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IMPORTANCE The recent proliferation of phosphorylated tau (p-tau) biomarkers has raised
questions about their preferential association with the hallmark pathologies of Alzheimer
disease (AD): amyloid-β plaques and tau neurofibrillary tangles.

OBJECTIVE To determine whether cerebrospinal fluid (CSF) and plasma p-tau biomarkers
preferentially reflect cerebral β-amyloidosis or neurofibrillary tangle aggregation measured
with positron emission tomography (PET).

DESIGN, SETTING, AND PARTICIPANTS This was a cross-sectional study of 2 observational
cohorts: the Translational Biomarkers in Aging and Dementia (TRIAD) study,
with data collected between October 2017 and August 2021, and the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), with data collected between September 2015 and November
2019. TRIAD was a single-center study, and ADNI was a multicenter study. Two independent
subsamples were derived from TRIAD. The first TRIAD subsample comprised individuals
assessed with CSF p-tau (p-tau181, p-tau217, p-tau231, p-tau235), [18F]AZD4694 amyloid PET,
and [18F]MK6240 tau PET. The second TRIAD subsample included individuals assessed with
plasma p-tau (p-tau181, p-tau217, p-tau231), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau
PET. An independent cohort from ADNI comprised individuals assessed with CSF p-tau181,
[18F]florbetapir PET, and [18F]flortaucipir PET. Participants were included based on the
availability of p-tau and PET biomarker assessments collected within 9 months of each other.
Exclusion criteria were a history of head trauma or magnetic resonance imaging/PET safety
contraindications. No participants who met eligibility criteria were excluded.

EXPOSURES Amyloid PET, tau PET, and CSF and plasma assessments of p-tau measured with
single molecule array (Simoa) assay or enzyme-linked immunosorbent assay.

MAIN OUTCOMES AND MEASURES Associations between p-tau biomarkers with amyloid PET
and tau PET.

RESULTS A total of 609 participants (mean [SD] age, 66.9 [13.6] years; 347 female [57%];
262 male [43%]) were included in the study. For all 4 phosphorylation sites assessed in CSF,
p-tau was significantly more closely associated with amyloid-PET values than tau-PET values
(p-tau181 difference, 13%; 95% CI, 3%-22%; P = .006; p-tau217 difference, 11%; 95% CI,
3%-20%; P = .003; p-tau231 difference, 15%; 95% CI, 5%-22%; P < .001; p-tau235 difference,
9%; 95% CI, 1%-19%; P = .02) . These results were replicated with plasma p-tau181

(difference, 11%; 95% CI, 1%-22%; P = .02), p-tau217 (difference, 9%; 95% CI, 1%-19%;
P = .02), p-tau231 (difference, 13%; 95% CI, 3%-24%; P = .009), and CSF p-tau181

(difference, 9%; 95% CI, 1%-21%; P = .02) in independent cohorts.

CONCLUSIONS AND RELEVANCE Results of this cross-sectional study of 2 observational cohorts
suggest that the p-tau abnormality as an early event in AD pathogenesis was associated with
amyloid-β accumulation and highlights the need for careful interpretation of p-tau
biomarkers in the context of the amyloid/tau/neurodegeneration, or A/T/(N), framework.
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A lzheimer disease (AD) is defined by the presence of
cerebral amyloid-β plaques and tau neurofibrillary
tangles.1,2 The A/T/(N) biomarker classification sys-

tem identifies 3 classes of AD biomarkers: amyloid-β, tau, and
neurodegeneration, in which amyloid-β and tau biomarkers
are specific to AD.3,4 Amyloid-β biomarkers include amyloid
positron emission tomography (PET) as well as cerebrospinal
fluid (CSF) and plasma concentrations of amyloid-β. Tau
biomarkers include quantification of insoluble neurofibril-
lary tangles using PET, as well as soluble phosphorylated tau
(p-tau) in the CSF and plasma. Because of their specificity, amy-
loid-β and tau biomarkers are increasingly used in AD
diagnosis5 and as inclusion criteria for disease-modifying
clinical trials.6,7

Although soluble p-tau biomarkers are interpreted as bio-
markers of tau pathology, several recent observational stud-
ies provide evidence that concentrations of p-tau are closely
correlated with amyloid-β deposition.8-14 A longitudinal study
in autosomal dominant AD provides evidence that concentra-
tions of soluble p-tau biomarkers begin to rise in conjunction
with amyloid-β aggregation, several years before neocortical
tau abnormality.15 Furthermore, longitudinal biomarker
studies in sporadic AD report that soluble p-tau217 mediates
the association between amyloid-β and tau-PET change.8,16

Correspondingly, recent biomarker models of AD suggest that
p-tau reflects a state between amyloid-β plaques and tau
aggregation.16-18 However, it is unclear to what extent bio-
fluid measurements of p-tau are preferentially associated with
the presence of amyloid-β or tau neurofibrillary tangles in the
brain.

The objective of the current study was to determine
whether soluble p-tau biomarkers are preferentially associ-
ated with cerebral amyloid-β plaques or tau neurofibrillary
tangles. We evaluated the association between 4 p-tau bio-
markers in the CSF (p-tau181, p-tau217, p-tau231, p-tau235) and
3 in plasma (p-tau181, p-tau217, p-tau231) with amyloid-β and tau
aggregation assessed with PET in the Translational Biomark-
ers in Aging and Dementia (TRIAD) study cohort. In addition,
we evaluated the association between CSF p-tau181 with amy-
loid PET and tau PET in the Alzheimer Disease Neuroimaging
Initiative (ADNI) cohort.

Methods
Participants
Translational Biomarkers in Aging and Dementia
This study was approved by the Montreal Neurological Insti-
tute PET working committee and the Douglas Mental Health
University Institute Research Ethics Board. Written informed
consent was obtained for all participants. For this cross-
sectional study, we assessed 2 independent subsamples of
participants in the TRIAD19 cohort: a CSF p-tau subsample
(n = 181) and a plasma p-tau subsample (n = 171). Partici-
pants included in the CSF subsample had measures of CSF
p-tau (p-tau181, p-tau217, p-tau231, p-tau235), amyloid PET
with [18F]AZD4694, tau PET with [18F]MK6240, and mag-
netic resonance imaging (MRI). The median (IQR) time dif-

ference between CSF and PET data collection was 53 (86)
days. In the second subsample (n = 171), individuals had
measures of plasma p-tau (p-tau181, p-tau217, p-tau231), amy-
loid PET with [18F]AZD4694, tau PET with [18F]MK6240, and
MRI. The median (IQR) time difference between plasma and
PET data collection was 70 (112) days. The individuals in the
second TRIAD subsample did not have CSF measures of
p-tau and thus represent an independent sample of indi-
viduals. Participants had paired fluid p-tau and PET bio-
marker assessments available within a 9-month interval.
All individuals were included between October 2017 and
August 2021. Individuals from the following race and ethnic-
ity categories were included: Asian, Black, Hawaiian/Pacific
Islander, Hispanic/Latinx, non-Hispanic/Latinx, multiracial,
White, and unknown/not reported. Race and ethnicity were
identified using official National Institutes of Health classifi-
cations. This study followed the Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE)
reporting guidelines.

Cognitively unimpaired (CU) individuals had no objec-
tive cognitive impairment and a Clinical Dementia Rating
(CDR) score of 0. Individuals with mild cognitive impairment
had subjective and/or objective cognitive impairment and a
CDR score of 0.5.20 Individuals with dementia had a CDR
score of 1 or 2.21 Participants were excluded from this study
if they had systemic conditions that were not adequately
controlled through a stable medication regimen. Other
exclusion criteria were active substance abuse, recent head
trauma, recent major surgery, or MRI/PET safety contraindi-
cations. PET acquisition and processing are described in
eMethods 1 of the Supplement. All p-tau residues measured
from the CSF, as well as plasma p-tau181 and p-tau231, were
quantified in the Clinical Neurochemistry Laboratory,
University of Gothenburg, Mölndal, Sweden, by scientists
blinded to participant clinical and PET information; this
information is described in detail in eMethods 2 of Supple-
ment. Plasma p-tau217 was quantified by scientists at Jans-
sen Research & Development blinded to clinical and PET
information.

Key Points
Question Do soluble phosphorylated tau (p-tau) biomarkers
preferentially reflect the presence of cerebral β-amyloidosis
or tau neurofibrillary tangle aggregation?

Findings In this cross-sectional study of 2 observational cohorts,
4 p-tau biomarkers in the cerebrospinal fluid (CSF; p-tau181,
p-tau217, p-tau231, p-tau235) were significantly more closely
associated with amyloid PET (positron emission tomography) than
with tau PET. These results were replicated in an independent
group of individuals with plasma p-tau181, p-tau217, and p-tau231

and in another independent cohort with CSF p-tau181.

Meaning Results suggest that soluble p-tau biomarkers are more
closely associated with cerebral amyloid-β than with tau
aggregation assessed with PET; this finding supports the need for
careful interpretation of p-tau biomarkers in the context of the
amyloid/tau/neurodegeneration, or A/T/(N), framework.
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Alzheimer Disease Neuroimaging Initiative
The ADNI study was approved by the institutional review boards
of all participating institutions. All participants provided in-
formed written consent. We examined the open-access ADNI
cohort, a North American multisite cohort launched in 2003.
All participants had amyloid PET with [18F]florbetapir, tau-
PET with [18F]flortaucipir, and CSF p-tau181. ADNI PET acqui-
sition and processing data are described in eMethods 1 of the
Supplement, and CSF p-tau181 quantification is described in
eMethods 2 of the Supplement. The median (IQR) time
difference between CSF and PET data collection was 13 (29) days.
CU participants had a CDR of 0, individuals with mild cogni-
tive impairment had a CDR of 0.5, and individuals with demen-
tia had a CDR score of 1 or 2. Full information regarding the ADNI
inclusion and exclusion criteria is available on the ADNI infor-
mational site.22 Plasma p-tau181 was not investigated in ADNI
due to the small number of individuals with plasma p-tau
evaluations and tau PET at the same visit.

Statistical Analysis
Statistical analyses were performed in R, version 4.1.1 (R Foun-
dation for Statistical Computing) and Matlab, version 2015a
(MathWorks). Assumptions of normality were tested using the
D’Agastino-Pearson normality test. Associations between
p-tau biomarkers with [18F]AZD4694 PET and [18F]MK6240
PET were investigated using the Spearman nonparametric test.
Statistical evaluation of whether correlations were signifi-
cantly different was performed in R using the cocor package,23

a statistical framework for comparing associations between
intercorrelated measurements. As secondary confirmatory
analyses, we conducted partial correlation analyses to deter-
mine the extent to which p-tau biomarker concentrations were
associated with amyloid PET when correcting for tau PET and
tau PET correcting for amyloid PET using the ppcor package.
We also conducted analyses correcting for age and sex. P values
were 2-sided, and statistical significance was defined as P <.05.

Because PET measures of pathology reflect accumulation
withinspecificbrainregions,whichmaypreferentiallyreflectpro-
tein aggregation at specific disease stages, we conducted supple-
mentary sensitivity analyses stratified by cognitive impairment,
and we used summary composite regions of interest (ROIs) con-
sidered to become positive earlier in the AD process. For amy-
loid PET, the Biofinder Early Aβ-PET ROI24 was used, and for tau
PET, the inferior temporal cortical ROI was used, previously
implemented to capture early tau aggregation in studies of CU
individuals25,26 and in the early stages of autosomal dominant
AD.27 We also compared global amyloid PET with tau-PET up-
take in Braak I-II regions. We also compared CSF concentrations
ofAβ(indexedbytheAβ42/40ratio)withtau-PETuptake.Finally,
we compared whole-cortex amyloid-PET and whole-cortex
tau-PET standardized uptake value ratios (SUVRs).

Results
Participants
A total of 609 participants (mean [SD] age, 66.9 [13.6] years;
347 female [57%]; 262 male [43%]) were included in the study.

The first TRIAD subsample included 181 participants; the sec-
ond subsample included 171 participants. The mean (SD) age
of participants in the CSF TRIAD subsample was 61.7 (17.9)
years, with 196 female individuals (55.7%) and 156 male indi-
viduals (44.3%). The mean (SD) age of participants in the
plasma TRIAD subsample was 66.3 (15.2) years, with 113 fe-
male individuals (66.1%) and 58 male individuals (33.9%). The
ADNI cohort included a total of 257 participants (mean [SD]
age, 70.6 [6.7] years; 131 female [51.0%]; 126 male [49.0%]).
Our study included the following race and ethnicity groups:
17 Asian (2.8%), 17 Black (2.8%), 1 Hawaiian/Pacific Islander
(0.2%), 10 Hispanic/Latinx (1.6%), 577 non-Hispanic/Latinx
(94.7%), 4 multiracial (0.7%), 551 White (90.5%), and 19 un-
known/not reported (3.1%). Demographic, clinical, and bio-
marker information for all samples is reported in the Table.

Associations Between CSF p-Tau and PET Biomarkers
Figure 1 displays voxelwise associations between CSF
p-tau181, p-tau217, p-tau231, and p-tau235 with amyloid PET and
with tau PET in the TRIAD cohort. CSF p-tau231 and p-tau217

had the strongest associations with amyloid PET across the ce-
rebral cortex. Lower correlations were observed across the ce-
rebral cortex for CSF p-tau181, p-tau217, p-tau231, and p-tau235

with tau PET. For all CSF p-tau phosphorylation sites, corre-
lations above 0.65 were restricted to the medial temporal
cortices. Frequency distributions of correlations are dis-
played in Figure 1C. For all p-tau biomarkers, associations
with amyloid PET were more widespread across the brain.

Figure 2 displays associations between CSF p-tau biomark-
ers with summary measures of amyloid PET and tau PET in the
TRIAD cohort. CSF concentrations of p-tau217 and p-tau231 were
the most closely associated with neocortical summary mea-
surements of amyloid PET (p-tau217, ρ = 0.77; 95% CI, 0.69-
0.82; P < .001; p-tau231, ρ = 0.80; 95% CI, 0.73-0.85; P < .001).
Correlations for CSF p-tau181 and p-tau235 with summary amy-
loid-PET SUVR were relatively lower (p-tau181, ρ = 0.70;
95% CI, 0.61-0.77; P < .001; p-tau235, ρ = 0.70; 95% CI, 0.60-
0.76; P < .001). When investigating associations between CSF
p-tau phosphorylation and tau-PET summary measurements,
we observed that p-tau217 and p-tau231 biomarkers were most
closely associated with tau PET in the temporal meta-ROI
(p-tau217, ρ = 0.66; 95% CI, 0.57-0.74; P < .001; p-tau231,
ρ = 0.65; 95% CI, 0.56-0.73; P < .001). Lower correlations were
observed for p-tau181 and p-tau235 (p-tau181, ρ = 0.57; 95% CI,
0.46-0.66; P < .001; p-tau235, ρ = 0.61; 95% CI, 0.50-0.70;
P < .001). Comparison of correlations revealed that for all p-
tau phosphorylation sites, p-tau was significantly more closely
associated with summary measurements of amyloid PET than
with summary measures of tau-PET (p-tau181 difference, 13%;
t value = 2.54; P = .006; 95% CI, 0.03-0.22; p-tau217 differ-
ence, 11%; t value = 2.77; P = .003; 95% CI, 0.03-0.20;
p-tau231 difference, 15%; t value = 3.96; P < .001; 95% CI, 0.05-
0.22; p-tau235 difference, 9%; t value = 1.98; 95% CI, 0.01-
0.19; P = .02). In sensitivity analyses using the early amyloid
PET from the Biomarkers for Identifying Neurodegenerative
Disorders Early and Reliably (BioFINDER) study and inferior
temporal ROIs, all p-tau biomarkers were more closely asso-
ciated with amyloid PET than tau PET (eResults, eFigure 1, and
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Table. Demographic Characteristics of the Samples

Characteristic

No. (%)

Young adults

Cognitively
unimpaired
older adults

Mild cognitive
impairment Dementia

A: TRIAD cerebrospinal fluid sample

No. 27 86 45 23

Age, mean (SD), y 22.8 (1.9) 69.5 (8.0) 71.3 (7.5) 62.4 (6.5)

Sex

Male 11 (40.7) 32 (37.2) 18 (40.0) 12 (52.2)

Female 16 (59.3) 54 (62.8) 27 (60.0) 11 (47.8)

Education, mean (SD), y 16.7 (1.5) 14.8 (3.5) 14.9 (3.2) 15.1 (3.5)

APOE ε4 carriers, % 6 (22.2) 25 (29.1) 17 (37.7) 13 (56.5)

MMSE, mean (SD) 29.8 (0.5) 29.1 (1.0) 27.7 (1.8) 18.7 (5.6)

Self-reported race

American Indian/Alaskan Native 0 (0) 0 (0) 0 (0) 0 (0)

Asian 9 (33.3) 0 (0) 1 (2.2) 1 (4.3)

Black 1 (3.7) 1 (1.2) 0 (2.3) 0 (0)

Hawaiian/Pacific Islander 0 (0) 0 (0) 0 (0) 0 (0)

Multiracial 1 (3.7) 0 (0) 0 (0) 0 (0)

White 16 (59.3) 78 (90.7) 42 (93.3) 21 (91.3)

Unknown/not reported 0 (0) 7 (8.1) 2 (4.4) 1 (4.3)

Self-reported ethnicity

Hispanic/Latinx 0 (0) 1 (1.2) 0 (0) 0 (0)

Not Hispanic/Latinx 27 (100) 78 (90.7) 43 (95.5) 21 (91.3)

Unknown/not reported 0 (0) 7 (8.1) 2 (4.4) 2 (8.7)

B: TRIAD plasma sample

No. 9 88 43 31

Age, mean (SD), y 22.6 (1.6) 69.5 (12.2) 67.2 (11.4) 69.0 (9.7)

Sex

Male 2 (22.2) 27 (30.7) 17 (39.5) 12 (38.7)

Female 7 (77.8) 61 (69.3) 26 (60.5) 19 (61.3)

Education, mean (SD), y 16.1 (1.4) 15.9 (4.0) 15.2 (4.1) 13.8 (3.6)

APOE ε4 carriers, % 3 (33.3) 19 (21.6) 15 (38.5) 15 (48.3)

MMSE, mean (SD) 30.0 (0.0) 29.2 (1.1) 28.0 (1.8) 20.0 (5.9)

Self-reported race

American Indian/Alaskan Native 0 (0) 0 (0) 0 (0) 0 (0)

Asian 4 (44.4) 0 (0) 1 (2.3) 1 (3.2)

Black 0 (0) 1 (1.1) 1 (2.3) 0 (0)

Hawaiian/Pacific Islander 0 (0) 0 (0) 0 (0) 0 (0)

Multiracial 0 (0) 0 (0) 0 (0) 0 (0)

White 5 (55.6) 80 (90.9) 41 (95.3) 28 (90.3)

Unknown/not reported 0 (0) 7 (7.9) 0 (0) 2 (6.5)

Self-reported ethnicity

Hispanic/Latinx 0 (0) 1 (1.1) 0 (0) 0 (0)

Not Hispanic/Latinx 9 (100) 80 (90.1) 43 (100) 29 (93.5)

Unknown/not reported 0 (0) 7 (7.8) 0 (0) 2 (6.5)

C: ADNI CSF sample

No. 0 153 88 16

Age, mean (SD), y NA 71.4 (6.3) 69.7 (7.1) 67.9 (8.0)

Sex, No. (%)

Male
NA

63 (41.2) 54 (61.4) 9 (56.2)

Female 90 (58.8) 34 (38.6) 7 (43.8)

Education, mean (SD), y NA 16.8 (2.4) 16.6 (2.6) 15.4 (2.2)

(continued)
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eTable 5 in the Supplement). A summary of correlation com-
parisons for summary PET measures in the CSF TRIAD sample
is provided in eTable 1 in the Supplement. A similar pattern of
results was observed when examining CSF Aβ42/40 and tau-
PET (eResults, eFigure 2, and eTable 2 in the Supplement). The
CSF Aβ42/40 ratio was more closely associated with amyloid
PET than tau PET (eFigure 3 in the Supplement). In analyses
stratified by the presence of cognitive impairment, p-tau bio-
markers were much more strongly associated with amyloid PET
in CU individuals, whereas no differences were detected in cog-
nitively impaired individuals (eTables 3 and 4 in the Supple-
ment). Analyses comparing amyloid PET and tau PET across
the entire cerebral cortex yielded the same pattern of results,
although the results were stronger in magnitude (eTable 6 in
the Supplement). In analyses comparing global amyloid PET
to tau PET in Braak I-II regions, only p-tau217 and p-tau231 were
significantly more closely associated with amyloid PET
(eTable 7 in the Supplement). Partial correlation analyses re-
vealed that CSF p-tau biomarkers were more closely associ-
ated with amyloid PET when controlling for tau-PET (eTable 8
in the Supplement). The same pattern of results held when con-
trolling for age (eTable 9 in the Supplement) and sex (eTable 10
in the Supplement). Furthermore, CSF p-tau181 in ADNI was
more closely correlated with summary measurements of amy-
loid PET than with summary measurements of tau PET (t value,
2.21; 95% CI, 0.01-0.21; P < .05) (Figure 3). Subgroup analy-
ses are reported in the eTable 11 in the Supplement.

Associations Between Plasma p-Tau and PET Biomarkers
Finally, we investigated associations of plasma concentra-
tions of p-tau181, p-tau217, and p-tau231 with amyloid PET and
tau PET in a nonoverlapping subsample in TRIAD (the indi-
viduals in the plasma analyses reported here did not undergo
CSF p-tau assessments). Voxelwise analyses revealed that
plasma p-tau181, p-tau217, and p-tau231 had strong associations
with amyloid PET across the neocortex (Figure 4). Further-
more, p-tau181, p-tau217, and p-tau231 were closely associated

with summary measures of amyloid-PET uptake (p-tau181,
ρ = 0.61; 95% CI, 0.49-0.70; P < .001; p-tau217, ρ = 0.74;
95% CI, 0.66-0.81; P < .001; p-tau231, ρ = 0.62; 95% CI, 0.51-
0.73; P < .001). In comparison, associations between plasma
concentrations of p-tau181, p-tau217, and p-tau231 with tau PET
were lower (p-tau181, ρ = 0.50; 95% CI, 0.39-0.64; P < .001;
p-tau217, ρ = 0.64; 95% CI, 0.54-0.73; P < .001; p-tau231,
ρ = 0.49; 95% CI, 0.37-0.61; P < .001), including in medial
temporal cortices. Comparison of correlations revealed that
p-tau181, p-tau217, and p-tau231 were significantly more closely
associated with amyloid PET than with tau PET (plasma
p-tau181 difference, 11%; 95% CI, 1%-22%; P = .02; p-tau217 dif-
ference, 9%; 95% CI, 1%-19%; P = .02; p-tau231 difference,
13%; 95% CI, 3%-24%; P = .009). A summary of the correla-
tion comparisons in the plasma TRIAD sample is provided in
eTable 12 in the Supplement. Partial correlation analyses re-
vealed that plasma p-tau biomarkers were more closely asso-
ciated with amyloid PET when controlling for tau PET (eTable 13
in the Supplement). Results were similar when controlling
for age (eTable 14 in the Supplement).

Discussion
This cross-sectional study of 2 observational cohorts investi-
gated the association between fluid measures of p-tau with
amyloid-β plaques and tau neurofibrillary tangles assessed with
PET. For all 4 p-tau phosphorylation sites examined in CSF,
p-tau was more closely associated with cerebral amyloid-β
plaques than with tau neurofibrillary tangles. These results were
replicated with plasma p-tau181, p-tau217, and p-tau231 in an in-
dependent subsample and with CSF p-tau181 in a large indepen-
dent cohort of individuals assessed with different amyloid-
PET and tau-PET imaging agents. Our findings highlight the need
for careful interpretation of p-tau biomarkers in the context of
the A/T/(N) biomarker framework and for the biomarker-
assisted identification of AD, especially in CU individuals.

Table. Demographic Characteristics of the Samples (continued)

Characteristic

No. (%)

Young adults

Cognitively
unimpaired
older adults

Mild cognitive
impairment Dementia

APOE ε4 carriers, % NA 50 (32.9) 34 (41.5) 11 (68.8)

MMSE, mean (SD) NA 29.1 (1.2) 27.9 (2.0) 20.9 (2.8)

Self-reported race, No. (%)

American Indian/Alaska Native

NA

0 (0) 0 (0) 0 (0)

Asian 0 (0) 0 (0) 0 (0)

Black 10 (6.5) 2 (2.3) 1 (6.3)

Hawaiian/Pacific Islander 0 (0) 1 (1.1) 0 (0)

Multiracial 3 (2.0) 0 (0) 0 (0)

White 140 (91.5) 85 (96.6) 15 (93.7)

Unknown/not reported 0 (0) 0 (0) 0 (0)

Self-reported ethnicity, No. (%)

Hispanic/Latinx

NA

6 (3.9) 2 (2.3) 0 (0)

Not Hispanic/Latinx 145 (94.8) 86 (97.7) 16 (100)

Unknown/not reported 2 (1.3) 0 (0) 0 (0)

Abbreviations: ADNI, Alzheimer’s
Disease Neuroimaging Initiative;
APOE, apolipoprotein E;
CSF, cerebrospinal fluid;
MMSE, Mini-Mental State
Examination; NA, not applicable;
SUVR, standardized uptake value
ratio; TRIAD, the Translational
Biomarkers in Aging and Dementia.
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Observational studies in humans have reported strong cor-
relations between concentrations of amyloid PET and p-tau at
various phosphorylation sites in individuals at different clinical
stages of AD.14,17,28-30 Strong associations between antemor-
tem plasma p-tau181, p-tau217, and p-tau231 with amyloid-β
plaques at autopsy have also been reported.31 In longitudinal
observational studies, CU individuals with elevated amyloid-
PET burden had increased concentrations of plasma and CSF
p-tau217 and p-tau181 in the absence of neocortical tau-PET
deposition.16,32,33 Furthermore, soluble p-tau appeared to drive
the association between amyloid-β plaques and insoluble tau
aggregation measured with PET.16,33 In individuals with domi-
nantly inherited AD, p-tau217 closely followed by p-tau181

increased in response to amyloid-β accumulation, subse-
quently followed by tau-PET abnormality several years later.15

Furthermore, plasma p-tau181 is elevated in individuals who
are amyloid-PET positive but tau-PET negative (even in Braak
I regions)32 and is elevated approximately 16 years before the
onset of symptoms in dominantly inherited AD.34 Moreover,

a study using PET-based Braak staging suggested that both
amyloid-PET and p-tau concentrations in CSF plateau at late
stages of tangle aggregation,35 in agreement with a recent
autopsy study.36 Taken together, these studies provide con-
verging evidence supporting strong associations between
amyloid-β plaques and p-tau biomarkers, which both pre-
cede widespread neurofibrillary tangle aggregation.

Several recent preclinical studies have reported that soluble
p-tau levels in cell media, human tissue samples, and mouse
models rise in response to aggregated amyloid-β.37-40 In vitro
models suggest that tau hyperphosphorylation is induced in
neurons that take up neuronally secreted amyloid-β.37,38

Amyloid-β plaques are also linked to increased neuronal re-
lease of hyperphosphorylated tau.39 Studies in transgenic mice
report that p-tau concentrations in CSF rise as a consequence
of amyloid-β deposition,40 and human neural stem cell–
derived cell culture systems overexpressing APP and PSEN1
induced tau phosphorylation closely linked with amyloid-β
concentrations.41 A study using stable isotope labeling kinet-

Figure 1. Association of Cerebrospinal Fluid (CSF) Phosphorylated Tau (p-Tau) Biomarkers With Amyloid Positron Emission Tomography (PET)
and Tau PET Across the Cerebral Cortex
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Brain images show the distribution of associations between CSF p-tau biomarkers (p-tau181, p-tau217, p-tau231, and p-tau235) and [18F]AZD4694 amyloid PET (A) and
[18F]MK6240 tau PET (B). C, Density plots depict the magnitude and frequency of the correlations in voxels per CSF p-tau epitope and imaging biomarker. For all
CSF p-tau phosphorylation sites, most voxels had correlation values with amyloid PET between 0.65 and 0.75. In contrast, the majority of voxels had correlations
around 0.50 with tau PET, with limited numbers of voxels having correlations between 0.65 and 0.75.
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ics in humans demonstrated that soluble p-tau production was
positively correlated with amyloid-PET signal but did not

change in the presence of elevated tau PET.42 These studies
support increased tau phosphorylation as an early event in the

Figure 2. Association of Cerebrospinal Fluid (CSF) Phosphorylated Tau (p-Tau) Biomarkers
With Summary Amyloid Positron Emission Tomography (PET) and Tau PET Outcomes
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Association of Phosphorylated Tau Biomarkers With Amyloid PET vs Tau PET Original Investigation Research

jamaneurology.com (Reprinted) JAMA Neurology Published online December 12, 2022 E7

Downloaded From: https://jamanetwork.com/ by a University College London User  on 12/29/2022

http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.4485


Figure 4. Association of Plasma Phosphorylated Tau (p-Tau) Biomarkers With Amyloid Positron Emission Tomography (PET) and Tau PET
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Figure 3. Association of Cerebrospinal Fluid (CSF) Phosphorylated Tau (p-Tau)181 Biomarkers With Summary
Amyloid Positron Emission Tomography (PET) and Tau PET in the Alzheimer’s Disease Neuroimaging Initiative
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amyloid-β cascade, closely linked with concentrations of
amyloid-β pathology.

Recent p-tau biomarker studies have raised questions
about the preferential association of various p-tau epitopes with
AD stage, severity, and neuropathological hallmarks.43 Tau can
be phosphorylated at over 80 different sites on the tau
protein,44 and the pathophysiological roles of phosphoryla-
tion at different sites are unclear.45 However, recent studies
have provided evidence that specific p-tau phosphorylation
sites appear to become elevated in a disease stage-dependent
manner15,46 and that phosphorylation at specific peptides is
associated with increased tau seeding activity and clinical dis-
ease progression.47 In our study, p-tau biomarkers were most
closely associated with tau aggregation in medial temporal
brain regions (though still less so than with global amyloid PET),
supporting p-tau as an early biomarker. This result is consis-
tent with a recent community-based study that observed a
stronger association between plasma p-tau with entorhinal tau
PET than commonly used summary measures of tau PET.48

Of the 4 p-tau biomarkers examined in CSF, p-tau217 and
p-tau231 showed the highest association with amyloid PET.
In plasma, p-tau217 was most closely associated with cerebral
amyloid-PET concentrations. Although site-specific patterns
of tau phosphorylation may provide information regarding
disease stage in AD, it also will be crucial to understand the
contribution of analytical properties of different assays.

Our study highlights the need for a granular approach
to tau biomarkers, in which different tau biomarkers pro-
vide complementary but not interchangeable infor-
mation.21,28,45,49,50 Although the tau biomarker category in the
A/T/(N) framework currently includes tau PET and p-tau in
biofluids,3,4 it is important to draw distinctions between both
classes of biomarkers. Tau-PET ligands are considered to bind
to insoluble neurofibrillary tangles, consisting of paired heli-
cal filament aggregates of hyperphosphorylated tau.51,52 Fluid
biomarkers of soluble p-tau, in contrast, measure the concen-
tration of tau phosphorylated at specific serine, threonine, or
tyrosine amino acids on the tau protein, which have leaked
from the extracellular space into the CSF or blood compart-
ments. CSF and plasma p-tau biomarkers are reported to rise
early in the AD pathophysiological process.8,16 Tau tangle ag-
gregation measured with PET occurs later and is strongly pre-
dictive of cognitive decline.53 In this connection, the much
higher association of p-tau biomarkers with amyloidosis than
tangle burden in CU individuals suggests that p-tau biomark-
ers may be less well-positioned to predict future cognitive de-
cline. In contrast, the high association of p-tau biomarkers with
both amyloidosis and tangle burden in individuals with cog-
nitive impairment suggest that abnormal p-tau biomarkers
have a strong predictive value for AD in diagnostic settings.

Taken together, these results highlight the need to distin-
guish between biomarkers of phosphorylated and ag-
gregated tau in the A/T/(N) framework, particularly in CU
individuals.

Limitations
Results of this study should be interpreted in the context of
several limitations. First, tau (hyper)phosphorylation is a dy-
namic process, the understanding of which is anticipated to
evolve with respect to the availability of more biomarkers. Be-
cause tau can be phosphorylated at over 80 sites, some of which
are hypothesized to have site-specific associations with dis-
ease stage, it is unknown whether all future p-tau biomarkers
will exhibit the preferential association with amyloid PET re-
ported in this study. Another limitation is that PET biomarker
signals (used in this study as measurements of amyloid-β
plaques and tau tangles) are influenced by their affinities
(1 / equilibrium dissociation constant [Kd]) for their target. How-
ever, because [18F]MK6240 has a higher affinity for tau tangles
than [18F]AZD4694 does for amyloid-β plaques, the stronger
association of p-tau with amyloid PET is unlikely to be driven
by sensitivity issues. Replication in an independent cohort
(ADNI) with different PET imaging agents helps further at-
tenuate these concerns. Similar to PET biomarkers, biofluid as-
say performance can affect interpretation of the results in this
study. For example, it is unclear to what degree the stronger
associations of p-tau217 and p-tau231 with PET biomarkers are
driven by biological properties of phosphorylation of a spe-
cific amino acid compared with differences in the assays used
to detect them (ie, antibody affinity, robustness of individual
reagents, assay platform). Other limitations of this study in-
clude the lack of availability of plasma p-tau235 in the TRIAD
cohort and the lack of availability of plasma p-tau181 at the same
time point as tau-PET in ADNI. Furthermore, the TRIAD and
ADNI cohorts consist of individuals motivated to participate
in a study of AD, which may limit generalizability. Finally,
the cohorts are not demographically representative of the
populations at risk for dementia in North America.

Conclusions
In conclusion, results of this cross-sectional study of 2 obser-
vational cohorts suggest that p-tau biomarkers better reflect
the concentration of amyloid-β plaques than cerebral tau
pathology quantified with PET. Our findings contribute to the
growing understanding of the role of tau phosphorylation in
the amyloid-β cascade and highlight the need for careful in-
terpretation of p-tau biomarkers in CU individuals and as
outcomes in disease-modifying clinical trials.7
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