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Abstract

Diabetic chronic wounds cause massive levels of patient suffering and eco-

nomic problems worldwide. The state of chronic inflammation arises in

response to a complex combination of diabetes mellitus-related pathophysiol-

ogies. Advanced treatment options are available; however, many wounds still

fail to heal, exacerbating morbidity and mortality. This review describes the

chronic inflammation pathophysiologies in diabetic ulcers and treatment

options that may help address this dysfunction either directly or indirectly. We

suggest that treatments to reduce inflammation within these complex wounds

may help trigger healing.
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Key Messages
• treatments that aim to reduce inflammation may help trigger healing in

chronic diabetic wounds.

1 | INTRODUCTION

Diabetes mellitus is a chronic metabolic condition of
insulin resistance, reduced insulin production, and
chronically elevated blood glucose levels. The global
prevalence of diabetes has trebled in the last two decades,
particularly in countries with developing economies, and
is predicted to affect 1 in 10 people worldwide by 2045.1

Diabetic foot ulceration is one of the major complications
of diabetes. It is a serious, highly morbid condition,
which has been shown to be independently associated

with increased mortality.2 Patients with diabetes mellitus
are especially prone to developing foot ulceration due to
peripheral neuropathy, which leads to biomechanical
changes to the foot and loss of protective reflexes and
sensation to injury.3-5 The presence of peripheral vascular
disease and a predilection to polymicrobial infection are
also contributing factors. As many as one in three
patients with diabetes mellitus will develop a diabetic
foot ulcer during their lifetime.3,4,6,7

The prognosis for patients suffering from diabetic foot
ulceration is bleak. Thirty three percent of diabetic ulcers
do not heal and remain as chronic wounds.8 Of those
ulcers that do achieve ‘healing’, 65% will experience re-Work carried out in the above institutions (1, 2).
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ulceration at 3 years, exemplifying the chronic, relapsing,
and remitting nature of this condition.3 Approximately
20% of moderate to severe diabetic foot ulcers lead to
some form of amputation, and patients with diabetes are
up to 25 times more likely to lose their leg than those not
suffering from the condition.3 In 2005, the International
Diabetes Federation estimated that one lower limb was
lost every 30 seconds due to diabetes worldwide.9 Five-
year survival after diabetes-related major amputation was
estimated to be 47%, dropping to 17% for patients on dial-
ysis.10 These survival rates are comparable to, or worse
than, other severe diseases, including heart failure, myo-
cardial infarction, stroke, and some cancers.11,12 A large,
population-based study found that over a follow-up
period of 10 years, patients with a history of diabetic foot
ulceration were twice as likely to die than those without
diabetes, consistent with results found by other stud-
ies.12-14 The presence of foot ulceration in diabetic
patients is associated with poor quality of life, low physi-
cal functioning, increased risk of depression, and anxiety,
and is an independent risk factor for mortality.2,15 The
multitude of knock-on effects an ulcer may have on a
patient's health must be considered by health care profes-
sionals and carers. (Figure 1).

The burden of foot ulceration on health care sys-
tems, carers, as well as to society in terms of health

economics cannot be overstated. Where diabetes-
related care was estimated to cost 176 billion USD
annually, up to one third of this was attributed to lower
extremity care.3,15 The presence of diabetic foot ulcera-
tion was associated with a seven-fold increase in
requiring hospital admission, as infection and gan-
grene are common complications once an ulcer has
formed.16 The costs of hospital care, outpatient clinic
care, informal care, sickness absence, and care after
amputation amount to tens of billions world-
wide.11,17-21 Worryingly, these costs are set to continue
to increase as both the prevalence of diabetes and life
expectancy with diabetes are rising.

The mammalian body has evolved a carefully
orchestrated series of defences to skin wounding,
which include innate defences and acquired responses.
These defences always include initial inflammation,
cell proliferation, differentiation and migration, angio-
genesis, extracellular matrix proliferation, and remo-
delling. Chronic inflammation is a key feature of both
diabetes mellitus and wound chronicity. Though other
inflammatory conditions can lead to wound chronicity
(i.e., scleroderma), diabetic patients are at particular
risk due to repeated injury due to peripheral neuropa-
thy and the loss of protective reflexes and the polymi-
crobial bioburden in their wounds, particularly in foot

FIGURE 1 Progression, associated risk factors, and subsequent health risks of diabetic foot ulceration. Created with BioRender.com
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ulcers. This chronic inflammatory state in diabetes
mellitus disrupts the normal responses to wounding at
a systemic and local level, leading to wounds that are
unable to progress through the normal wound healing
stages (Figure 2).8 Moreover, patients with a chronic
inflammatory state are less able to mount an appropri-
ate systemic and local response to the microbial bio-
burden often present in wounds. This ‘burnt-out’
innate immunity of diabetic patients, combined with
the propensity for poly-microbial wound infection in
diabetic foot ulceration, are the factors, which drive
the manifestation of overwhelming bacterial sepsis
from diabetic foot infections, which can be life-threat-
ening. It is important to understand this inflammatory
dysfunction in order to develop strategies to target
chronic inflammation and improve wound healing
without further jeopardising innate immunity to invad-
ing pathogens. This review summarises current knowl-
edge concerning the role of chronic inflammation in
chronic diabetic wounds, including diabetic foot ulcers,
and the treatment options that may help address this
dysfunction either directly or indirectly.

2 | PATHOPHYSIOLOGY

2.1 | Reduced initial inflammatory
response

Relative to acute wounds, diabetic chronic wounds dis-
play weak early-stage inflammatory responses (Figure 3),
which may underlie the development of the chronic
inflammatory phenotype of diabetic ulcers. At wounding,
IL-6, IL-8, their receptors, the C-C chemokine receptor
type 2 (CCR2) for macrophage chemoattractant protein-1
and prepro-NPY, the precursor of neuropeptide Y (NPY),
are present at much lower levels compared with non-
diabetic environments .22-24 This is also mirrored in
single-cell transcriptomic and pathways analysis showing
that systemic NK and T cells in diabetic patients exhibit
inhibition of IL-6, IL-8, and CD28 signalling pathways.25

There is also an increase of neutral endopeptidase in the
skin around patients with diabetic chronic wounds. Neutral
endopeptidase degrades substance P as part of its regula-
tion, suggesting a reduction in substance P.26 The neuropep-
tide substance P stimulates keratinocyte, fibroblast, and

FIGURE 2 An overview of the

principal stages of normal wound

healing127-132
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endothelial cell pro-inflammatory responses.26 These differ-
ences in the diabetic wound environment suggest a reduced
initial inflammatory response compared with non-diabetic
acute wounds.22-24,26

2.2 | The chronic inflammatory
phenotype

Immune cell infiltration, accumulation, and pro-
inflammatory cell polarisations are promoted in the diabetic
chronic wound environment, contributing to the chronic
inflammatory phenotype (Figure 3).27 The expression levels
of the complement system, signal transducer and activator of
transcription factor (STAT) 4, oncostatin M (OSM), OSM
receptor subunit β (OSMRβ), macrophage inflammatory
protein-2, and macrophage chemoattractant protein-1

expression have all been found to be increased in the dia-
betic ulcer environment.24,28 This contributes to the accumu-
lation of polymorphonuclear neutrophils and macrophages.
Macrophages become hyperpolarised and are predominantly
granulocytic (Gr) -1+, CD11b+, and CD14+macrophages.29

Their clearance is reduced in association with the dysregula-
tion of the cell membrane protein selectin P ligand
(SELPLG), causing a build-up of their population and associ-
ated secreted pro-inflammatory molecules.30 α-defensins are
also upregulated in hyperglycaemic conditions, promoting
IL-8 expression and enhancing the recruitment of neutro-
phils, basophils, and T cells.31,32 This influx and accumula-
tion of immune system cells is followed by the release of
associated pro-inflammatory cytokines and chemokines,
worsening the chronic inflammatory phenotype. Infection
worsens the situation by promoting immune responses as
well as complicating ischaemia and neuropathy.33 Excretions

FIGURE 3 Pathophysiology of diabetic chronic wounds. The condition illustrated arises through two stages. In the first stage there is a

weak initial inflammatory response which is then followed by the chronic inflammatory response. During the weak initial inflammatory

response, low levels of cytokines (IL-6, IL-8) CCR2 and prepro-NPY are released within the wound environment. The levels of neutral

endopeptidase, an enzyme which degrades substance P, also increases in the skin. In the second stage, there is reduced keratinocyte,

fibroblast and endothelial cell stimulation. In contrast, the chronic inflammatory response is characterised by an accumulation of leukocytes

(macrophages, neutrophils, basophils and T cells) due to an overexpression of the complement system, STAT4, OSM and chemoattractants

MCP-2 and MCP-1. In addition, the dysregulation of SELPLG also reduces the clearance of these leukocytes from the wound site

4 WORSLEY ET AL.
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from S. aureus biofilms, the dominating bacteria species in
diabetic chronic wounds, were also found to directly contrib-
ute to the chronic inflammatory phenotype by causing pro-
inflammatory gene expression in epithelial keratinocytes.34

2.2.1 | Senescence-associated secretory
phenotype

Cellular senescence describes the process in which cells
cease dividing and undergo phenotypic changes. As with
many tissues in patients with diabetes, diabetic ulcers
have an increased number of senescent cells displaying a
pro-inflammatory senescence-associated secretory pheno-
type (SASP). This phenotype develops as a consequence
of increased oxidative stress-related RNA damage, DNA
damage, and telomere shortening.35,36 Experimental
models of diabetic mice revealed a rapid accumulation of
senescence cells of various cell types in wounded skin.37

The majority of SASP cells are macrophages, which are
hypothesised to be stalled between the transition from
pro-inflammatory M1 and pro-resolution M2 phenotypes.
Fibroblasts also show a strong senescent phenotype, add-
ing to poor healing outcomes.38 This is potentially in
response to hyperglycaemia and increased local inflam-
mation.35,39 A SASP increases the release of pro-
inflammatory cytokines and chemokines, promoting a
chronic inflammatory environment. CXC chemokine
receptor 2 (CXCR2), the IL-8 receptor, as well as chemo-
kines chemokine (C-X-C motif) ligand 1 (CXCL) 1 and
CXCL2 are highly expressed in senescent cells, poten-
tially playing a role in the chronic inflammatory patho-
physiology through immune cell recruitment.31,32,38

Inhibition of CXCR2 has been shown to protect CXCL2
activity, dampen neutrophil infiltration, and reduce cellu-
lar senescence, promoting wound closure in diabetic
ulcers. This suggests CXCR2 and IL-8 play important
roles in diabetic chronic wound pathophysiology.38

SASPs may also contribute to diabetic ulcer formation as
part of metaflammation. Monocyte chemoattractant
protein-1 (MCP-1) is a pro-inflammatory cytokine
expressed in SASP cells. MCP-1 is upregulated in diabetic
rat models and has been found to be associated with
patient susceptibility to diabetic ulcer formation.40

2.2.2 | Neutrophils

In the diabetic environment, neutrophils display increased
superoxide production and protein kinase C activity.41 They
also have elevated basal calcium levels, overproduce peptidyl
arginine deiminase type IV (PAD4), a calcium-dependent
enzyme, and overproduce neutrophil extracellular traps

(NETs), impeding wound healing via increased NETosis.42

Despite this increased NETosis, it was found that in diabetic
mouse wounds infected with S. aureus neutrophil apoptosis
was reduced, neutrophil clearance was reduced and neutro-
phil TNF-α production increased.43 Elevated saturated free
fatty acids also promote neutrophil survival and reduce mac-
rophage phagocytosis in association with prostaglandin pro-
duction.44 These processes cause the accumulation of
neutrophils in diabetic ulcers, adding to the increased
inflammation and reduced wound healing progression.

2.2.3 | Macrophages

The persistence of pro-inflammatory M1 macrophages
within wounds has been hypothesised to be a key con-
tributor to diabetic chronic wound pathology. However,
newer transcriptomic data has identified that, at least in
the wound, the M1 phenotype may also be associated
with improved diabetic foot ulcer healing.25 Driven by
hyperglycaemia and hypoxia, the pro-inflammatory phe-
notype is characterised by an increased release of inflam-
matory cytokines such as TNF-α and IL-1.45 TNF-α
stimulates the histone acetyltransferase Males absent on
the first (MOF) in macrophages and that this is increased
in the diabetic environment. MOF adds to the activation
of TNF-α signalling and promotes NFκB–mediated gene
transcription via H4K16 acetylation in wound macro-
phages, impeding wound healing processes.45 In an obese
mouse model, inhibiting TNF-α signalling using neutra-
lising monoclonal antibodies inactivated macrophages,
reduced circulating monocyte populations and reduced
inflammatory cytokine levels. This induced wound clo-
sure, suggesting TNF-α signalling is another major con-
tributing factor to diabetic ulcer development.46

Sustained elevated expression of IL-1β by the nodula-
tion (NOD)-, Leucine-rich repeat (LRR)-, and pyrin
domain-containing protein 3 (NLRP3) inflammasome fur-
ther impedes macrophage transition to the pro-healing M2
phenotype by downregulating peroxisome proliferator-
activated receptor (PPAR) -γ, a regulator of glucose and
lipid metabolism.47 Insulin treatment may reduce these
effects. In vivo studies indicated that insulin promotes anti-
inflammatory phenotype transitions by upregulating PPAR-
γ. Furthermore, insulin activated Akt-Rac-1 (activated cell
division control protein 42 kinase-ras-related C3 botulinum
toxin substrate-1) signalling, a regulatory pathway for glu-
cose uptake that is downregulated in diabetic ulcers, inhi-
biting hyperglycaemia-induced p38, NF-κB, and STAT1
transcriptional activity activation.48 The neuropeptide neu-
rotensin has also been found to be involved in stimulating
the migratory and inflammatory response of macrophages
in hyperglycaemic environments, indicating the role of the
neuroendocrine system on diabetic wound healing.49

WORSLEY ET AL. 5
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As mentioned above, the phagocytic and efferocytotic
activity of macrophages is reduced in diabetes, increasing the
population of dysfunctional cells in the diabetic chronic
wound environment. The phagocytic activity of macrophages
for apoptotic neutrophils has been found to be significantly
reduced in diabetic ulcers.50 Phagocytosis-related genes for
CD36 and Class B scavenger type 1 receptors are downregu-
lated, pro-apoptotic factors are downregulated, and pro-
apoptotic factors are upregulated in the pro-inflammatory
phenotype.50 Macrophage efferocytosis impairment increases
the burden of apoptotic cells at the wound site, causing the
stimulation of pro-inflammatory and the attenuation of anti-
inflammatory cytokine responses.51

2.2.4 | γδ T lymphocytes

Diabetic chronic wounds have lower numbers of
skin-resident γδ T lymphocytes, of which have reduced
expression levels of FGF-7, FGF-10, and insulin-like
growth factor (IGF) -1 compared with acute healing
models.52 These growth factors are more pro-healing
than pro-inflammatory, and in general, T lymphocytes
have a more anti-inflammatory phenotype.53-55 Reduced
population and activity of skin-resident γδ T lymphocytes
further promotes inflammation.

2.2.5 | Other dysfunctional signalling
molecules and receptors

Multiple areas of dysfunction cause the pro-inflammatory
phenotype found in diabetic ulcers. The dysregulation of
upstream receptors that initiate inflammatory cascades, such
as the toll-like receptor (TLR) family, plays an important
role. TLRs 2, 4, 7, and 9 are significantly upregulated in dia-
betic chronic wounds.6,8,56-59 Antagonising TLR-4 systemi-
cally in vivo or using knockout TLR-4 in vivo models has
been found to improve diabetic wound healing, and reduce
pro-inflammatory phenotypes.8,59 In contrast, clinical studies
of diabetic foot ulcers in patients with Indian heritage found
reduced levels of TLR-4 signalling in diabetic foot ulcers with
specific TLR-4 SNP genotypes, displaying potential variation
in how TLR-4 is dysfunctional.60 The increase in TLR expres-
sion in diabetic ulcers reduces healing, increases MyD88
signalling and increases the expression and activation of NF-
κB, interferon and inflammatory cytokines and chemokines,
such as IL-6, TNF-α, S100A8, Il-8, and Il-1β.6,8,56-58 Many of
these signalling molecules go on to promote further pro-
inflammatory cytokine release as part of positive feedback
loops, worsening the inflammatory phenotype.

Many other mechanisms further downstream contrib-
ute to the dysfunctional healing seen in diabetic ulcers.

For example, unregulated iron levels lead to reactive oxy-
gen species (ROS) production, increased oxidative stress,
and macrophage polarisation.38,61,62 Granzyme B is a ser-
ine protease, which positively regulates apoptosis in nor-
mal wound healing. Expressed on immune system cells,
it accumulates in the extracellular matrix (ECM) in the
diabetic ulcer environment. It cleaves essential wound
healing proteins such as fibronectin, preventing wound
healing.63 Sirtuin 6 is a sirtuin family protein involved in
regulating many pathophysiological processes, including
inflammation, glycolysis and DNA repair.64 Sirtuin 6 defi-
ciency in diabetic chronic wounds further exacerbates
the pro-inflammatory phenotype of diabetic chronic
wounds by increasing NF-κB activation, oxidative stress,
and decreasing angiogenesis.64

Chronic hyperglycaemia has been shown to upregulate
the signalling molecule suppressor of cytokine signalling
3 (SOCS3), a protein usually involved in the suppression of
inflammation.65 Surprisingly, in the diabetic chronic wound
environment, this exacerbates wound inflammation. This is
in association with increased expression of chemokine mac-
rophage inflammatory protein 2 (MIP-2), increased expres-
sion of inflammatory enzymes cyclooxygenase (COX)-2,
inducible nitric oxide synthase (iNOS), and increased levels
of TGF- β in epithelial cells.66 COX-1 and -2 expression and
activity have also been found to be dysregulated using dia-
betic obese mouse wound models, with COX-1 coupled pros-
taglandin directly contributing to impaired diabetic wound
healing.67

Endothelial overexpressed lipopolysaccharide-associated
factor 1 (EOLA1) is a recently discovered regulator of
inflammation, which is downregulated in diabetic chronic
wounds.68 EOLA1 is expressed in leukocytes and endothe-
lial cells. It has been found to be involved in cell growth
promotion, apoptosis inhibition, and the downregulation of
inflammatory cytokine secretion, including IL-6 and inter-
cellular adhesion molecule-1 (ICAM-1).68 Therefore, its
downregulation may play an important role in the chronic
inflammatory phenotype of diabetic ulcers. In contrast, it is
upregulated after LPS stimulation, suggesting a potential
mechanism involved in reducing the diabetic ulcer's ability
to fight infection.

3 | CURRENT TREATMENTS THAT
REDUCE INFLAMMATION

3.1 | Commonly used treatments and
management techniques

Many of the management principles and treatment
options used to treat diabetic foot ulceration have indirect
anti-inflammatory effects. Diabetic chronic wounds

6 WORSLEY ET AL.
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remain open for extended periods of time, often months,
due to dysfunctional immune responses. When consider-
ing that open diabetic wounds also encourage polymicro-
bial colonisation, unsurprisingly the rate of wound
infection and deeper infection (including osteomyelitis) is
high, with approximately 58% of cases being infected.69-72

Infection, where present, must be controlled as a first pri-
ority. Localised infection increases inflammation, exacer-
bates the dysfunctional immune response, increases pain,
and promotes morbidity.3,51,73 Treatment for infection in
these wounds is achieved with (1) prompt surgical debride-
ment and drainage of any collections, if necessary, and
(2) empirical antibiotics followed by sensitivity-guided anti-
biotics after identification of bacterial strains is complete
from tissue sampling.74 Surgical debridement is performed
to clean the wound, removing necrotic, non-viable, or
infected tissue as well as building up immune cells and
cytokines in the exudate and slough, thereby reducing their
pro-inflammatory output.75 Dressings can also contain anti-
septic agents, such as silver, iodine, and polyhexamethylene
biguanide (PHMB) to help stabilise the current infection
and prevent further infection.76,77 As well as benefiting
wound healing, incorporating antimicrobials into dressings
can improve pain, and reduce the risk of further complica-
tions, such as sepsis.70 Routine wound care, including regu-
lar irrigation and prompt removal of excessively soiled
dressings, may also reduce excessive inflammation.

Negative pressure wound therapy (NPWT) is a treat-
ment, which may be applied after debridement and infec-
tion control to help promote wound approximation and
healing.74 It achieves this effect by removing excess
wound exudate, inducing wound contraction, and
promoting angiogenesis as well as wound granulation
through mechanical stimulation.78 NPWT may also
reduce inflammation, however, reports are mixed.
Wang et al reported that negative pressure therapy sup-
presses inflammation via down-regulating the MAPK-
JNK signalling pathway in diabetic ulcers.79 Ludwig-
Slomczynska et al found that NPWT for diabetic ulcers
caused epigenetic changes that lead to the inhibition of
complement system activation.80 In contrast, Pawar et al
recorded increased CD68 cell densities in response to
NPWT for periprosthetic tissue treatment, indicating
increased inflammation.81 Furthermore, Norbury et al
found that NPWT helped overcome immunoparalysis in
the swine model of ischemia/reperfusion injury coupled
with sepsis, specifically by increasing lymphocyte popula-
tions and increasing macrophage reactive oxygen species
production.82 The International Working Group on the Dia-
betic Foot (IWGDF) performed a systematic review of litera-
ture on the use of interventions to enhance healing in
chronic diabetic foot ulcers, including the use of NPWT.83

The working group recommended that NPWT should be

considered to reduce wound size in post-surgical wounds,
and that it should be avoided in non-surgical wounds. Their
published recommendations take into account the variabil-
ity of studies, the lack of blinding and the controls in stud-
ies, and potential for bias in the current literature.

3.2 | Less common and future
treatments

3.2.1 | Hyperbaric oxygen therapy

Hyperbaric oxygen (HBO2) as a therapy has been studied
in animal models and as a treatment for human injury
and wound healing for more than four decades.84,85 The
treatment involves controlled exposure of the patient to
high atmospheric pressure (between 2 and 3 atm), with
100% oxygen content in a compression chamber for a set
amount of time (1–2 hours). The net effect of this
therapy is to temporarily increase oxygen tension in the
wound, followed by a decrease back to hypoxic condi-
tions, and cycling between these two states appears to
improve wound healing. Hyperbaric oxygen therapy
reduces expression of inflammatory cytokines (including
Interleukin-1 and Interleukin-2), increases angiogenesis,
improves collagen formation, promotes fibroblast migration,
reduces the metalloproteinase expression, and promotes
both antibiotic and leucocyte function against microbes.85-88

Studies in various animal models have demonstrated that
wounds exposed to hyperbaric oxygen show increased gran-
ulation and accelerated wound contraction, as well as ame-
liorating inflammatory processes in other conditions.86,89

However, the treatment does have risks, including baro-
trauma to the ears, seizures from acute central nervous sys-
tem oxygen toxicity, and reversible myopia. A Cochrane
review and meta-analysis of HBO2 therapy for chronic
wounds found moderate evidence that the treatment
improved the chance of healing at 1 year in diabetic foot
ulcers, but did not reduce the risk of amputation.84 The pro-
vision of hyperbaric oxygen therapy requires specialist facil-
ities, which are relatively more available in North America,
but less common elsewhere in the world, limiting wide-
spread adoption. Current guidance from the National Insti-
tute of Health and Care Excellence (NICE) does not
recommend the use of hyperbaric oxygen in chronic dia-
betic foot wounds except when involved in a clinical trial.74

3.2.2 | Skin replacement and grafting, and
amniotic membrane treatment

Replacement of epithelial tissue with autograft, allograft,
xenograft, or bioengineered tissues has been studied as a

WORSLEY ET AL. 7
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treatment for chronic diabetic foot wounds. These skin
substitutes are categorised by whether they are cellular or
acellular scaffolds made from skin tissues or biomaterials
and are further categorised as dermal or epidermal sub-
stitutes (or both). When applied to infection-free and vas-
cularised wounds, these tissues may integrate with the
wound and act to improve extracellular matrix deposition
and composition, and increase secretion of healing cyto-
kines and growth factors, and ultimately increase re-
epithelialisation.90 However, the exact effect of these
treatments on chronic wound inflammation is not yet
fully characterised. Numerous bioengineered skin substi-
tutes containing fresh or cryopreserved human keratino-
cytes or fibroblasts have been applied to patients with
diabetic foot ulceration, with positive preliminary
results.91-94 Unfortunately, the significant heterogeneity
of skin substitute products available, heterogenous study
design without blinding investigators, low study num-
bers, industry involvement in the majority of studies, and
potential for bias all mean that at present, it is difficult to
draw any firm conclusions about this potentially promis-
ing treatment.90,91

Application of human amniotic membrane is
another therapy, which may reduce inflammation in
diabetic ulcers. Dehydrated or cryopreserved allogeneic
human amniotic membrane is now commercially avail-
able, and its application in diabetic foot ulceration has
been studied. Amniotic membrane tissue is rich in
cytokines (IL-4, IL-6, IL-8, and IL-10), growth factors
(including platelet derived growth factors, fibroblast
growth factors, transforming growth factor α, epider-
mal growth factor, and granulocyte colony-stimulating
factor), native stem cells, and tissue inhibitors of metal-
loproteinases (TIMPs).95-98 Amniotic membrane has
been shown to reduce Th1 and Th2 cell cytokine syn-
thesis and also lacks human leukocyte antigen (HLA)
antigens, which make it less immunogenic compared
with other skin substitutes.97,99 Clinical studies exam-
ining human amniotic membrane allograft in chronic
diabetic foot ulcers have shown improved wound heal-
ing in diabetic ulcers.90,97,98,100 However, these trials
were small, non-blinded, and had industry involve-
ment. Use of these products has been limited partly
due to the prohibitive cost of each treatment cycle and
the lack of clear long-term evidence. At present, NICE
guidelines suggest skin replacements can be considered
only in diabetic foot ulcers, which have failed to pro-
gress, at the recommendation of a multidisciplinary
foot care service.74 Further well-designed studies are
required to examine the physiological effects and clini-
cal effects, including long-term effects, of skin substi-
tutes and grafting in chronic diabetic wounds.

3.2.3 | Growth factors

Delivering growth factors to the wound bed may help
reduce inflammation as well as general wound healing
promotion. Growth factors can be delivered directly via
injection or by incorporation into biomaterials, or indi-
rectly via stem cells, exosomes, platelet-rich-plasma, or
allographs.75,101 Growth factors used directly for diabetic
foot ulcer treatments described in the literature include
TGF-β, FGF, VEGF, PDGF, and EGF, the latter two being
the only ones to reach clinical evaluation.102 PDGF and
EGF have anti-inflammatory properties when used in
skin disorders.103,104 In pre-clinical and clinical studies,
EGF has been shown to improve healing with the promo-
tion of granulation and fibroblast proliferation.101,105-107

Regranex is a gel containing PDGF; it is the only growth
factor treatment approved by the United States food and
drug administration, however, it is not recommended by
The National Institute for Health and Care Excellence
(NICE).74 This is mainly in response to the formulation,
dosing, safety, and efficacy issues.53 One example raising
safety concerns includes a retrospective observational
study connecting Regranex to an increased risk of malig-
nancies. Despite this study being unpublished and requir-
ing further evidence, its use in high risk cancer patients
is restricted in the United Kingdom as a consequence.108

The clinical evidence of efficacy for Regranex has been
seen as weak, and the product is not widely used.109

3.2.4 | Stem cell therapy

Stem cell therapy can be used to deliver active molecules
and complexes to the wound bed. Its recommendation is
not directly mentioned in NICE guidelines, however, it is
sometimes used as a last attempt to avoid amputation in
patients with no other revascularisation options.110

Depending on the stem cells used, they can differentiate
into various cell types that help promote healing and
reduce inflammation. Stem cells secrete pro-healing cyto-
kines, chemokines, and growth factors, including VEGFs
and IGF-1. This aids immunomodulation, cell recruit-
ment, ECM remodeling, angiogenesis, and neuroregen-
eration.110-112 The most common stem cells used in the
literature are bone marrow-derived mesenchymal stem
cells, consisting of 50% and 53% of pre-clinical and clini-
cal studies, respectively. Others include human umbilical
cord mesenchymal stem cells and adipose tissue-derived
mesenchymal stem cells. Induced pluripotent stem cells
(iPS) have not yet entered the literature for this use.110

Though, recently, Gorecka et al described the use of
smooth muscle cells derived from iPS cells, showing the
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promotion of angiogenesis and accelerated healing in vivo
when incorporated into collagen scaffolds.113 Preclinical
and clinical evidence suggests that stem cells offer an effec-
tive treatment route for diabetic ulcers.110 Stem cell admin-
istration techniques are varied; they include local injection,
the most common method, and topically as part of a free
liquid, hydrogel, or solid scaffold. More research is needed
to distinguish the optimal type and delivery technique, as
well as the eligibility of patients and their wounds.110,112

The use of stem cell-derived exosomes entered the lit-
erature more recently, offering a potential route for sup-
plying the benefits of stem cells with reduced risks and
costs. In preclinical studies, stem cell-derived exosomes
promoted anti-inflammatory cell phenotypes, cell migra-
tion, and angiogenesis.114-117 This was improved when
the exosomes were from LPS-preconditioned mesenchy-
mal stem cells compared with non-preconditioned
cells.118 The associated ablation of inflammation and
induced wound healing was found to be through lethal-
7b miRNA shuttling associated with reduced TLR-4
signalling, promoting M2 macrophage phenotype transi-
tions. This adds to the evidence that TLR-4 signalling
dysfunction might play a major role in upstream diabetic
wound healing prevention.

3.2.5 | Receptor targets

Targeting cell signalling pathways via receptor targets
offers a relatively new approach in the attempt to induce
healing in diabetic ulcers by reducing inflammation
directly. There are many receptors identified in the litera-
ture, which have dysfunctional inflammatory signalling
that could act as potential therapeutic targets for diabetic
ulcers in future treatments. For example, the antagonism of
members of the TLR family, such as TLR-4, TLR-2, TLR-7,
and TLR-9, as well as CXCR2 and OSMRβ, some of which
have been tested in vivo already.8,56-59,119 Naltrexone is one
such drug, repurposed from use as an opiate antagonist for
alcohol and opioid dependence. Recently, naltrexone has
been shown to promote diabetic ulcer healing in vivo by
13% to 30% via upstream receptor targeting, offering novel
future treatment pathways.119 This may work through the
inhibition of pro-inflammatory signalling induced by
TLR-4, TLR-7, and TLR-9.120,121

3.2.6 | Non-specific anti-inflammatory
compounds

Numerous substances display non-specific anti-
inflammatory activity with varying potencies. However,
most are still in the preclinical stages of evaluation.

Insulin, applied topically, has been found to accelerate
diabetic wound healing by promoting anti-inflammatory
macrophage phenotypes.76,122 Hyaluronic acid provides
anti-inflammatory activity in a molecular weight dependent
manner with promising wound healing ability in vivo.123,124

More naturally sourced substances, for example, honey,
curcumin, oregano extract, and hydroxytyrosol, can also
provide anti-inflammatory activity.125,126 Many are non-
specific and are still in research for their effectiveness
in vivo. They are sometimes incorporated into more com-
plex biomaterials with promising preclinical results or into
simple wound dressings for a more natural approach.

4 | CONCLUDING REMARKS

This review highlights the pivotal role of disordered
inflammation in diabetic chronic wounds. Future treat-
ments that target and break the cycle of disordered
inflammation may improve treatments. Current clinical
guidelines do not include specific anti-inflammatory
therapies. However, there is growing evidence that
inflammation control may help overcome healing defi-
ciencies associated with current approaches. Many
potential anti-inflammatory therapeutic options and
novel research pathways are available; for example, tar-
geting upstream receptors and the use of less-specific
anti-inflammatory peptides. These approaches could be
used alongside current treatments, providing a multi-
faceted control, which seems appropriate for a multi-
faceted condition, and a combined approach may
improve patient outcomes. Further investigation of
pharmacological interventions on the TLR family, sys-
temic anti-inflammatories including blockade of the
IL-1 axis (ie, monoclonal antibodies to IL-1 receptor or
IL-1β), application of autologous PBMC-derived prod-
ucts to wounds, and improved dressing technologies
which allow optimal wound healing conditions whilst
delivering topical agents, are all practical areas worthy
of further investigation as future therapies.
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