prior is a general inductive bias, 

ur two-stage LCN-HCN approach is just one specific implementa- 

ion of it and other techniques may be developed. The effectiveness 

f our two-stage approach should be evaluated in other tasks and 

omains outside computer vision. Further research should consider 

ow to choose the architecture of an LCN and how the effective- 

ess of this architecture depends on different types of shortcuts. 

inally, a promising direction is to use IWs to selectively suppress 

spects of training items rather than downweighting entire exam- 

les. 

. Conclusions 

We suggest a fundamental viewpoint on the solutions dis- 

overed by deep neural networks: too simple solutions, well- 

erforming on the available data, including testing sets, probably 

ontain shortcuts. Since an exhaustive prior knowledge of shortcut 

eatures is unrealistic, the inductive bias we propose is to avoid so- 

utions too simple for a given task in order to secure o.o.d. gener- 

lization. We illustrate this fundamental idea with rigorously con- 

rolled experiments our inductive bias, even in its simplest realiza- 
170 
ions, enabled us to detect and avoid shortcuts, resulting in a more 

obust generalization. 
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