Zero by 2030 and OneHealth: The multidisciplinary challenges of rabies control and elimination

ARTICLE INFO

Keywords
Rabies
OneHealth
Multisectoral
Control
Prevention
Multidisciplinary

Rabies, caused by a negative strand RNA-virus belonging to the genus Lyssavirus (family Rhabdoviridae of the order Mononegavirales), remains of global concern [1]. This vaccine-preventable viral zoonotic disease is present in more than 150 countries and territories [2]. According to the World Health Organization (WHO), rabies is estimated to cause ~59,000 human deaths annually, with 95% of cases occurring in Africa and Asia [3,4]. However, rabies still occurs in other regions, such as Latin America and the Caribbean [5-8], Central Asia and the Middle East [9,10]. Whilst a number of animals can host the rabies virus, dogs are the main source of human rabies deaths, contributing up to 99% of all rabies transmissions to humans. Dog-mediated rabies has been eliminated from Western Europe, Canada, the United States of America (USA), Japan and some Latin American countries [11]. Nevertheless, the risk of reintroduction and disease amongst travellers to risk areas is a matter of concern [12-15]. As occurred with many other communicable and non-communicable diseases, the 2020–2022 COVID-19 pandemic negatively impacted the efforts of control and reemergence of rabies in certain countries [7,16,17]. Post-pandemic challenges to enhance control and prevention are multiple and need urgent actions to achieve the goal in eight years by 2030 [16].

In this complex context, the international community has called for the world to be canine rabies-free by 2030 (Zero by 30); specifically, no indigenously acquired dog-mediated rabies cases among humans are to be achieved by the end of this decade [18]. The Global Strategic Plan to End Human Deaths from Dog-mediated Rabies by 2030, launched in June 2018, targets the disease at the dog reservoir and aligns efforts to eliminate from Western Europe, Canada, the United States of America (USA), Japan and some Latin American countries [11]. Post-pandemic challenges to enhance control and prevention are multiple and need urgent actions to achieve the goal in eight years by 2030 [16]. The strategies to reach “Zero By 30” condense the societal changes into three objectives: i. To effectively use vaccines, medicines, tools, and technologies; ii. To generate, innovate, and measure impact, through authentic sustainable collaborative partnerships between different scientific disciplines and more sophisticated techniques [28]; and iii. To sustain commitment and resources (Fig. 1) [18]. For example, interrupting transmission is feasible through the mass vaccination of dogs [34]. However, since the cornerstone of rabies eradication are mass vaccination campaigns in dogs, these should be reinforced by verifying the seroconversion of animals [34]. Any failure of vaccination or seroconversion should be investigated to trace potential errors in the protocol. Additionally, immediate, thorough wound washing with soap and water after contact with a suspect rabid animal is crucial and can save lives [37]. Also, in certain countries, physicians in areas with
Fig. 1. Global strategic plan to end human deaths from dog-mediated rabies by 2030, WHO [46].

Fig. 2. Age-standardized incidence rate (ASIR) (cases per 10,000,000) in 2019 of rabies in 204 countries and territories [40].
demonstrated rabies circulation in cattle [58], do not consider the importance of cycles where other canids are present, increasing the risk for humans (e.g., Colombia, Guatemala and Panama) [38,39].

Recent estimates from the Global Burden of Disease (GBD) study (Fig. 2) [40] indicated that in 2019, the incident cases of rabies worldwide were 14,075 (95% uncertainty interval, UI: 6,124–21,618), and the number of deaths was 13,743 (95% UI: 6,019–17,938) (for a case fatality rate of 97.6%), both of which were lower than that in 1990. The actual numbers may be higher due to lack of resources for accurate diagnosis, documentation and reporting in rabies endemic developing countries. In addition, data suggested that with the improvement of the socio-demographic index (SDI), the incident cases, the number of deaths, age-standardized incidence rate (ASIR), age-standardized death rates (ASDR), and disability-adjusted life years (DALYs) of rabies all showed downward trends. Adolescents and adults under 50 represented most rabies cases worldwide [40].

In addition to rabies, in the Rhabdoviridae family, at least three genera of animal viruses are included, Lyssavirus, Ephemerovirus, and Vesiculovirus. Lyssavirus has rabies, Lagos bat, Mokola virus, Duvenhage virus, European bat virus 1 & 2 and Australian bat virus (www.cdc.gov) [41,42]. Another animal of emerging importance in transmission of rabies to human is the bat [57]. Rabies can spread to people from bats after minor, seemingly unimportant, or unrecognized bites or scratch. It is worth mentioning that novel related viruses continue to be discovered, predominantly in bat populations, that are of interest purely through their classification within the lyssavirus genus alongside the rabies virus [43]. Although bat rabies accounts for a relatively small proportion of human cases worldwide, it accounts for most human rabies cases in the Americas. In most parts of the continent, haematophagous bats are the primary source of human cases, either by direct transmission or by infection through an intermediate species such as cats, which, given their hunting habits, become a bridge between bats and urban areas [44]. Vampire bat rabies is also a significant cause of livestock mortality, affecting subsistence and commercial farmers throughout the geographic range of this bat (from northern Mexico to Argentina and Uruguay) [11,45]. The surveillance and detection of rabies and other pathogens in bats and other sylvatic animals is a complex challenge for public health systems, especially in resource-constrained countries.

Beyond these ecological issues, as a clinical condition, rabies is still challenging, prevention and control remain as key factors, while significant limitations still exist for managing cases. Despite the use of evidence-based approaches, the case fatality rate of rabies is high. Post-exposure prophylaxis (PEP) is critical in its management (Table 1) [46] and should be enhanced in risk areas. Although that, personnel at risk, such as veterinarians and biologists in endemic areas, do not have regular access to prophylaxis in many low and middle-income countries. Even more, in some of these nations, access to vaccine and immunoglobulins is also limited. In the case of travelers there is a high cost for medical evacuation when required, especially if there is no access to vaccines and immunoglobulins. For example, in countries such as Colombia, sometimes rabies affected populations include Afroamerican and Amerindian children, as reported in Choco department, a vulnerable area with rabies outbreaks reported in 2004–2005 [47].

Research on rabies should also be increased, including more assessment of potential antiviral therapies, immunotherapy, and other biological approaches, including more antibodies and vaccines [48–50]. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Furthermore, the current rabies vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and the high cost of the immunoglobulin component of rabies PEP generate an unmet need for developing rabies-specific antivirals [51].

Active and passive surveillance should be enhance in humans and animals [52]. In addition to the intersectoral and multisectoral integration for control of rabies, national evidence-based guidelines should be developed and available periodically for healthcare workers to provide the best available clinical preventive, diagnostic and therapeutic management [53–55].

Indeed, after the COVID-19 pandemic, multiple challenges remain or even are on recrudescence, including the effective control of rabies in many regions [56]. We are making a call for more research and development to reach globally the “Zero by 30” goal, which will be more feasible if more multi-, inter-, and transdisciplinary work is done, as well as prioritizing the utilization of global health and OneHealth approaches for this zoonotic viral disease. Rabies is preventable. A unified global OneHealth effort is required to make sure that human rabies deaths end by 2030. Investing more into rabies control will build OneHealth solidarity, reduce health inequalities and strengthen core capacities in resource poor regions for tackling fatal zoonotic diseases.

Declaration of competing interest

None, except Sir Alimuddin Zumla that acknowledges support from the European and Developing Countries Clinical Trials Partnership EU Horizon 2020 Framework Programme PANDORA-ID-NET, CANTAM-3 and EACCR-3 projects, the UK-UCLH NIHR, and he is a Mahathir Science Award and EU-EDCTP Pascoal Mocumbi Prize Laureate.

Acknowledgments

Part of this Editorial derived of the Symposia on Zoonoses of the V Colombian Congress of Clinical Virology (ACINVIR), May 11-14, 2022, Bogota, Colombia; and II International Congress of Tropical Diseases (ACINTROP), October 28-29, 2022, Armenia, Colombia.

Table 1

<table>
<thead>
<tr>
<th>Exposure Category</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact skin (no exposure)</td>
<td>I Washing, but no vaccine</td>
</tr>
<tr>
<td>Minor scratches (no bleeding)</td>
<td>II Washing plus vaccine</td>
</tr>
<tr>
<td>Transdermal bite (wounded skin)</td>
<td>III Washing plus vaccine plus RIG</td>
</tr>
<tr>
<td>Multiple wounds</td>
<td></td>
</tr>
</tbody>
</table>

References

