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Abstract

Gastric cancer is one of the most frequent causes of cancer-related deaths worldwide. Gas-

tric atrophy (GA) and gastric intestinal metaplasia (IM) of the mucosa of the stomach have

been found to increase the risk of gastric cancer and are considered precancerous lesions.

Therefore, the early detection of GA and IM may have a valuable role in histopathological

risk assessment. However, GA and IM are difficult to confirm endoscopically and, following

the Sydney protocol, their diagnosis depends on the analysis of glandular morphology and

on the identification of at least one well-defined goblet cell in a set of hematoxylin and eosin

(H&E) -stained biopsy samples. To this end, the precise segmentation and classification of

glands from the histological images plays an important role in the diagnostic confirmation of

GA and IM. In this paper, we propose a digital pathology end-to-end workflow for gastric

gland segmentation and classification for the analysis of gastric tissues. The proposed

GAGL-VTNet, initially, extracts both global and local features combining multi-scale feature

maps for the segmentation of glands and, subsequently, it adopts a vision transformer that

exploits the visual dependences of the segmented glands towards their classification. For

the analysis of gastric tissues, segmentation of mucosa is performed through an unsuper-

vised model combining energy minimization and a U-Net model. Then, features of the seg-

mented glands and mucosa are extracted and analyzed. To evaluate the efficiency of the

proposed methodology we created the GAGL dataset consisting of 85 WSI, collected from

20 patients. The results demonstrate the existence of significant differences of the extracted

features between normal, GA and IM cases. The proposed approach for gland and mucosa

segmentation achieves an object dice score equal to 0.908 and 0.967 respectively, while for

the classification of glands it achieves an F1 score equal to 0.94 showing great potential for

the automated quantification and analysis of gastric biopsies.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0275232 December 30, 2022 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Barmpoutis P, Waddingham W, Yuan J,

Ross C, Kayhanian H, Stathaki T, et al. (2022) A

digital pathology workflow for the segmentation

and classification of gastric glands: Study of gastric

atrophy and intestinal metaplasia cases. PLoS ONE

17(12): e0275232. https://doi.org/10.1371/journal.

pone.0275232

Editor: Ashwani Kumar, Sant Longowal Institute of

Engineering and Technology, INDIA

Received: April 11, 2022

Accepted: September 12, 2022

Published: December 30, 2022

Copyright: © 2022 Barmpoutis et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: GAGL ’minimal

dataset’ (a part of GAGL dataset) that could be

used for the replication and validation of the study

findings can be found at the following link: 10.

5281/zenodo.7032067.

Funding: The EPSRC and CRUK support this work

through joint funding in grant number NS/

A000069/1. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

https://orcid.org/0000-0003-0264-7943
https://www.sciencedirect.com/topics/medicine-and-dentistry/haematoxylin
https://doi.org/10.1371/journal.pone.0275232
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275232&domain=pdf&date_stamp=2022-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275232&domain=pdf&date_stamp=2022-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275232&domain=pdf&date_stamp=2022-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275232&domain=pdf&date_stamp=2022-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275232&domain=pdf&date_stamp=2022-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275232&domain=pdf&date_stamp=2022-12-30
https://doi.org/10.1371/journal.pone.0275232
https://doi.org/10.1371/journal.pone.0275232
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.7032067
https://doi.org/10.5281/zenodo.7032067


Introduction

Gastric cancer is a major public health issue. According to the latest global cancer statistics, it

remains one of the most common cancers and it is one of the leading causes of cancer-related

deaths mainly due to its often-late stage of diagnosis [1]. The risk factors of gastric cancer

include Helicobacter pylori infection, salt intake, smoking, alcohol consumption, family his-

tory of gastric cancer, gastric atrophy (GA) and intestinal metaplasia (IM) [1–3]. In particular,

several studies suggest that GA and IM of the mucosa of the stomach are major precursor

lesions of gastric cancer [4, 5]. For this reason, early and effective diagnosis of GA and IM is a

crucial step to prevent gastric cancer. The presence of GA is defined as the loss of glands in the

gastric mucosa and IM is considered to be an advanced stage of atrophy [6]. In the latter, the

metaplastic glands replace the native gastric glands and Paneth cells, goblet cells and absorptive

cells appear. Widely used diagnostic methods for GA and IM include endoscopic and histolog-

ical diagnosis. Endoscopic diagnosis of extensive GA and IM is effortless, but there are difficul-

ties in making the diagnosis of mild GA and IM cases. Therefore, a biopsy confirmation for

staging suspected cases of GA and IM remains the gold standard approach. To this end, the

classification Sydney System was introduced in 1990. This was updated in 1996 introducing a

visual analogue scale for evaluating the severity of histological staging [6]. Based on this proto-

col, the morphological features of GA and IM are identified and are visually inspected by histo-

pathologists. Furthermore, for the prognosis of gastric cancer risk in cases with GA and IM the

histological Operative Link for Gastritis Assessment (OLGA) and Operative Link on Gastric

Intestinal Metaplasia (OLGIM) systems have been adopted [7]. These systems use biopsies

from at least two sites (antrum and corpus) and the visual analogue scales recommended by

the updated Sydney system, and correlate histopathological staging with cancer risk.

However, the visual qualitative assessment of glands by histopathologists is a labour-inten-

sive and time-consuming task. Thus, the automated precise segmentation of glands from the

histological images plays an important role in glandular morphology analysis, which is a cru-

cial criterion for the effective detection and management of GA and IM. To date, no generally

applicable end-to-end digital pathology approach has been proposed and applied for gastric

gland segmentation, classification and study of gastric atrophy and intestinal metaplasia.

Towards this end, in this paper, we propose a digital pathology framework which aims to

extend our previous work for gastric gland segmentation and classification and analysis of gas-

tric tissues based on Hematoxylin and Eosin (H&E) -stained Whole Slide Images (WSI). More

specifically, this paper makes the following contributions:

• We propose the end-to-end GAGL-VTNet model consisting of two parts: The segmentation

part, named GAGL-Net (GAstric GLands-Net) extracts both global and local features for

gastric gland segmentation. The classification part, named IMGL-VTNet (Intestinal Meta-

plasia gastric GLands-Vision Transformer Net) adopts a multi-scale deformable transformer

for the classification of glands into normal and IM glands.

• We introduce a weakly-supervised approach combining an energy minimization technique

and a U-Net model for mucosa segmentation.

• We analyze the segmented glands and mucosa which demonstrate significant differences between

the extracted features of normal, gastric atrophy and intestinal metaplastic cases. Through this

analysis we translate the analogue visual scales described in the Sydney system into a reproducible

set of mathematical values regarding the number and area that the detected glands cover.

• We have created the GAGL dataset consisting of 85 WSI of normal, gastric atrophy and

intestinal metaplastic cases, collected from 20 patients.
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Related work

Recent years have witnessed a tremendous progress in medical image analysis. The most com-

mon application areas of digital pathology image analysis, include image synthesis and recon-

struction, registration, segmentation, abnormality detection, disease grading and

classification, as well as computer-aided diagnosis. Given the various challenges, several tech-

niques and methods have been developed, based on either hand-crafted or deep learning fea-

tures. Hand-crafted developed approaches are based on grayscale density, color, texture and

shape information extracting low-level or mid-level set of features [8–10]. On the other hand,

more sophisticated methods [11, 12] and deep-learning techniques including convolutional

neural networks (CNNs) [13] and visual transformers (VTs) [14, 15] have been developed aim-

ing to address medical image challenges by extracting high-level features directly from the

data.

Medical image segmentation plays a vital role in image analysis and is important for com-

puter-aided diagnosis and treatment planning. To this end, numerous methods have been pro-

posed in literature for gland segmentation. Traditional methods include approaches that rely

on decomposing the images into a set of primitive objects [16] for the identification and asso-

ciation of epithelial nuclei [17] and gland lumen [18]. A previous study [19] used prior knowl-

edge of spatial connectivity and arrangement of neighboring epithelial nuclei. Each glandular

structure was considered as a polygon of a random number of vertices which represents

approximate locations of the epithelial nuclei. Similarly, for gland detection, Biomedical Imag-

ing Laboratory [20, 21] developed a multi-step methodology based on the identification of epi-

thelial cells and morphological operations.

The need for capturing representative features directly from data has led to the develop-

ment of deep learning methods aiming to address the medical segmentation problems by

extracting knowledge directly from data. Thus, various approaches have been developed for

gland segmentation adopting various strategies and techniques. Among these methods, Chen

et al. [22] proposed a deep contour-aware network aiming to focus on the boundaries’ segmen-

tation among glands. This was achieved by a fully convolutional network with two different

branches and three weighted auxiliary classifiers to enhance the discrimination capability and

strengthen the training optimization process. Furthermore, Xu, et al. [23] combined fore-

ground segmentation with edge detection and object detection using a deep multichannel side

supervision model for instance segmentation in gland histology images. Other methods focus

on the design of loss functions. Graham et al. [24] aimed at retaining maximal information,

that is essential for segmentation by minimal information loss units, incorporating the original

downsampled image into the residual unit. On the other hand, Yan, et al. [25] trained a unified

model through a shape-preserving loss function for both pixel-wise gland segmentation and

boundary detection. Similarly, Ding et al., [26] proposed a three-class classification model aim-

ing to achieve boundary segmentation while retaining the global information. The majority of

the prior gland segmentation research has applied to the dataset provided by the MICCAI

2015 Gland Segmentation Challenge Contest [21], focusing on colon histological images.

Thus, only a limited number of studies have carried out experiments using prostate and breast

histological images.

On the other hand, medical image classification aims to distinguish and assign labels to

medical images according to diseases’ severity and to clinical pathologies. The development of

hand-crafted machine learning methods requires the manual selection and extraction of fea-

tures, a procedure that is time-consuming and varies depending on different objects. In con-

trast, deep neural network methods, which are inspired by actual neural networks in the brain

and how they process patterns, aim to replace the manual feature acquisition and are used to
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design complex generalized systems. These models comprise various layers translating input

images to give the desired outputs. However, although plenty of advanced approaches have

been developed for histopathological image classification tasks [27], there is a limited research

on the classification of gastric glands.

The remainder of this paper is organized as follows: In Section 2, we describe the workflow

used in the experimental analysis, as well as the proposed methodology for gland and mucosa

segmentation. The experimental results of our study are given in Section 3, while conclusions

are drawn in Section 4.

Materials and methods

The framework of the proposed methodology for the gastric gland and mucosa segmentation

is shown in Fig 1. Initially, a WSI is fed into both the U-Net model for tissue segmentation and

artifacts’ rejection and the GAGL-VTNet model for gland segmentation and gland classifica-

tion. Then, based on the combination of tissue and gland segmented masks, identification of

mucosa is performed. Finally, gastric gland features are extracted and gastric tissues are ana-

lyzed towards the identification of significant differences between normal, gastric atrophy and

intestinal metaplasia cases.

Gland segmentation

The accurate individual identification of glands that allows the extraction of meaningful global

and local features associated with gland morphology and structure remains a big challenge

Fig 1. The proposed framework for gastric gland segmentation, classification and gastric WSI analysis.

https://doi.org/10.1371/journal.pone.0275232.g001
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mainly due to the inter-observer variability. Thus, in the proposed workflow, which aims to

address the aforementioned challenge, we extract different receptive field features and multi-

level contextual features through a two-branch model. More specifically the segmentation part

(Fig 2: GAGL-Net) of the proposed GAGL-VTNet model comprises a local module inspired

by the DCAN [22] and a global module inspired by the ResNet-50 [23]. The parallel use of two

modules enables the exploitation of both multi-scale local and abundant global information.

In the global module the input image patches with size of 480×480×3 pass through a 7×7 con-

ventional convolution layer while in the local module they pass through a 3×3 convolution

layer. Each module includes a downsampling path and an upsampling path extracting different

receptive field features. Thus, further exploitation of contextual information and finer details

is incorporated. More precisely, a set of low-level features from the bottom layers is extracted

that contributes to the multi-size gland segmentation. In addition, the utilized higher level fea-

tures increase the overall detection accuracy of degenerated and elongated glands. In order to

extract higher-level semantic information preserving the resolution, the stride and dilation of

the last stage of the global module are set equal to 1 and 2 respectively. Then, the correspond-

ing feature maps are upsampled combining convolutional and deconvolutional layers and they

are concatenated to achieve pixel-level semantic segmentation. In the proposed model, the

convolutional layers are followed by the batch normalization and ReLU activated function.

Fig 2. The proposed GAGL-VTNet model for gastric gland segmentation and classification.

https://doi.org/10.1371/journal.pone.0275232.g002
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Furthermore, a transfer learning technique is utilized initializing the layers in the downsam-

pling path of the local and global modules with the pre-trained model parameters of VGG-19

and ResNet-50 respectively. Then, the GAGL-VTNet model is fine-tuned with training data

prepared for this work.

For the training of the model, three-class labeled images are used. These represent the fol-

lowing categories: background, gland lumen, and gland edge. Additionally, a modified loss

function is defined using a weighting factor to balance the classes.

Loss ¼ L2 �
XN

p¼1
wprplogðtpÞ ð1Þ

where wp, rp and tp denote the weighting factors, the reference values and the predicted values

at pixel p respectively, and N is the total number of pixels. L2 denotes the regularization term.

Stochastic Gradient Descent (SGD) is used to optimize the loss function. The initial learn rate

is defined as 0.005, the weight decay as 0.01 and the momentum as 0.9. For the testing an over-

lap-tile strategy for gland segmentation of WSI is used. Finally, post-processing steps, includ-

ing filling holes and removing small areas, are applied aiming to improve the final

segmentation output.

Gland classification

Following the application of the GAGL-VTNet, the masks that include the segmented glands

are fed to the classification part (Fig 2: IMGL-VTNet) of the model for the discrimination of

the glands into normal and IM glands. The classification model consists of the aforementioned

ResNet-50 as the backbone and an adaptive feature extractor based on the deformable vision

transformer. Feature maps F1 and F2 provided by the backbone are upsampled by the deconvo-

lution layer respectively, while F3 is further embedded with a convolutional layer. Obtained

multi-scale feature maps are followed by concatenation and group normalization. Then, they

are sent to the multi-scale deformable vision transformer encoder (Fig 3) to adaptively capture

the representative features across multi-scales and the whole feature map.

The encoder mainly consists of the Multi-Scale Deformable Attention Module (MSDAM)

and a Feed-Forward Network (FFN). It takes the multi-scale feature maps and reference points

as inputs. First, they are fed into the MSDAM, together with the query features which are the

sum of position and scale information and the input feature maps. Then, the output of the

MSDAM is added back to the input feature maps, followed by the FFN. Finally, the multi-scale

enhanced features are sent to an average pooling layer followed by a fully connected layer for

the classification of gastric glands into normal and IM.

Fig 3. Deformable transformer encoder consisting of a Multi-scale Deformable Attention Module (MSDAM) and

a Feed-Forward Network (FFN).

https://doi.org/10.1371/journal.pone.0275232.g003
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To further enhance the performance of the gland classification, the following loss function

FLi for the ith image is applied:

FLi ¼ wfocal � Loss ð2Þ

wfocal ¼
ð1 � sÞg p ¼ 1

sg p ¼ 0
ð3Þ

(

Loss ¼ plogðsÞ þ ð1 � pÞlogð1 � sÞ ð4Þ

where binary cross-entropy and focal loss are used, p is the binary ground truth representing

the normal or IM glands, s is the predicted score and γ = 2 is the predesigned hyperparameter

in focal loss. The resulted focal loss focuses on a set of hard examples improving the precision

for these cases [28]. Both in training and inference stages, the input images of the GAGL-VT-

Net classification part are resized and padded to (224, 224). The Adam optimizer and mean

teacher method [29] are applied in training.

Mucosa segmentation

For the analysis of the atrophy of the glands in the gastric mucosa an approach for mucosa seg-

mentation is proposed. For the identification of the gastric mucosa which contains the glands

and the gastric pits, tissue segmentation is performed. More precisely, an unsupervised energy

minimization technique that is based on graph cuts is used for the training of a U-Net model.

Initial labels are namely assigned to a number of pixels that are used for the annotation of the

training dataset, based on a k-means clustering approach. In this labelling problem, each WSI

image is represented as graph G = hV, Ei, where V is the set of all nodes that correspond to pix-

els and E is the set of all edges connecting adjacent nodes [30]. The labelling problem is to

assign a unique label xp for each node V, so as to minimize the following energy:

E ¼
X

p2V
CpðxpÞ þ

X

ðp;qÞ2E
Sp;qðxp; xqÞ ð5Þ

where Cp is the color consistency cost which depends on the label xp. Sp,q is the smoothing cost

between two neighboring pixels (p, q) and it depends on the labels (xp, xq). The cost of the cut

which partitions the graph into two disjoined subsets, is defined to be the sum of weights of the

edges crossing the cut, whereas the minimum cut problem is to find the cut with the minimum

cost, that minimizes the energy either globally or locally. The algorithm results to the labelling

that minimizes the energy of Eq (5) leading to the segmentation of tissue regions and back-

ground including the artefacts. Then, based on the labelling outputs, patches are created and

used for the training of U-net architecture with a depth of 3. The number of feature channels is

set equal to 64–128–256–512. Furthermore, patches with a size of 296×296×3 and batch size

equal to 40 are used for the training. For the segmentation, overlapping patches are extracted

from a WSI and fed forward into the U-net model. Finally, morphological operations for the

removal of small artefacts are applied to produce the final output tissue segmentation masks.

For the mucosa segmentation morphological dilation is applied to the detected glands fol-

lowed by erosion in order to both merge the glands and to keep the external boundaries of

these consistent. Then, for the estimation of mucosa the output of the above transformation is

combined with the tissue mask as follows:

M ¼ Gt \ T ð6Þ

where Gt is the transformed glands’ mask and the T is the tissue mask.

PLOS ONE A digital pathology workflow for the segmentation and classification of gastric glands

PLOS ONE | https://doi.org/10.1371/journal.pone.0275232 December 30, 2022 7 / 19

https://doi.org/10.1371/journal.pone.0275232


Biopsies’ analysis

Following the gastric gland and mucosa segmentation, three features are extracted towards the

aim of discriminating between the normal, GA and IM cases. More specifically, aiming to

model the Sydney protocol and knowledge of histopathologists, the following features are

extracted: i) average area that glands cover, ii) the ratio of number of glands to gastric mucosa

per WSI iii) the ratio of area of glands to gastric mucosa per WSI. Subsequently, statistical

analysis is performed for the identification of significant differences between normal, GA and

IM cases.

Dataset’s description

To evaluate the efficiency of the proposed methodology, a well-known dataset containing

H&E-stained colorectal cancer tissue images was used. More specifically, we used the Gland

Segmentation (GlaS) challenge dataset used as part of MICCAI 2015 [21]. This dataset was

acquired by a team of pathologists at the University Hospitals Coventry and Warwickshire in

United Kingdom. It contains 165 histological images that were extracted from 16 H&E-stained

WSI. The dataset is split into the training set including 85 images (37 benign and 48 malig-

nant), and the testing sets consisting of part A and part B which include 60 (33 benign and 27

malignant) and 20 images (4 benign and 16 malignant) respectively.

Furthermore, for the validation of the proposed workflow to gastric glands we created a

dataset consisting of 85 WSI, collected from 20 patients. Gastric tissues were collected at Uni-

versity College London Hospital NHS trust, with ethical approval (research ethics committee

(REC) reference: 15/YH/0311, & 19/LO/0089), with informed consent taken for prospective

tissue collection. Samples were collected prospectively from patients undergoing gastrectomy

for cancer, or sleeve gastrectomy for weight loss, with archival tissue used from endoscopic

surveillance biopsies. Tissue underwent routine Hematoxylin & Eosin (H&E) staining. More

specifically, the dataset includes 14 normal, 26 GA and 45 IM images. For the training of the

GAGL-VTNet model we used 10 annotated WSI while for the testing we used 12 annotated

WSI. Furthermore, the latter were also used for the validation of the proposed mucosa segmen-

tation approach. For the validation of the gland classification model we used a part of the

above dataset named IMGL (Intestinal Metaplasia Gastric gLands) consisting of 500 normal

and 500 IM gastric glands. More specifically, we used five-fold cross validation selecting 800

gland images for the training and 200 images for the testing. For the enrichment of the training

data for the tasks of gastric gland segmentation and classification an augmentation method

was utilized to further increase the variability of the training dataset and to avoid overfitting of

the network. In particular, we included translation, rotation and flipping transformations.

Results and discussion

In this section, we present a detailed evaluation analysis of the proposed gastric gland and

mucosa segmentation as well as gland classification. The goal of this experimental evaluation is

five-fold. Initially, we compare the efficiency of GAGL-VTNet for segmentation of glands,

using the publicly available colon dataset. Secondly, we use the gastric dataset developed in this

study in order to validate the proposed model for the identification and classification of gastric

glands on normal, GA and IM cases. In addition, the efficiency of gastric mucosa segmentation

is validated. Furthermore, the proposed gland classification approach for the identification of

the intestinal metaplastic is verified. Finally, the proposed workflow to the WSI gastric dataset

is applied in order to analyze and determine whether significant associations could be found

between the glandular morphological features of normal, GA and IM cases and whether intes-

tinal metaplastic cases can be identified.
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For the evaluation of the proposed workflow, three metrics were employed, namely F1

score, object dice and object Hausdorff [21]. The F1 score is defined as:

F1 ¼ 2 � Precision � Recall=ðPrecisionþ RecallÞ ð7Þ

Precision ¼ NTP=ðNTP þ NFPÞ ð8Þ

Recall ¼ NTP=ðNTP þ NFNÞ ð9Þ

where NTP is the number of true positive, NFP is the number of false positives and NFN is the

number of false negatives. The F1 score corresponds to detection accuracy. The object Dice is

defined as follows:

DObjectðG; SÞ ¼
1

2
½
Xns

i¼1
ðjSij=

Xns

p¼1
jSpjÞDðGiMax; SiÞ þ

XnG

j¼1
ðjGjj=

XnG

q¼1
jGqjÞDðGj; SjMaxÞ� ð10Þ

where D is the Dice index of G and S and it is equal to DðG; SÞ ¼ 2ðjG \ SÞjÞ=ðjGj [ jSjÞ. G is

the ground truth image and S is the segmented image. The object Dice corresponds to segmen-

tation performance. The object Hausdorff is defined as:

HObjectðG; SÞ ¼
1

2
½
Xns

i¼1
ðjSij=

Xns

p¼1
jSpjÞðGiMax; SiÞ þ

XnG

j¼1
ðjGjj=

XnG

q¼1
jGqjÞðGj; SjMaxÞ� ð11Þ

where H is the Hausdorff distance of G and S and it is equal to

HðG; SÞ ¼ Maxðsupx2Ginfy2Skx � yk; supy2Sinfx2Gkx � ykÞ. Sup represents the supremum and

inf the infimum. The object Hausdorff corresponds to shape similarity. Higher score values of

F1 and object Dice as well as lower scores of object Hausdorff indicate better performance.

Comparison of gland segmentation state-of-the-art methods in colorectal

tissue images

In this section, we aim to present a gland segmentation comparison of the proposed methodol-

ogy using a publicly available dataset of colorectal cancer tissue images. More specifically, we

use the Gland Segmentation (GlaS) challenge dataset used as part of MICCAI 2015 [21] and

we compare the proposed methodology against a number of different gland segmentation

approaches.

More specifically, in Table 1, we present the evaluation results of the GAGL-VTNet model

in comparison to thirteen state-of-the-art methods. This analysis reveals that GAGL-VTNet is

amongst the top performing methods. More precisely, the proposed model towards gland seg-

mentation achieves F1 score rates of 0.918 and 0.855 for the part A and part B test sets respec-

tively. The achieved F1 score for part A is the second-best rate while for part B the proposed

model achieves the top performance. Similarly, the achieved object Dice rates are 0.915 and

0.854 for part A and part B respectively. These rates correspond to the top performance and to

the second-best score against the compared methods respectively. Moreover, the proposed

model achieves object Hausdorff scores of 41.48 and 98.96 corresponding to the second and

third-best performances for part A and part B test sets respectively.

It is worth mentioning that the top performing models combine similar techniques and

properties in order to achieve accurate gland segmentation. These include the extraction of dif-

ferent receptive field features, the use of weighted loss functions and the simultaneous gland

segmentation and boundary detection. From Table 1, we can infer that the proposed model,

combining a global and a local branch and simultaneously extracting different receptive field

features, offers an improved F1 score for malignant cases as well as a higher score in
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segmentation performance of benign cases. In contrast, although some models [26, 34] achieve

better shape similarity (object Hausdorff score), they achieve lower detection (F1 score) and

segmentation (object Dice score) rates that would lead to inaccurate results regarding the esti-

mation of the number and area of glands that are used in this workflow for the analysis of GA

and IM cases. Fig 4 illustrates qualitative results of the proposed model on the GlaS challenge

dataset. It shows that in the most cases the GAGL-VTNet model accurately identifies both

benign and malignant glands. However, there is a limited number of cases where the lack of

lumen (Fig 4D) or the existence of glands in the border of the images (Fig 4E) cause false nega-

tive results.

Gland and mucosa segmentation in gastric tissue images

Subsequently, in order to confirm that the performance of the proposed methodology remains

robust in gastric tissues, we carried out a validation analysis using the GAGL dataset. More

specifically, we used 12 annotated WSI and the GAGL-VTNet model in order to perform seg-

mentation of the gastric glands and the gastric pits. The results shows that the proposed gland

segmentation approach achieves F1 score equal to 0.914 and object Dice score equal to 0.908.

Moreover, the proposed model achieves object Hausdorff score equal to 44.12. Similarly to the

GlaS dataset, results in the GAGL dataset (Fig 5) show the great potential of the proposed

model that is capable of identifying glands with high shape and size diversity. However, there

is a limited number of small glands and gastric pits that are not accurately detected due to

either the small size of glands or image artefacts.

The mucosa segmentation approach achieves F1 score and dice score equal to 1 and 0.967

respectively. Fig 6 demonstrates that the proposed methodology accurately identifies the gas-

tric mucosa in all the studied cases. More specifically, Fig 6A shows the input H&E images

that are used for the analysis. The output of the U-Net model for tissue segmentation is

shown in Fig 6B while the identification of the gastric mucosa is shown in Fig 6C. The

detected gastric glands are shown in Fig 6D. Furthermore, results in Fig 6 show that the pro-

posed methodology provides accurate segmentation even in the presence of scanning and

image artefacts.

Table 1. Performance comparison to other methods.

Method F1 Score Object Dice Object Hausdorff
Part A Part B Part A Part B Part A Part B

CVML [21] 0.652 0.541 0.644 0.654 155.43 176.24

LIB [21] 0.777 0.306 0.781 0.617 112.71 190.45

FCN-8 [31] 0.783 0.692 0.795 0.767 105.04 147.28

SegNet [32] 0.858 0.753 0.864 0.807 62.62 118.51

DeepLab v3 [33] 0.862 0.764 0.859 0.804 65.72 124.97

Freidburg2 [21] 0.87 0.695 0.876 0.786 57.09 148.47

Manivannan et al. [34] 0.892 0.801 0.887 0.853 51.175 86.987

Xu et al. [23] 0.893 0.843 0.908 0.833 44.13 116.82

ExB3 [21] 0.896 0.719 0.886 0.765 57.36 159.87

CUMedVision2 [22] 0.912 0.716 0.897 0.781 45.42 160.35

MILD-Net [24] 0.914 0.844 0.913 0.836 41.54 105.89

TCC-MSFCN [26] 0.914 0.850 0.913 0.858 39.84 93.24

Yan et al. [25] 0.924 0.844 0.902 0.840 49.881 106.075

GAGL-VTNet 0.918 0.855 0.915 0.854 41.48 98.96

https://doi.org/10.1371/journal.pone.0275232.t001
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Gland classification in gastric tissue images

In this section, we present a comparison of the proposed gland classification model against a

number of classification approaches. More precisely, in Table 2, we present the evaluation

results of the GAGL-VTNet classification model in comparison to seven classification models.

For the comparison, we used the IMGL dataset and we considered the most widely used mod-

els that have been applied to various tasks.

The results (Fig 7) show that the proposed gland classification approach achieves precision

equal to 0.95 and recall equal to 0.94. Moreover, the proposed model achieves F1 score equal

to 0.94. The proposed model achieves an F1 score improvement of 0.06 to the widely used

VGG-19 and 0.05 compared to the ResNet-50. Furthermore, the application of the BotNet-50

that combines ResNet-50 with a Multi Head Self-Attention (MHSA) layer, improves the F1

score by 0.02, compared to ResNet-50. Thus, the proposed model improves the F1 score by

0.03 compared to the BotNet-50.

Gastric biopsies analysis

In this work, features of the segmented and classified glands as well as segmented mucosa are

used for the analysis of gastric biopsies. Initially, we estimate the average area that glands cover

Fig 4. Gland segmentation results of GAGL-VTNet model on the GlaS challenge dataset in comparison with

ground truth: Yellow color (true positive), red color (false positive), green color (false negative).

https://doi.org/10.1371/journal.pone.0275232.g004
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per WSI and using as reference the average area of normal glands we compare the normal, GA

and IM cases (Fig 8). It is worth mentioning that for IM cases, a twofold analysis is performed.

Firstly, we estimate the average area of glands per IM case and then we calculate the average

area of glands classified as IM for these cases. More specifically, the average area of total num-

ber of glands in GA cases is equal to 0.92 times of the reference average. The average area of

glands in IM cases is 1.92 times of the reference area while the average area of IM glands in IM

cases is 2.28 times of the average area of normal glands. Moreover, we have carried out tests

and significant differences between normal and IM cases as well as between GA and IM have

been identified. Furthermore, in accordance with the Sydney system, statistically non-signifi-

cant differences have been identified between normal and GA cases. These results validate the

remarks of the visual analogue scale introduced in that system and quantify the differences

between glands’ areas of GA, IM and normal cases.

In additional analyses, we estimate the ratio of the number of glands to gastric mucosa (Fig

9). Thus, taking into account the number of identified glands and the area of segmented

mucosa we estimate the aforementioned ratio for normal cases to be equal to 1.86×10−4. For

GA cases the ratio is estimated to be equal to 1.48×10−4 and for the IM cases equal to

9.29×10−5. It is worth mentioning that the statistical analysis of biopsy specimens reflects the

expected loss of glands in the gastric mucosa. Furthermore, the results validate the fact that IM

cases are usually associated with extensive atrophy carrying an increased risk of malignancy

[6].

Fig 5. Gland segmentation results of GAGL-VTNet model on GAGL dataset in comparison with ground truth:

Yellow color (true positive), red color (false positive), green color (false negative).

https://doi.org/10.1371/journal.pone.0275232.g005
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Finally, we estimate the ratio of the area of glands to gastric mucosa per WSI (Fig 10). More

specifically, we calculate the summary of the area of glands for each WSI and we divide it by

the gastric mucosa area. The average ratio for the normal cases is found to be equal to 0.322,

Fig 6. Qualitative results of the segmentation of the gastric tissue, gastric mucosa and gastric glands: a) input 10x

H&E-stained image, b) gastric tissue segmentation, c) gastric mucosa identification, d) gastric glands detection.

https://doi.org/10.1371/journal.pone.0275232.g006

Table 2. Comparison of gland classification using different models.

Method Precision Recall F1 score
ResNet-18 0.92±0.04 0.84±0.03 0.88±0.03

ResNet-50 0.91±0.03 0.86±0.03 0.89±0.03

ResNet-101 0.91±0.03 0.82±0.03 0.86±0.03

VGG-19 0.89±0.03 0.89±0.02 0.88±0.02

Inception-V3 0.91±0.04 0.81±0.03 0.86±0.04

Xception 0.82±0.05 0.78±0.04 0.79±0.04

BotNet-50 0.92±0.03 0.90±0.02 0.91±0.02

GAGL-VTNet 0.95±0.03 0.94±0.02 0.94±0.03

https://doi.org/10.1371/journal.pone.0275232.t002

PLOS ONE A digital pathology workflow for the segmentation and classification of gastric glands

PLOS ONE | https://doi.org/10.1371/journal.pone.0275232 December 30, 2022 13 / 19

https://doi.org/10.1371/journal.pone.0275232.g006
https://doi.org/10.1371/journal.pone.0275232.t002
https://doi.org/10.1371/journal.pone.0275232


Fig 7. Gland classification using the GAGL-VTNet model on four WSI: a-b) normal cases, c-d) IM cases. Blue color denotes the glands

that have been detected as normal and red color denotes the glands that have been detected as IM glands.

https://doi.org/10.1371/journal.pone.0275232.g007

Fig 8. Box plots comparing the average area that glands cover per WSI between normal, Gastric Atrophy (GA)

and Intestinal Metaplasia (IM) cases included in GAGL dataset. For the comparison the average area of normal

glands is used as reference. For IM cases, average area of glands per IM case and average area of glands classified as IM

is estimated.

https://doi.org/10.1371/journal.pone.0275232.g008
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Fig 9. Box plots comparing the ratio of number of glands to gastric mucosa between normal, Gastric Atrophy

(GA) and Intestinal Metaplasia (IM) cases included in the GAGL dataset.

https://doi.org/10.1371/journal.pone.0275232.g009

Fig 10. Box plots comparing the ratio of the area covered by glands to gastric mucosa between normal, Gastric

Atrophy (GA) and Intestinal Metaplasia (IM) cases included in the GAGL dataset.

https://doi.org/10.1371/journal.pone.0275232.g010
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for the atrophic cases the average ratio is estimated to be equal to 0.272 while for the IM cases

it is determined to be equal to 0.351. It is worth mentioning that significant differences are

identified between all the different cases. Furthermore, the lowest ratio value is observed in

atrophic cases while the larger glands of IM cases led to higher average ratio scores.

It is worth mentioning that the aforementioned analysis not only provides a fast and reliable

method to assist the analysis and diagnosis of GA and IM but also could possibly lead to its

widespread adoption in routine histopathological practice. Furthermore, these results contrib-

ute to the translation of the visual recognition of atrophic and IM by histopathologists through

the Sydney system into a reproducible set of mathematical values regarding the average area of

glands, the ratio of number of glands to gastric mucosa and the ratio of summarized area of

glands to gastric mucosa.

Conclusions

Multiple risk factors and a multistep process have been associated with gastric carcinogenesis.

Among these factors, gastric atrophy (GA), and gastric intestinal metaplasia (IM) of the

mucosa have been recognized as high-risk precancerous lesions for dysplasia and gastric can-

cer. However, as the manual assessment of biopsies by histopathologists based on the Sydney

System is a laborious and time-consuming task, the early and accurate detection of GA and IM

necessitates the adoption of artificial intelligence methods. Thus, in this paper we propose a

methodology for the automated analysis of gastric tissue biopsies including glands and mucosa

segmentation as well as glands’ classification. The proposed models for gastric gland segmenta-

tion and the mucosa segmentation method achieve F1 score equal to 0.914 and 1 respectively.

Similarly, they achieve object Dice score equal to 0.908 and 0.967 for gland and mucosa seg-

mentation respectively. Furthermore, the proposed classification model achieves F1 score

equal to 0.94.

The results suggest that the proposed workflow not only obtains good segmentation and

classification performance on the GAGL dataset but also shows an excellent generalization

ability on the widely used GLAS dataset. The analysis of tissue biopsies reflects the expected

results based on the Sydney scoring system and through this a set of mathematical values for

the standardisation of studied precancerous lesions is provided. The presented workflow and

results can be used in routine pathology in order to serve as a relevant diagnostic parameter as

well as in future studies. However, limitations of this study include the lack of analysis regard-

ing the biopsy sites and more detailed analysis with regards to the histological grading. Thus, a

future step would include the use of the proposed workflow for the analysis of WSI that have

been received from greater and lesser curvature of the antrum and corpus mucosa. Finally,

future studies are needed to prove that this methodology will be validated in gastric tissue

biopsies from other centers in order for the proposed framework to be adopted on a wide-

spread basis in routine histopathological practice.

Acknowledgments

We acknowledge the department of Pathology of UCL Cancer Institute and the UCL Centre

for Medical Image Computing for their general support.

Author Contributions

Conceptualization: Panagiotis Barmpoutis, William Waddingham, Hamzeh Kayhanian, Dan-

iel C. Alexander, Marnix Jansen.

Data curation: Panagiotis Barmpoutis, William Waddingham, Christopher Ross.

PLOS ONE A digital pathology workflow for the segmentation and classification of gastric glands

PLOS ONE | https://doi.org/10.1371/journal.pone.0275232 December 30, 2022 16 / 19

https://doi.org/10.1371/journal.pone.0275232


Formal analysis: Panagiotis Barmpoutis, William Waddingham, Hamzeh Kayhanian.

Funding acquisition: Daniel C. Alexander, Marnix Jansen.

Investigation: Panagiotis Barmpoutis.

Methodology: Panagiotis Barmpoutis, Jing Yuan, Tania Stathaki, Daniel C. Alexander, Marnix

Jansen.

Project administration: Daniel C. Alexander, Marnix Jansen.

Resources: Panagiotis Barmpoutis, William Waddingham, Christopher Ross.

Software: Panagiotis Barmpoutis.

Supervision: Daniel C. Alexander, Marnix Jansen.

Validation: Panagiotis Barmpoutis, William Waddingham, Hamzeh Kayhanian.

Visualization: Panagiotis Barmpoutis.

Writing – original draft: Panagiotis Barmpoutis.

Writing – review & editing: Daniel C. Alexander, Marnix Jansen.

References
1. Waddingham W, Nieuwenburg SA, Carlson S, Rodriguez-Justo M, Spaander M, Kuipers EJ, et al.

Recent advances in the detection and management of early gastric cancer and its precursors. Frontline

Gastroenterology. 2021 Jul 1; 12(4):322–31. https://doi.org/10.1136/flgastro-2018-101089 PMID:

34249318

2. Peleteiro B, Lopes C, Figueiredo C, Lunet N. Salt intake and gastric cancer risk according to Helicobac-

ter pylori infection, smoking, tumour site and histological type. British journal of cancer. 2011 Jan; 104

(1):198–207. https://doi.org/10.1038/sj.bjc.6605993 PMID: 21081930

3. Jencks DS, Adam JD, Borum ML, Koh JM, Stephen S, Doman DB. Overview of current concepts in gas-

tric intestinal metaplasia and gastric cancer. Gastroenterology & hepatology. 2018 Feb; 14(2):92.

PMID: 29606921

4. Busuttil RA, Boussioutas A. Intestinal metaplasia: a premalignant lesion involved in gastric carcinogen-

esis. Journal of gastroenterology and hepatology. 2009 Feb; 24(2):193–201. https://doi.org/10.1111/j.

1440-1746.2008.05774.x PMID: 19215332

5. Pellegrino C, Michele R, Chiara M, Alberto B, Florenzo M, Antonio N, et al. From Sidney to OLGA: an

overview of atrophic gastritis. Acta Bio Medica: Atenei Parmensis. 2018; 89(Suppl 8):93.

6. Dixon MF, Genta RM, Yardley JH, Correa P. Classification and grading of gastritis: the updated Sydney

system. The American journal of surgical pathology. 1996 Oct 1; 20(10):1161–81.

7. Rugge M, Meggio A, Pennelli G, Piscioli F, Giacomelli L, De Pretis G, et al. Gastritis staging in clinical

practice: the OLGA staging system. Gut. 2007 May 1; 56(5):631–6. https://doi.org/10.1136/gut.2006.

106666 PMID: 17142647

8. Hameed IM, Abdulhussain SH, Mahmmod BM. Content-based image retrieval: A review of recent

trends. Cogent Engineering. 2021 Jan 1; 8(1):1927469.

9. Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: Challenges and oppor-

tunities. Medical image analysis. 2016 Oct 1; 33:170–5. https://doi.org/10.1016/j.media.2016.06.037

PMID: 27423409

10. Barmpoutis P, Kayhanian H, Waddingham W, Alexander DC, Jansen M. Three-dimensional tumour

microenvironment reconstruction and tumour-immune interactions’ analysis. In2021 Digital Image

Computing: Techniques and Applications (DICTA) 2021 (pp. 01–06). IEEE.

11. Barmpoutis P, Dimitropoulos K, Apostolidis A, Grammalidis N. Multi-lead ECG signal analysis for myo-

cardial infarction detection and localization through the mapping of Grassmannian and Euclidean fea-

tures into a common Hilbert space. Biomedical Signal Processing and Control. 2019 Jul 1; 52:111–9.

12. Dimitropoulos K, Barmpoutis P, Zioga C, Kamas A, Patsiaoura K, Grammalidis N. Grading of invasive

breast carcinoma through Grassmannian VLAD encoding. PloS one. 2017 Sep 21; 12(9):e0185110.

https://doi.org/10.1371/journal.pone.0185110 PMID: 28934283

PLOS ONE A digital pathology workflow for the segmentation and classification of gastric glands

PLOS ONE | https://doi.org/10.1371/journal.pone.0275232 December 30, 2022 17 / 19

https://doi.org/10.1136/flgastro-2018-101089
http://www.ncbi.nlm.nih.gov/pubmed/34249318
https://doi.org/10.1038/sj.bjc.6605993
http://www.ncbi.nlm.nih.gov/pubmed/21081930
http://www.ncbi.nlm.nih.gov/pubmed/29606921
https://doi.org/10.1111/j.1440-1746.2008.05774.x
https://doi.org/10.1111/j.1440-1746.2008.05774.x
http://www.ncbi.nlm.nih.gov/pubmed/19215332
https://doi.org/10.1136/gut.2006.106666
https://doi.org/10.1136/gut.2006.106666
http://www.ncbi.nlm.nih.gov/pubmed/17142647
https://doi.org/10.1016/j.media.2016.06.037
http://www.ncbi.nlm.nih.gov/pubmed/27423409
https://doi.org/10.1371/journal.pone.0185110
http://www.ncbi.nlm.nih.gov/pubmed/28934283
https://doi.org/10.1371/journal.pone.0275232


13. Barmpoutis P, Di Capite M, Kayhanian H, Waddingham W, Alexander DC, Jansen M, et al. Tertiary lym-

phoid structures (TLS) identification and density assessment on H&E-stained digital slides of lung can-

cer. Plos one. 2021 Sep 23; 16(9):e0256907.

14. Srinivas A, Lin TY, Parmar N, Shlens J, Abbeel P, Vaswani A.: Bottleneck transformers for visual recog-

nition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 2021

(pp. 16519–16529).

15. Gao Z, Hong B, Zhang X, Li Y, Jia C, Wu J, et al. Instance-based vision transformer for subtyping of

papillary renal cell carcinoma in histopathological image. InInternational Conference on Medical Image

Computing and Computer-Assisted Intervention 2021 Sep 27 (pp. 299–308). Springer, Cham.

16. Gunduz-Demir C, Kandemir M, Tosun AB, Sokmensuer C. Automatic segmentation of colon glands

using object-graphs. Medical image analysis. 2010 Feb 1; 14(1):1–2. https://doi.org/10.1016/j.media.

2009.09.001 PMID: 19819181

17. Nguyen K, Sarkar A, Jain AK. Structure and context in prostatic gland segmentation and classification.

InInternational Conference on Medical Image Computing and Computer-Assisted Intervention 2012

Oct 1 (pp. 115–123). Springer, Berlin, Heidelberg.

18. Wu HS, Xu R, Harpaz N, Burstein D, Gil J. Segmentation of intestinal gland images with iterative region

growing. Journal of Microscopy. 2005 Dec; 220(3):190–204. https://doi.org/10.1111/j.1365-2818.2005.

01531.x PMID: 16364002

19. Sirinukunwattana K, Snead DR, Rajpoot NM. A stochastic polygons model for glandular structures in

colon histology images. IEEE transactions on medical imaging. 2015 May 15; 34(11):2366–78. https://

doi.org/10.1109/TMI.2015.2433900 PMID: 25993703

20. Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Biomedical Imaging Laboratory (LIB),

Paris, France.

21. Sirinukunwattana K, Pluim JP, Chen H, Qi X, Heng PA, Guo YB, et al. Gland segmentation in colon his-

tology images: The glas challenge contest. Medical image analysis. 2017 Jan 1; 35:489–502. https://

doi.org/10.1016/j.media.2016.08.008 PMID: 27614792

22. Chen H, Qi X, Yu L, Dou Q, Qin J, Heng PA. DCAN: Deep contour-aware networks for object instance

segmentation from histology images. Medical image analysis. 2017 Feb 1; 36:135–46. https://doi.org/

10.1016/j.media.2016.11.004 PMID: 27898306

23. Xu Y, Li Y, Wang Y, Liu M, Fan Y, Lai M, et al. Gland instance segmentation using deep multichannel

neural networks. IEEE Transactions on Biomedical Engineering. 2017 Mar 23; 64(12):2901–12. https://

doi.org/10.1109/TBME.2017.2686418 PMID: 28358671

24. Graham S, Chen H, Gamper J, Dou Q, Heng PA, Snead D, et al. MILD-Net: Minimal information loss

dilated network for gland instance segmentation in colon histology images. Medical image analysis.

2019 Feb 1; 52:199–211. https://doi.org/10.1016/j.media.2018.12.001 PMID: 30594772

25. Yan Z, Yang X, Cheng KT. A deep model with shape-preserving loss for gland instance segmentation.

In International Conference on Medical Image Computing and Computer-Assisted Intervention 2018

Sep 16 (pp. 138–146). Springer, Cham.

26. Ding H, Pan Z, Cen Q, Li Y, Chen S. Multi-scale fully convolutional network for gland segmentation

using three-class classification. Neurocomputing. 2020 Mar 7; 380:150–61.

27. Van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nature medi-

cine. 2021 May; 27(5):775–84. https://doi.org/10.1038/s41591-021-01343-4 PMID: 33990804

28. Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. In: Proceedings of

the IEEE international conference on computer vision 2017 (pp. 2980–2988).

29. Tarvainen A, Valpola H. Mean teachers are better role models: Weight-averaged consistency targets

improve semi-supervised deep learning results. Advances in neural information processing systems.

2017; 30.

30. Dimitropoulos K, Barmpoutis P, Koletsa T, Kostopoulos I, Grammalidis N. Automated detection and

classification of nuclei in pax5 and H&E-stained tissue sections of follicular lymphoma. Signal, Image

and Video Processing. 2017 Jan 1; 11(1):145–53.

31. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceed-

ings of the IEEE conference on computer vision and pattern recognition 2015 (pp. 3431–3440).

32. Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. IEEE transactions on pattern analysis and machine intelligence. 2017 Jan 2;

39(12):2481–95. https://doi.org/10.1109/TPAMI.2016.2644615 PMID: 28060704

33. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence. 2017 Apr 27; 40(4):834–48. https://doi.org/10.1109/TPAMI.2017.

2699184 PMID: 28463186

PLOS ONE A digital pathology workflow for the segmentation and classification of gastric glands

PLOS ONE | https://doi.org/10.1371/journal.pone.0275232 December 30, 2022 18 / 19

https://doi.org/10.1016/j.media.2009.09.001
https://doi.org/10.1016/j.media.2009.09.001
http://www.ncbi.nlm.nih.gov/pubmed/19819181
https://doi.org/10.1111/j.1365-2818.2005.01531.x
https://doi.org/10.1111/j.1365-2818.2005.01531.x
http://www.ncbi.nlm.nih.gov/pubmed/16364002
https://doi.org/10.1109/TMI.2015.2433900
https://doi.org/10.1109/TMI.2015.2433900
http://www.ncbi.nlm.nih.gov/pubmed/25993703
https://doi.org/10.1016/j.media.2016.08.008
https://doi.org/10.1016/j.media.2016.08.008
http://www.ncbi.nlm.nih.gov/pubmed/27614792
https://doi.org/10.1016/j.media.2016.11.004
https://doi.org/10.1016/j.media.2016.11.004
http://www.ncbi.nlm.nih.gov/pubmed/27898306
https://doi.org/10.1109/TBME.2017.2686418
https://doi.org/10.1109/TBME.2017.2686418
http://www.ncbi.nlm.nih.gov/pubmed/28358671
https://doi.org/10.1016/j.media.2018.12.001
http://www.ncbi.nlm.nih.gov/pubmed/30594772
https://doi.org/10.1038/s41591-021-01343-4
http://www.ncbi.nlm.nih.gov/pubmed/33990804
https://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
https://doi.org/10.1371/journal.pone.0275232


34. Manivannan S, Li W, Zhang J, Trucco E, McKenna SJ. Structure prediction for gland segmentation with

hand-crafted and deep convolutional features. IEEE transactions on medical imaging. 2017 Sep 8; 37

(1):210–21. https://doi.org/10.1109/TMI.2017.2750210 PMID: 28910760

PLOS ONE A digital pathology workflow for the segmentation and classification of gastric glands

PLOS ONE | https://doi.org/10.1371/journal.pone.0275232 December 30, 2022 19 / 19

https://doi.org/10.1109/TMI.2017.2750210
http://www.ncbi.nlm.nih.gov/pubmed/28910760
https://doi.org/10.1371/journal.pone.0275232

