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Abstract Anguillid eels are near globally distrib-
uted catadromous fishes with marine spawning areas 
and inshore and inland growth areas in both lotic (riv-
ers, estuaries) and lentic (lakes, ponds, lagoons) water 
bodies. As predators, anguillid eels play an impor-
tant ecological role in both marine and freshwater 
systems, and several species are harvested commer-
cially for food. However, some of the more widely 
distributed species have undergone severe declines 
in recruitment and their population status is now of 
significant concern. Given the multiple and lengthy 
migrations undertaken by anguillid eels, understand-
ing of the drivers of movement is fundamental for 
species conservation and management. Yet, despite 
the importance of lentic systems to their ecology, 
most studies on anguillid eel movement have been 

conducted in lotic systems. Given that key influ-
ences on eel migration in lotic water bodies, such as 
fluctuations in flow and water temperature, may be 
minimised in lentic environments, the transferabil-
ity of findings between lotic and lentic systems can-
not be assumed. A systematic map was constructed 
to synthesise current knowledge on the extrinsic and 
intrinsic drivers of anguillid eel movement in lentic 
systems. The current state of knowledge of the drivers 
of eel movement in lentic systems is presented and 
compared to the relatively well-understood drivers 
of movement in lotic systems. We also discuss cur-
rent knowledge gaps and limitations, and identify key 
future research requirements to inform the manage-
ment and conservation of anguillid eels in understud-
ied lentic systems.
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Introduction

Anguillid eels are a taxonomic group comprised of 19 
different species and subspecies (Arai 2020; Righton 
et al. 2021; Jellyman 2022) that are globally distrib-
uted, with the exception of the eastern Pacific and 
South Atlantic (Jacoby et al. 2015; Béguer-Pon et al. 
2018a, b; Arai 2020; Righton et al. 2021). Anguillid 
eels have a unique set of morphological and behav-
ioural traits which has enabled them to become a 
successful and widespread genus (Jellyman 2022). 
These traits include high fecundity and semelparous 
spawning, physiological and behavioural adaptability 
to diverse aquatic environments, resilience to extreme 
environmental conditions, and being energetically 
conservative (Arai 2020; Jellyman 2022). However, 
despite their resilience and adaptability, and in line 
with other marine and freshwater populations (WWF 
2016, 2020), many anguillid eel species have experi-
enced considerable declines in recent decades (Jacoby 
et al. 2015; Drouineau et al. 2018). These are due to a 
combination of factors including exploitation, climate 
change and natural system modifications (Jacoby 
et al. 2015; Drouineau et al. 2018). Juvenile glass eel 
recruitment in the European eel (Anguilla anguilla), 
American eel (A. rostrata), Japanese eel (A. japonica) 
and New Zealand longfin eel (A. dieffenbachii) have 

declined by over 90%, 95%, 80%, and 75%, respec-
tively, since 1970s/1980s (Arai 2022a). As such, 13 
of the 19 species and sub species are threatened by 
extinction (Jellyman 2022). Due to these population 
declines, their importance as a food source (Dekker 
2019; Arai 2022a), their cultural significance in many 
countries and their ecological role in both marine and 
freshwater ecosystems, the conservation and manage-
ment of anguillid eels is starting to be recognised as 
an essential part of national and international conser-
vation plans (Jacoby et  al. 2015; Kaifu et  al. 2021; 
Arai 2022a).

In contrast to lotic waterbodies which are char-
acterised by flowing or swiftly flowing water, (e.g. 
rivers and streams), lentic systems pertain to still 
waterbodies with minimal or no flowing water, such 
as ponds, lakes and lagoons (Prescott & Eason 2018; 
Mochek & Pavlov 2021). Lentic systems represent 
important habitats for facultatively catadromous 
anguillid eels (Jacoby et  al. 2015; Jellyman 2022) 
which may spend a significant portion of their growth 
phase in these waterbodies (Vélez-Espino & Koops 
2010; Arai et al. 2019). Lacustrine areas are particu-
larly important for the production of females (Oliveira 
et  al. 2001; Vélez-Espino & Koops 2010) because 
they provide deeper waters and access to large prey 
that support high densities of eels which may not 
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be available in lotic systems (Degerman et al. 2019; 
Piper et al. 2020). Other lentic environments, such as 
coastal lagoons at the interface between land and sea, 
provide important habitats for a range of anguillid 
life history stages (Arai et al. 2019). Lentic waterbod-
ies may be open, with inlets and outlets that permit 
the movement of water and aquatic biota between the 
water body and surrounding catchment, or they may 
be considered closed systems, such as many reser-
voirs, where natural inflow and outflow are severely 
restricted or absent. Although natural migration of eel 
into reservoirs is severely impeded, they may enter 
as juveniles via pumped inputs and, with favourable 
habitat and little or no opportunity for escapement, 
form significant populations (Bašić et al. 2019).

Closed lentic waters thereby represent an impor-
tant resource in terms of eel conservation, both for 
the populations they already hold, and the large area 
of prime eel habitat contained within them that could 
be utilised through measures to facilitate in- and out-
migration. ‘Trap and transport’, where adult eel are 
aided in their spawning migration through capture 
and translocation to areas with good seaward access 
is one such intervention (Béguer-Pon et al. 2018a, b; 
Piper et  al. 2020). Closed systems may also provide 
important sources of eel for restocking, a conserva-
tion measure which aims to increase population num-
bers by translocating either from different areas or 
from captive grown populations (Pratt and Threader 
2011; Jacoby et al. 2015). Further, these water-bodies 
offer opportunities for controlled experimentation to 
address fundamental questions in eel biology without 
the impacts of immigration and emigration from the 
system (Jacoby et al. 2015; Béguer-Pon et al. 2018a, 
b; Arai 2020; Righton et al. 2021). However, despite 
the widespread use of lentic systems by anguillid eels, 
relatively little research on eel movement and behav-
iour has been conducted in these, as opposed to lotic, 
systems (Béguer-Pon et al. 2018a, b).

Animal movement data is increasingly recognised 
as being vital to formulating effective conservation 
and management strategies for threatened species 
(Martin et al. 2007; Allen and Singh 2016). However, 
there remains a paucity of movement data on some 
species, particularly those within marine and fresh-
water environments (Donaldson et  al. 2014; Hussey 
et  al. 2015; Allen and Singh 2016). Movement data 
on anguillid eels have been collected using a wide 
range of approaches. Coarse scale movement patterns 

can be inferred from otolith microchemistry (Cairns 
et al. 2004; Lamson et al. 2006; Clément et al. 2014) 
and mark-recapture studies using passive integrated 
transponder (PIT) tags (Imbert et al. 2010; Riley et al. 
2011), or visible markers, such as floy (Dekker 1989; 
MacNamara and McCarthy 2014), Carlin (Westin 
1990; Sjöberg et al. 2017), streamer tags (Glova et al. 
1998; Calles et al. 2013), or dyes (Jellyman and Ryan 
1983; Chisnall and Kalish 1993). Finer scale move-
ment data may be obtained through the use of satel-
lite and acoustic telemetry (Béguer-Pon et al. 2018a, 
b), enabling investigation of migration behaviour 
[e.g. Jellyman et  al. (2002), Aerestrup et  al. (2009), 
Manabe et al., (2011), Righton et al., (2016)], preda-
tion (Béguer-Pon et al. 2012; Wahlberg et al. 2014), 
passage at barriers [e.g. Calles et  al., (2012), Piper 
et  al., (2013), Eyler et  al., (2016)], habitat selection 
[e.g. Béguer-Pon (2015), Noda et  al., (2021)], site 
fidelity [e.g. Thibault et  al., (2007), Itakura et  al., 
(2018)], movement activity [e.g. Dutil et al., (1988), 
Kim et al., (2020), Piper et al., (2022)] and environ-
mental drivers of movement [e.g. Crook et al., (2014), 
Stein et al., (2016), Sudo et al., (2017)].

Animal movement is driven by a variety of extrin-
sic (biotic and abiotic) and intrinsic (physiology, 
neurology, life history) factors (Nathan et  al. 2008; 
Williams et al. 2020). The extrinsic and intrinsic driv-
ers of fine scale and large scale movement in anguil-
lid eels have been relatively well investigated in lotic 
systems (Béguer-Pon et  al. 2018a, b) but questions 
remain over whether the same drivers of movement 
are applicable in lentic systems. Lentic and lotic sys-
tems, for example, have different levels of produc-
tivity (Randall et  al. 1995; Vélez-Espino & Koops 
2010), and many factors, such as flow, current and 
turbidity, are severely reduced in lentic water bod-
ies (Haro 2003; Piper et  al. 2020; Trancart et  al. 
2020),which can cause differences in ecosystem 
functioning (Reynolds et al. 1994; Abril et al. 2015). 
Flow is a significant driver of movement and migra-
tion in anguillid eel, and the majority of studies on 
eel movement ecology have been undertaken in lotic 
waterbodies (Béguer-Pon et al. 2018a, b; Bašić et al. 
2019; Piper et  al. 2020). As such, the influence of 
abiotic variables may vary considerably between the 
lentic and lotic systems. Given the important role 
that lentic water bodies play in anguillid eel ecology, 
understanding the drivers of anguillid eel movement 
in lentic water bodies is both pertinent and necessary 
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to formulating effective conservation measures for the 
many threatened species of anguillid eel.

As a first step towards this goal, we constructed a 
systematic map of the literature to review the extrin-
sic and intrinsic drivers of anguillid movement in 
lentic systems with the following aims: (1) examine 
current knowledge of anguillid eel movement ecology 
in lentic water bodies, (2) summarise the intrinsic and 
extrinsic variables that appear to drive eel movement 
in these systems, based on currently available evi-
dence and (3) highlight gaps in knowledge and poten-
tial future directions in the field.

Materials and methods

This systematic map was generated using a methodol-
ogy outlined in James et  al. (2016), CEE guidelines 
(Collaboration for Environmental Evidence, 2013) 
and the RepOrting standards for Systematic Evidence 
Syntheses (ROSES) as developed by Haddaway et al. 
(2018) (Supplementary Information 1).

Stakeholder engagement

Informal conversations with stakeholders from UK 
government agencies and non-profit organisations 
[Environment Agency, Centre for Environment Fish-
eries and Aquaculture Science (Cefas), and Zoologi-
cal Society of London], confirmed that this topic is 
relevant and important for progressing knowledge and 
assisting the conservation and management of fresh-
water eel species world-wide.

Objective of the review

The objective of this systematic map is to provide an 
overview of the intrinsic and extrinsic drivers of eel 
movement in lentic ecosystems. Our primary question 
was: what are the extrinsic and intrinsic drivers of eel 
movement in lentic systems?

Most common questions in systematic maps have 
four definable elements, often referred to as PI/ECO 
(Population, Intervention/Exposure, Comparator, 

Outcome). We evaluated our primary question 
according to the PI/ECO framework (Collabora-
tion for Environmental Evidence, 2013; James et  al. 
2016). These components, and a definition of PI/ECO 
elements, can be found in Supplementary Information 
2 Table S1.

Literature search

Searches followed the now industry standard pro-
cess for collating and synthesising documented evi-
dence (Haddaway and Macura 2018; Haddaway et al. 
2018). Boolean keyword searches were conducted in 
three online databases: Web of Science,1 Scopus2 and 
Google Scholar,3 to incorporate a range of literature 
from multiple sources (Bramer et  al. 2013; Giustini 
& Boulos 2013; Haddaway et al. 2018). All searches 
were conducted in English in Google Chrome using 
incognito mode. All studies identified before 25 Feb-
ruary 2022 were included. The search string Eel* 
OR Anguilla* was included for the population com-
ponents of the primary questions. The terms lentic* 
OR still water* OR lake* OR lacustrine* OR pond* 
OR reservoir* were included to cover the exposure/
intervention components of the research question (see 
Supplementary Information 2 Table  S1), with envi-
ronment* OR habitat* addressing the comparator 
components. Finally, we added behaviour* OR move-
ment* OR telemetry* OR tag* OR mark* to cover 
the outcome components of the research questions. 
Search terms and search options (the location in the 
journal that the keywords were searched for) for each 
search engine can be found in Supplementary Infor-
mation 2 Table S2.

Web of Science identified 107 articles and Scopus 
94 articles which were extracted as csv files (Fig. 1). 
Google Scholar identified 2,220 results. To extract 
articles from Google Scholar, the software Publish or 
Perish was used, which can extract up to the first 1000 
articles of a Google Scholar search (Harzing 2007). 
This software extracted 988 from our search. A total 
of 1,189 articles were imported in Zotero (Trinoskey 
et al. 2009), where duplicates (57) were removed. The 
final 1,132 articles were imported into Sysrev (https:// 
sysrev. com/) and filtered for suitability following a set 
of predetermined rules for eligibility (Supplementary 
Information 2 Table S3).1 https:// www. webof scien ce. com/ wos/ zoorec/ basic- search

2 https:// www. scopus. com/
3 https:// schol ar. google. co. uk/

https://sysrev.com/
https://sysrev.com/
https://www.webofscience.com/wos/zoorec/basic-search
https://www.scopus.com/
https://scholar.google.co.uk/
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Screening of evidence

Screening was undertaken primarily by MJW; how-
ever, spot checks of the final outcomes were under-
taken by ATP. In detail, articles were excluded if, 
first, their titles did not contain one of the terms ‘eel’, 
‘fish’, ‘movement’, ‘telemetry’, ‘environmental’ or 
‘ecology’ (or correlates of these terms); second, if it 
was clear that eels were not the model species, that 
the study was not undertaken in a lentic system, and 
the study was not movement ecology focused, and 
third, if a full text could not be retrieved using either 
the Institute of Zoology or the University College 
London institution subscriptions. Finally, a full text 
screening of the articles was undertaken to ensure 
that eel species were the primary or secondary model 
species, the study was undertaken in a lentic system, 
the study was not ex situ, and the article was in Eng-
lish. The screening process and inclusion criteria of 
articles in relation to PE/ICO elements is summarised 
in Supplementary Information 2 Table S3.

Along with web-based searches, an additional 
search technique known as ‘citation chasing’ was 
used. This obtains lists of references from a group 
of selected studies (backward citation chasing), and 
lists of articles that cite that group of studies (forward 
citation chasing) (Whear et  al. 2014; AlKhars et  al. 
2020). Articles obtained from successful screening 
of web-based searches were uploaded into the cita-
tion chaser app, citationchaser (https:// estech. shiny 
apps. io/ citat ionch aser/) (Haddaway et  al. 2021), to 
generate a list of new articles from backward and for-
ward citation chasing for review, which were screened 
using the process outlined above. The outputs of all 
searches can be found at: https:// zenodo. org/ record/ 
72503 10#. Y1g6z HZKjDc. The full workflow for 
identification and screening of articles for this review 
is outlined in Fig. 1 The complete database is avail-
able to download from https:// sysrev. com/u/ 6827/p/ 
116118.

Se
ar

ch
in

g Records identified through 
Google Scholar (n=988)

Records identified through 
Scopus (n=94)

Records after duplicates 
removed
(n=1132)

Sc
re

en
in

g

Records after title screening
(n=663)

Records after abstract 
screening

(n=52)

Articles retrieved at full text
(n=45)

Articles after full text screening
(n=14 )

Duplicates
(n= 57)

Excluded titles
(n = 464)

Excluded abstracts
(n = 611)

Unretrievable full texts
(Not accessible,  n = 7)

Excluded full texts, with reasons
(n = 31)

Excluded on:
• Not a lacustrine system (n=3)
• Incorrect research focus (n=19)
• Ex-situ study (n=2)
• Non-English article (n=1)
• Eels not model species (n=6)

Sy
nt

he
si

s

Articles included after full text 
screening

(n=36)

Records identified through 
Web of Science (n=107) Citation chaser (n=643)

Records after duplicates 
removed
(n=552)

Records after title screening
(n=486)

Records after abstract 
screening
(n=123)

Articles retrieved at full text
(n=111)

Articles after full text screening
(n=22)

Duplicates
(n=91 –includes 14 from final 

screen)

Excluded titles
(n=66)

Excluded abstracts
(n=363)

Unretrievable full texts
(Not accessible,  n=12)

Excluded full texts, with reasons
(n=89)

Excluded on:
• Not a lacustrine system (n=40)
• Incorrect research focus (n=42)
• Ex-situ study (n=5)
• Non-English article (n=1)
• Eels not model species (n=1)

Fig. 1  Flow diagram for systematic mapping protocol, adapted from (Haddaway et al. 2017). Numbers from each search, and subse-
quent screening, are provided

https://estech.shinyapps.io/citationchaser/
https://estech.shinyapps.io/citationchaser/
https://zenodo.org/record/7250310#.Y1g6zHZKjDc
https://zenodo.org/record/7250310#.Y1g6zHZKjDc
https://sysrev.com/u/6827/p/116118
https://sysrev.com/u/6827/p/116118
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Metadata extraction

A broad range of metadata was extracted from the 
articles remaining after screening (Supplementary 
Information 2 Table S4), consolidated into a database 
(Supplementary Information 3), and changes to these 
categories and variables reported in the systematic 
map. Metadata that could not be obtained was coded 
as “UA” (unattainable). Any metadata category that 
was not applicable to a study was coded as “NA” 
(not applicable). There may be variability, or lack 
of consistency, between articles in how they refer to 
extracted metadata. For example, multiple measure-
ments related to a single variable might be used in 
one article (e.g. water level or daily change in water 
level), or the same variable might be referred to dif-
ferently in different articles (e.g. moon phase, or lunar 
phase). As such, for each metadata extraction cate-
gory, where feasible, measurements were collated and 
grouped for analysis. In this review, the term “varia-
ble” was used to describe a single measurement, such 
as “wind”, “salinity”, or “maturity”. The term “met-
ric” is used to describe a specific measure for quan-
tifying a variable, e.g. “wind speed” or “wind force”, 
or “life stage” or “ocular index”. Details on grouping 
categories from the metadata can be found in Supple-
mentary Information 2 Tables S5 – S8.

Review of current knowledge

The web-based search identified 1,189 articles, 
which following the screening process left 14 arti-
cles for review. Citation chasing from these 14 arti-
cles resulted in an additional 643 articles. Screening 
these left an additional 22 articles, giving a total of 
36 articles for review (Fig. 1). Further details of the 
bibliographic search results can be found at https:// 

sysrev. com/u/ 6827/p/ 116118 and metadata extraction 
database (Supplementary Information 3).

Reviewed articles were published from 1975 to 
2022. Journal articles formed the majority (n = 35) 
of the final reviewed articles, with one MSc thesis. 
Movement ecology was the primary research focus 
(n = 27), but also habitat ecology (n = 4), distribution 
(n = 3) and demographics (n = 2).

This section presents an overview of investigations 
into the movement ecology of anguillid eels in len-
tic water bodies. It includes a summary of the geo-
graphical and taxonomic focus, as well as details of 
the intrinsic and extrinsic variables used within the 
reviewed articles.

Geography, taxonomy and conservation status

Study sites were primarily located in Europe 
(n = 18) or New Zealand (n = 12), with a handful in 
North America (n = 3) and Asia (n = 3). Of the 19 
species/subspecies of Anguillid eel (Righton et  al. 
2021), only 5 [European eel (A. anguilla,), short-
fin (A. australis), New Zealand longfin (A. dieffen-
bachii), Japanese eel (A. japonica) and American 
eel (A. rostrata)] were represented in reviewed arti-
cles, and were all from temperate or subtropical/
temperate regions (Jacoby et al. 2015; Righton et al. 
2021). The species studied covered a range of IUCN 
threat categories, including Near Threatened, NT 
(A. australis), Endangered, EN (A. dieffenbachii, A. 
japonica, A. rostrata), and Critically Endangered, 
CR (A. anguilla). It is worth noting that although 
A. australis is differentiated into two sub species 
[A. australis australis and A. australis schmidtii 
(Righton et al. 2021)], none of the articles where A. 
australis was identified as a study species made this 
distinction.

Table 1  Summary statistics of length and mass per eel species extracted from the 36 reviewed articles

Species Min length (mm) Max length (mm) Median 
length (mm)

Min mass (g) Max mass (g) Median mass (g)

A. anguilla 46.0 1140.0 727.0 90.0 1970.0 799.5
A. australis 55.0 920.0 343.2 NA NA NA
A. dieffenbachii 63.0 1372.0 1036.0 260.0 8800.0 3445.0
A. japonica 525.0 693.0 609.0 212.0 526.0 344.9
A. rostrata 150.0 820.0 593.0 40.0 1373.0 398.0

https://sysrev.com/u/6827/p/116118
https://sysrev.com/u/6827/p/116118
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Life stage and morphology

Life stage data were presented in 75% of studies, 
using a variety of terminologies including silver, yel-
low, elver, glass eel, as well as quantitative catego-
ries such as < 20 cm, 20–50 cm, > 50 cm, < 300 mm 
and > 300  mm total length. For our analysis we 
grouped these into three categories; matured adult; 
immature adult; and juvenile. Typically, silver was 
designated as matured adult, yellow as immature 
adult, and elvers and glass eels as juvenile. For size 
categories, this designation was led by terminol-
ogy within the study (e.g. if a quantitative size cat-
egory was referred to as juvenile or matured adult) 
and with the species descriptions because anguillid 
species mature at different sizes and have different 
maximum lengths. Most studies focused on matured 
adult and/or immature adult eels (24 out of 27) with 
five studies including juveniles.

Length data were presented in 69% of articles 
and mass data in 44% (Table  1). Eleven articles 
(31%) gave information on the sex of the study ani-
mals, with only one addressing male eels.

Study length and season

Full definitions of study length categories can be found 
in Supplementary Information 2 Table  S5. Articles 
most commonly collected data across a mix of seasons 
and years, with continuous multiyear studies the most 
frequent (n = 14), followed by multi season multiyear 
(n = 7) and multi season single year (n = 7) (Fig.  2). 
There was a relatively even spread of seasons covered 
(summer, n = 32, followed by autumn, n = 29, winter, 
n = 22, spring, n = 21). Length of study duration (days) 
was presented in 19 of the 36 reviewed articles and 
ranged from 2 to 1161 days (median 329 days).

Fig. 2  Frequency of study duration categories across the 36 reviewed articles
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Capture, movement data collection, and movement 
metrics

A variety of methods were used to capture anguil-
lid eels in the reviewed papers, including fyke nets 
(n = 21), traps (n = 9), electrofishing (n = 4), pond 
nets (n = 2), trawls (n = 2) and long lines (n = 1). 
Data on capture method was unavailable in only one 
article. Of the nine techniques employed to collect 
movement and distribution data, acoustic telemetry 
(n = 16), catch data (n = 13) and mark recapture 
(e.g. PIT, floy, streamer and carlin tags, and dye) 
(n = 7) were the most prevalent (Fig.  3). Among 
the six response variables used monitor movement 
activity in the studies, count and spatial distribution 
metrics were the most common (n = 21 and n = 19, 
respectively) (Fig.  4). Although detailed data on 
movement, such as home range size and move-
ment extent, could be of value for conservation of 

anguillid eel, the focus of this research was on the 
drivers of different movement metrics, and as such 
metadata on movement metrics were not collected.

Water body characteristics

Seven types of lentic systems were studied within 
the 36 articles, with data collected from a total of 
42 individual water bodies including freshwater 
(n = 31), brackish (n = 10) and saltwater environ-
ments (n = 1) (Fig.  5). These ranged in size and 
depth from 1.2 to 114,000 ha (median 646 ha) and 
from 1.2–444.0 m (median 5 m), respectively. Data 
on 9 and 12 of the 42 water bodies was unavailable 
for size and depth, respectively. Only 1 of the 42 
water bodies was a closed system with no feasible 
route of eel immigration or emigration (Bašić et al. 
2019).

Fig. 3  Frequency of movement and distribution measurement methods found in the reviewed articles
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Fig. 4  Frequency of response variables used to measure movement in the 36 reviewed articles

Fig. 5  Types of different lentic study systems across the 36 reviewed studies, by water type
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Extrinsic and intrinsic drivers of eel movement

All 36 reviewed studies included extrinsic variables 
in their investigations, with metrics of temperature 
(n = 29), flow (n = 29), diel period, (n = 23), lunar 
cycle (n = 20), and season (n = 15) the most common 
(Fig. 6). Overall, these five variables were found to be 
the most significant drivers of anguillid movement in 
lentic systems (Fig. 6).

Intrinsic factors were included in 24 articles. In 
some anguillid eel species, length and mass can be 
proxies of maturity and body condition, respectively. 
However, individuals mature at a wide range of dif-
ferent lengths and masses depending on the latitude/
temperature of the rearing environment and species 
studied (Kotake et  al. 2007; Hagihara et  al. 2012; 
Wakiya et  al. 2019). As such, mass is generally not 
a good proxy for body condition or maturity (Bevac-
qua et  al. 2011a, b) and therefore length, mass, and 

body condition were kept as separate categories. Met-
rics of length (n = 16) were the most frequent intrinsic 
variables used (Fig. 7), followed by maturity (e.g. life 
stage, eye index, age) (n = 11) and mass (n = 8). These 
three metrics, along with sex (n = 4), were also found 
to be the most significant intrinsic drivers of anguillid 
eel movement (Fig. 7).

Discussion

The movement ecology of anguillid eels has primar-
ily been studied in lotic rather than lentic systems 
(Béguer-Pon et al. 2018a, b). In this section, we eval-
uate our findings of the most important extrinsic and 
intrinsic drivers of eel movement in lentic systems in 
the context of evidence from lotic systems.

Fig. 6  Frequency of extrinsic factors used as explanatory variables to investigate drivers of Anguillid eel movement in the 36 arti-
cles reviewed. Variables are ranked by the number of studies that identified a significant relationship



157Rev Fish Biol Fisheries (2023) 33:147–174 

1 3
Vol.: (0123456789)

Extrinsic drivers

Diel and seasonal metrics, and temperature, flow 
and lunar cycle were found to be the most frequent 
and most significant extrinsic drivers of anguillid 
eel movement in lentic systems. This matches what 
is understood about extrinsic drivers of movement 
in lotic systems and indicates that despite variables, 
such as flow, being minimised in lentic waterbodies 
(Haro 2003; Piper et al. 2020; Trancart et al. 2020), 
the key drivers of movement are similar.

Diel period and seasonality

Sixteen of the 36 reviewed articles explicitly included 
diel period as an explanatory variable in their anal-
yses, and in 88% of cases it was found to be a sig-
nificant driver of anguillid eel movement. Movements 
of eel in lentic systems have a specific daily pattern 

with activity much more frequent at night (Jelly-
man and Chisnall 1999; Barry et  al. 2016; Verhelst 
et al. 2018a, b; Noda et al. 2021), mirroring findings 
from lotic systems (Edeline et al. 2009; Hedger et al. 
2010; Stein et  al. 2016), and is thought to indicate 
foraging activity (Dou and Tsukamoto 2003; Barry 
et  al. 2016). This may also be associated with low 
light conditions because movement activity has been 
linked to lunar phase and increased cloud cover (Ede-
line et  al. 2009; Stein et  al. 2016; Béguer-Pon et  al. 
2018a, b). However, interestingly, light level was not 
a common extrinsic variable, used in just three arti-
cles in the systematic map, and therefore light level 
should be integrated further to assess this.

Seasonality (e.g. month, date and season) was also 
a key driver of movement, with significance reported 
in 79% of the 14 articles that addressed it. Seaward 
migration of adults from lentic systems generally 
peaked during autumn in European eel (Verhelst et al. 

Fig. 7  Frequency of intrinsic factors used as explanatory variables to investigate drivers of Anguillid eel movement in the 36 articles 
reviewed. Variables are ranked by the number of studies that identified a significant relationship
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2018a, b; Verhelst, Reubens, et al., 2018), American 
eel (Winn et al. 1975) and Japanese eel (Noda et al. 
2019, 2021), and late summer in shortfin and New 
Zealand longfin eel (Jellyman and Unwin 2017; Stu-
art et  al. 2019). A seasonal pattern for non-migra-
tory movements is also seen but this may be more 
variable between location and species. For example, 
Ovidio et  al. (2013), found movement distance and 
range of resident yellow European eel highest dur-
ing the spring, while Jellyman and Unwin (2017) 
found swimming acitvity greatest during the summer 
months. Seasonality drives movement in many animal 
species (Winkler et al. 2014) and is another important 
temporal driver of anguillid eel movement in lotic 
systems (Haro 2003; Riley et al. 2011; Hanzen et al. 
2021). Migration is often during a specific seasonal 
window, typically during summer for the upstream 
migration of juvenile eels, and autumn for the down-
stream migration of silver eels (Feunteun et al. 2003; 
Haro 2003; Tesch 2003; Jellyman and Arai 2016), 
and typically linked to seasonal changes in environ-
mental variables such as temperature and water dis-
charge (Marohn et  al. 2014; Matondo and Ovidio 
2016; Stein et al. 2016; Sandlund et al. 2017; Arevalo 
et al. 2021). However, this can vary, both within and 
between species (Haro 2003; Bruijs and Durif 2009; 
Righton et  al. 2016; Arai 2022b). Seasonal differ-
ences in movement activity and home ranges are 
also found across anguillid eel species in lotic sys-
tems (Baras et al. 1998; Feunteun et al. 2003; Méla-
nie Béguer-Pon et  al. 2015a, b; Itakura et  al. 2018). 
Knowledge of seasonal patterns of movement is valu-
able to inform conservation measures. For example, 
implementing seasonal shutdowns of hydroelectric 
dams can significantly reduce mortality in maturing 
eel (Eyler et al. 2016), while targeted spillway open-
ing at key periods facilitates downstream passage and 
seasonal operation of barrier mitigation measures, 
such as eel lifts, aids upstream movements (Eyler 
et  al. 2016; Santos et  al. 2016; Knott et  al. 2020). 
Given that eel in lentic systems apparently display a 
similarly strong seasonality in their movements, fur-
ther study of these relationships should deliver com-
parable conservation benefits through optimising the 
timing of management interventions.

Temperature

Metrics of temperature were the second most frequent 
extrinsic variables found in our systematic map and 
were significant in 67% of the studies that addressed 
them. Decreases in temperature were an important 
trigger for migration by eel in lentic systems (Acou 
et  al. 2008; Jellyman and Unwin 2017; Noda et  al. 
2021), and higher temperatures were correlated with 
both greater movement activity (Boubée et al. 2008; 
Ovidio et  al. 2013; Verhelst, Reubens, et  al. 2018; 
Bašić et al. 2019) and utilisation of shallower depths 
(Westerberg & Sjöberg 2015; Bašić et al. 2019). Sea-
sonal decreases in water temperature, combined with 
increased river discharge, are similarly important trig-
gers for anguillid eel metamorphosis and migration 
in lotic systems.(Marohn et  al. 2014; Matondo and 
Ovidio 2016; Stein et al. 2016; Sandlund et al. 2017; 
Arevalo et al. 2021). This is potentially due to water 
temperature influencing the physiological and mor-
phological state of anguillid eels, and, accordingly, 
their ability to migrate (Sandlund et al. 2017; Arevalo 
et al. 2021). In addition, because eels are ectotherms, 
water temperature can impact oxygen consumption, 
metabolic rates and feeding motivation (Wan Soo 
et al. 2002; Hori et al. 2019), all of which influence 
movement activity. There was no significant rela-
tionship between air temperature or change in water 
temperature and eel movement, although the sample 
size was low. Lentic water bodies tend to experience 
reduced fluctuations and variability in water tem-
perature compared to lotic water bodies (Hieber et al. 
2002; Jones 2010; Prescott and Eason 2018). Despite 
this, it seems temperature is an important driver of 
movement in both lentic and lotic systems. It may 
be, however, due to differences in stability and vari-
ability between lentic and lotic water bodies that tem-
perature thresholds for movement vary between sys-
tems, which will be an interesting avenue for future 
research. Increases in water temperature over time, 
due to climate change, has been shown to alter tim-
ings of migration patterns across fish species (Quinn 
and Adams 1996; Tamario et al. 2019). Knowledge of 
the temperatures that cause migration in lentic sys-
tems is still not well known, but will be important 
to inform conservation and management policies, 
such as timings of eel pass openings and ‘trap and 
transport’.
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Flow metrics

Although temperature regulates eel metamorpho-
sis ahead of migration, flow velocity and volume of 
water facilitate downstream migration toward the sea 
(Arevalo et al. 2021). Of the 36 reviewed articles, 29 
metrics of flow were used as explanatory variables of 
anguillid eel movement from 17 different studies. As 
with metrics of temperature, significance varied from 
study to study, with 62% of 29 flow metrics (n = 18) 
found to be significant. Increased flow is an impor-
tant driver of eel migration in reservoirs as it ena-
bles eel to pass over and negotiate dam crests (Acou 
et al. 2008; Besson et al. 2016; Jellyman and Unwin 
2017). Further, flow velocity and direction drive non-
migrant eel movement in coastal lagoons (Lagarde 
et al. 2021). In lotic systems, discharge, and variation 
in discharge, can be an important trigger of migra-
tion across anguillid eel species (Boubée et al. 2001; 
Drouineau et  al. 2017, 2018; Teichert et  al. 2020). 
In rivers, downstream moving individuals preferen-
tially select routes where water velocity and flow are 
highest (Piper et al. 2013, 2015, 2017). In areas such 
as estuaries, currents and tide have a greater impact 
(Sudo et al. 2017). In common with our findings from 
lentic systems, water level can also be a significant 
predictor of eel movement in lotic systems (McCa-
rthy et  al. 2008; Bruijs & Durif 2009; Piper et  al. 
2013), but its effect varies according to location, spe-
cies and system (Jellyman 1979; Jellyman and Sykes 
2003; Bruijs and Durif 2009). In summary, despite 
the intermittent or reduced metrics of flow in lentic 
water bodies, they often exert a significant influence 
on anguillid eel movement in these systems.

Lunar phase

Lunar phase was frequently used as an explanatory 
variable in the articles but was found to be significant 
on only 50% of occasions. Downstream migration 
from lentic water bodies is linked to lunar phase with 
migration numbers peaking greatest during dark lunar 
phases between full and new moons (Winn et  al. 
1975; Todd 1981; Trancart et al. 2018a, b; Noda et al. 
2021). In addition, eel movement activity in lentic 
systems, for foraging and other non-migratory behav-
iours, is also linked to darker lunar phases (Lamothe 
et  al. 2000; Barry et  al. 2016; Bašić et  al. 2019). It 

has been suggested that the effect of lunar phase on 
movement is most likely a direct effect of light, rather 
than any periodic effects (Hain 1975). If light level 
is the true force driving anguillid eel movement, this 
may explain the variable results found in this review, 
as changing conditions such as cloud cover may alter 
lighting conditions, thereby minimising variance 
between different lunar phases. Lunar phase is linked 
to both upstream, downstream and vertical migra-
tion in several anguillid species (Hain 1975; Scha-
betsberger et al. 2013; Chow et al. 2015; Welsh et al. 
2015; Cresci 2020). Glass eels in lotic systems are 
sensitive to the lunar cycle and may use lunar cues for 
movement orientation during migration (Cresci et al. 
2021). Given its demonstrated significance in 50% of 
studies, lunar phase, along with light level, should be 
included as explanatory variables in future investiga-
tions on anguillid eel movement.

Intrinsic drivers

Several intrinsic drivers were utilised across the 36 
articles, including length, maturity, body condition, 
mass and sex. In line with many studies of movement 
ecology, intrinsic drivers of movement were less fre-
quently studied than extrinsic drivers (Holyoak et al. 
2008; Joo et al. 2020). This may be due to the diffi-
culty of obtaining life-history data, such as age or sex, 
on animal species compared to environmental data, or 
alternatively because these studies were undertaken 
by ecologists, the aim of which is to investigate rela-
tionships between organisms and the environment 
(Joo et al. 2020).

Length

Optimal environmental conditions for growth and 
survival can differ across body sizes (Gutowsky 
et  al. 2016), and the ability to undertake different 
movements may change with size (Busch and Meh-
ner 2011; Afonso and Hazin 2015; Noda et al. 2016; 
Andrzejaczek et al. 2019). Length was found to be a 
significant driver of eel movement in lentic systems 
in 69% (n = 11) of articles where it was investigated, 
with increased body length related to increased home 
range (Barry et al. 2016; Bašić et al. 2019), and dif-
ferent sizes of eel utilising differing habitat types 
(Chisnall 1996; Carss et  al. 1999; Jellyman and 
Chisnall 1999). The median size of the water bodies 
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studied was 646  ha, therefore relatively large and 
potentially containing multiple different habitats, 
which likely contributed to the finding that length is 
an important driver in these systems. In lotic systems, 
movement may also be strongly associated with body 
length, with upstream migration undertaken by gener-
ally smaller individuals, and larger individuals exhib-
iting more residency and home ranging movements 
(Bruijs and Durif 2009; Imbert et  al. 2010; Cresci 
2020; Kume et  al. 2020). Body length and size can 
also be a trigger for downstream migration, but often 
in combination with other extrinsic and intrinsic driv-
ers (Tsukamoto 2009). As mirrored in our results on 
lentic systems, body size and length are linked to dis-
tribution and habitat preferences across eel species in 
lotic systems (Hanzen et al. 2021).

Maturity

Maturity and life stage are important drivers of move-
ment across many species, and different life stages 
may be associated with distinct movement patterns 
(Pittman et  al. 2014). Interestingly, where maturity 
metrics (Supplementary Information 2, Table  S8) 
were used as an explanatory variable of anguillid eel 
movement, they were only found to be significant 
drivers of movement in 27% of articles (n = 3), but 
where significant were linked to home range (Bašić 
et al. 2019) and depth use (Yokouchi et al. 2009). In 
lotic systems, maturity is linked with migration, par-
ticularly downstream migration (Jessop et  al. 2008; 
Palstra et al. 2009; Tsukamoto 2009; Hagihara et al. 
2012). Different stages of maturation have different 
goals, and therefore, may have different movement 
patterns or behaviours (Laffaille et al. 2005; Edeline 
et al. 2009; Stein et al. 2016). Maturity as a driver of 
movement can vary with location (Burnet 1969; Jes-
sop 1987) and may not be enough to trigger move-
ment patterns on its own, but only in conjunction with 
other factors such as length, behavioural drive and the 
appropriate extrinsic factors (Tsukamoto 2009; Tran-
cart et  al. 2013; Sandlund et al. 2017). As such, the 
lack of inclusion as interactions with extrinsic vari-
ables in our reviewed articles may be driving the non-
significance found between maturity and movement. 
Maturity can be difficult to measure in anguillid eels; 
several difference indices exist (Cottrill et  al. 2002; 
Acou et al. 2006; Okamura et al. 2007, 2009) and the 
reviewed studies may not have been able to sample a 

range of sizes. It is also notable, that sample size was 
low with less than one third of the articles including 
maturity as an explanatory variable, hence the influ-
ence of maturity of eel movement in lentic systems 
warrants further investigation.

Body condition

Movement strategies are often linked to metrics of 
body condition, from foraging to dispersal to migra-
tion (Goossens et al. 2020). Just five metrics of body 
condition were included in four reviewed articles, 
and none of these were found to significantly influ-
ence eel movement in lentic systems. In lotic systems, 
a decrease in body condition in migrating glass eel 
switches behaviour from migration to more local-
ised, home ranging, and settlement movements, to 
reduce energetically expensive migration behaviours 
(Edeline et al. 2006, 2009; Cresci 2020). Body condi-
tion can also be an important trigger of downstream 
migration, as it is an indicator of energy reserves, 
which are essential for migration (Jessop 1987; 
Gradín et al. 2014). Habitat selection, movement pat-
terns and movement responses to disturbance may 
also be influenced by body condition (Itakura et  al. 
2015; Purser et al. 2016). Conversely, body condition 
may be shaped by eel movement frequency, as eels 
in habitats with reduced connectivity and movement 
opportunities have been found to have lower body 
condition (Lasne et  al. 2008). Body condition may 
be a more relevant driver of movement to specific life 
stages, and may define migration or dispersal ability 
(Hays et al. 2016; Goossens et al. 2020; Blake et al. 
2021). Routine inclusion of body condition as an 
intrinsic variable within future studies will help elu-
cidate this.

Mass

Like other intrinsic drivers, body mass can have vari-
able impacts on animal movement, depending on both 
location and also species (Sekercioglu 2010; Tucker 
et  al. 2014; Ofstad et  al. 2016; Giroux et  al. 2021). 
There were mixed findings around the importance 
of body mass on movement of eels in lentic water 
bodies, with 38% of papers finding it a significant 
driver. Mass of female A. dieffenbachii significantly 
decreases over the migratory season (Jellyman and 
Unwin 2017), greater mass is correlated with greater 
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home range in of A. anguilla (Barry et al. 2016) and 
there may be inter-annual variation in the average 
mass of migrating in A. anguilla (Carss et al. 1999). 
Likewise, there is a mixed influence of body mass 
on eel movement in lotic water bodies. Hanzen et al. 
(2021) found a significant relationship between body 
mass and home range in A. bengalensis but not in 
A. marmorata. Bultel et  al. (2014) found that direc-
tional migratory speed was significantly correlated 
with body mass but not body condition in A. anguilla. 
Conversely, Pedersen et al. (2012) found no-influence 
of body mass on downstream migration progres-
sion rate in the same species, while Trancart et  al. 
(2018a, b) found no significant difference in body 
mass between migratory and non-migratory individu-
als. This suggests the relationship between mass and 
movement may be location specific, and therefore 
should be included in analyses where feasible.

Sex

Although rarely used across our 36 studies, sex was 
found to be significant in 100% (n = 4) of cases. Its 
low inclusion rate is probably due to difficulties in 
sexing eels quickly in  situ, as well as sexual dimor-
phism which can lead to females being preferentially 
selected for tagging studies (Béguer-Pon et al. 2018a, 
b) and female biased preferences for lentic, lacustrine 
habitats (Oliveira et  al. 2001; Hagihara et  al. 2018; 
Harwood et  al. 2022). Where investigated, monthly 
and seasonal variance are seen between the timing of 
movement behaviours between male and female eels 
(Todd 1981; Stuart et al. 2019; Lagarde et al. 2021). 
Anguillid eels have sex-biased differences in migra-
tion strategies, causing differences in movement pat-
terns in lotic systems (Oliveira 1999), as well as both 
habitat and latitude sex-biased distributions (Magur-
ran and Garcia 2000; Oliveira et al. 2001; Maes and 
Volckaert 2007; Hagihara et  al. 2018; Wakiya et  al. 
2019). Sex differences in movement patterns are seen 
across many marine and freshwater species (Banse-
mer and Bennett 2011; Nifong et al. 2015; Widmann 
et al. 2015; Gutowsky et al. 2016; Williamson et al. 
2021). If feasible, sex should be integrated in inves-
tigations into anguillid eel movement because, given 
the differences migration strategies between sexes, 
there are likely to be important implications for con-
servation and management plans.

Summary of drivers of eel movement in lentic 
systems

In our systematic map, a wide variety of extrinsic 
variables were identified for investigating move-
ment ecology of eel in lentic water bodies. Despite 
marked differences in environmental conditions 
between lentic and lotic systems, such as minimised 
flow (Prescott and Eason 2018; Mochek and Pavlov 
2021) and less variability and fluctuations in tem-
perature (Hieber et al. 2002; Jones 2010; Prescott and 
Eason 2018) in lentic waterbodies, our results suggest 
the extrinsic factors driving eel movements are simi-
lar, particularly temperature, flow, diel period, lunar 
cycle, and season. A possible inference is that driv-
ers of movement are innate in anguillid species and 
highly sensitive to changes in environmental condi-
tions, and, as such, even the small and subtle changes 
in variables in lentic systems may trigger changes in 
movement patterns. This is supported by the success 
of ‘trap and transport’, where adult eels captured and 
translocated to a location with seaward connectivity, 
such as estuaries, undertake migration at similar rates 
to wild eels despite not experiencing the environ-
mental conditions that are thought to trigger migra-
tion (Béguer-Pon et  al. 2018a, b; Piper et  al. 2020). 
Temporal impacts of extrinsic variables  may vary 
across species. Some variables may result in imme-
diate movement responses while other variables may 
have impacts over longer time periods, and result in 
seasonal patterns of activity (Shaw 2016; Andrzejac-
zek et al. 2019). Similar findings may occur with eel 
in lentic systems with short term changes in variables 
such as flow driving movement responses, whilst 
variables such as temperature and day length require 
change over long periods to drive movement, and fur-
ther research in this area is required.

Interestingly, only metrics of length and sex were 
consistently found to be significant intrinsic drivers 
of anguillid eel movement in lentic systems. Other 
intrinsic variables such as body condition, matu-
rity and mass had little effect on eel movement, 
other than perhaps through association with specific 
extrinsic variables (Tsukamoto 2009; Trancart et  al. 
2013; Sandlund et al. 2017). This is different to lotic 
systems, where relationships between movement 
and intrinsic variables are more defined. The low 
impact of many of the intrinsic drivers found across 
the reviewed studies could be a combination of low 
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sample size, the high variability of the impact of 
intrinsic variables from location to location, and the 
lack of integration of these variables with extrinsic 
data in analyses. As such, further studies investigating 
the role of intrinsic variables, such as maturity, on eel 
movement in lentic systems are required.

Gaps in knowledge and opportunities for further 
research

This section highlights specific research gaps identi-
fied by our review, and potential opportunities for 
investigating movement ecology of anguillid eels in 
lentic systems.

Restricted species and geographical area

Despite anguillid eels comprising of 19 different 
species and sub species, with ranges that span many 
of the world’s continents and oceans (Jacoby et  al. 
2015; Jellyman 2022), the 36 articles addressed just 
five, solely temperate, species, and a small number of 
geographical regions. Tropical species and important 
areas of anguillid eel habitat, such as south-east Asia, 
Australia, and southern Africa, were not covered. 
This evident geographic gap could be due to several 
reasons including funding, availability and costs of 
equipment, geopolitical factors and search criteria 
and language in the systematic map (Orrell and Hus-
sey 2022). However, this geographic bias, mirrors 
that of other papers that review monitoring of move-
ment and behaviour in aquatic environments (Hus-
sey et al. 2015; Williamson et al. 2019; Butcher et al. 
2021; Orrell and Hussey 2022).

The five species studied were primarily located 
in the global north, and include the three species (A. 
anguilla, A. japonica and A. rostrata) most com-
mercially important and those most threatened by 
extinction (Righton et  al. 2021; Jellyman 2022). 
Although there is a general paucity of data on tropi-
cal compared to temperate species (Righton et  al. 
2021), tropical eels are increasingly exploited by the 
aquaculture industry, as a substitution for the declin-
ing temperate eels (Jacoby et  al. 2015; Arai 2022a). 
Lentic and lacustrine water bodies are shown to be 
important for the growth and development of tropical, 
as well as temperate, eels (Schabetsberger et al. 2013; 
Arai and Abdul Kadir 2017; Arai et al. 2020), hence 

the research gap on the movement ecology of tropical 
species in lentic systems should be addressed.

Limited data on males and juveniles

It is typically difficult to sex anguillid eels from mor-
phology alone, especially during early life  history. 
Where sex of individuals was noted, study animals 
were almost exclusively female. This bias can be 
explained by researchers selecting females, which 
are larger than males, to minimise the impacts of tag 
implantation (Béguer-Pon et  al. 2018a, b). It could 
also be explained by sex differences in habitat prefer-
ence. Females tend to inhabit the higher reaches and 
lacustrine areas of freshwater systems, with males 
preferring fluvial habitats and lower reaches (Oliveira 
et  al. 2001; Hagihara et  al. 2018). Considering the 
importance of sex as a driver of movement, such as 
with sex biased dispersal (Lawson Handley and Perrin 
2007; Arlt and Pärt 2008; Shaw 2020), and sex differ-
ences in foraging strategies (Johns et al. 2010; Beer-
man et al. 2016; Austin et al. 2019), further studies on 
male movement in lentic systems will be beneficial 
for conservation and management. In addition, move-
ment of juveniles in lentic systems was rarely inves-
tigated. Adults tend to be the primary focus of many 
tagging studies (Orrell and Hussey 2022), as was 
found across our review, probably because maturing 
and adult individuals primarily inhabit lentic water 
bodies, and juveniles may be too small for tagging. 
However, coastal lentic lagoons can provide impor-
tant habitat for juvenile eels (Bevacqua et al. 2011a, 
b; Leone et al. 2016) and movement in these regions 
should be investigated further. New techniques in 
ultrasonography to sex eels in the field (Bureau du 
Colombier et al. 2015) and progressive tag miniaturi-
sation (Hays et al. 2016; Chung et al. 2021; Hellström 
et al. 2022) will facilitate the advancement of knowl-
edge on movement ecology of both male and juvenile 
anguillid eels.

Limited understanding of eel maturation in lentic 
water bodies

The maturation process of anguillid eel is still not 
fully understood with all species exhibiting plastic-
ity in age at maturity in relation to latitude and tem-
perature. The maturation of immature adults (yellow 
stage) to matured adults (silver stage) in preparation 
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for migration, occurs in anguillid eel in lentic as well 
as lotic water bodies (Pankhurst 1982; Piper et  al. 
2020), with temperature and season potentially driv-
ing this transition in both (Haro 2003; Tesch 2003; 
Righton et  al. 2021). In closed lentic water bodies, 
such as reservoirs however, escapement may rarely 
occur. Maturation from immature adult to mature 
adult requires several physiological changes, includ-
ing an increase in eye diameter, degeneration of the 
gut and phenotypic changes to skin colouration from 
brown/yellow to grey/silver (Pankhurst 1982; Durif 
et  al. 2005) Should these morphological changes 
occur without migration it is unknown if these 
changes persist, which may have detrimental impact 
to the individual, or whether the process may reverse. 
Closed lentic systems, with the potential for recap-
ture, offer an opportunity to further understand these 
processes in anguillid eel species.

Limited data on saltwater or brackish lentic water 
bodies

Most studies were undertaken in freshwater sys-
tems (Fig.  5). Anguillid eels are facultative, rather 
than obligate, catadromous species (Jacoby et  al. 
2015; Righton et al. 2021; Jellyman 2022). As such, 
although freshwater systems are important habitats 
for growth and development, anguillid species do not 
necessarily need a freshwater phase and may spend 
their entire growth phase in coastal marine habitats 
(Tsukamoto and Arai 2001; Jessop et  al. 2008; Arai 
2020). Salt or brackish lentic water bodies are there-
fore likely to prove important habitats for the growth 
and development of anguillid eel species and should 
be included as study systems when investigating the 
drivers of eel movement.

Heterogeneity in extrinsic and intrinsic drivers 
assessed

A wide range of intrinsic and extrinsic variables were 
assessed as drivers of anguillid movement across the 
36 studies but their frequency of studied varied sub-
stantially (Figs.  6, 7). Although some metrics such 
as time of day or season, temperature, length and 
maturity metrics were commonly assessed, others, 
including prey, sex, dissolved oxygen and productiv-
ity, were infrequently used. Other potentially relevant 
variables, such as olfactory cues and magnetic fields, 

were not studied at all. Overall, papers were less 
likely to include intrinsic variables in their analyses 
compared to extrinsic. The pattern of inclusion of 
variables for study likely reflects, at least in part, dif-
ferences in the difficulty, and potential cost, of data 
collection. For example, regular prey surveys at com-
parable resolutions to telemetry data can be costly in 
both time and money. Through increased open access 
remote sensing (Woodcock et  al. 2008; Williamson 
et  al. 2019; Topp et  al. 2020) and low-cost sensors 
(Murphy et  al. 2015; Chan et  al. 2021), the cost of 
collecting environmental variables such as tempera-
ture and chlorophyll-a has decreased over recent 
years. However, other variables, such as pH and dis-
solved oxygen, are, currently, harder to acquire from 
remote sensing methodologies and in situ monitoring 
can still be costly (Gholizadeh et al. 2016; Kim et al. 
2020). Likewise, intrinsic variables such as sex and 
body condition may not be regularly collected due to 
the costs and difficulty of obtaining this information 
in the field (Bureau du Colombier et al. 2015). Conse-
quently, there are still substantial gaps in knowledge 
on how important intrinsic and extrinsic variables 
drive eel movement in lentic systems. However, the 
development of new and existing technologies, such 
as portable ultrasonography (Ruiz-Fernández et  al. 
2020; Sassoè-Pognetto et al. 2022), low-cost sensors 
(Demetillo et al. 2019; Wang et al. 2019) and remote 
sensing techniques (Japitana et  al. 2019; Kim et  al. 
2020; Pereira et  al. 2020) will facilitate the integra-
tion of currently underutilised variables into move-
ment analyses in anguillid eels.

Social drivers of eel movement

Many life stages of eels aggregate (Sorensen 1986; 
Tesch 2003), and may do so before and during both 
upstream and downstream migration (Todd 1981; 
Bruijs and Durif 2009; Tsukamoto 2009; Burger-
hout et  al. 2013; Schabetsberger et  al. 2013; Sand-
lund et  al. 2017; Noda et  al. 2021). Despite this, 
social cues are rarely investigated as drivers of eel 
movement (Sandlund et  al. 2017; Calabrese et  al. 
2018). Many species occur in social groups at vari-
ous temporal scales, and social cues may play a role 
in the coordination of movements for feeding events 
(Gales et al. 2004; Webster and Laland 2012; Visser 
et  al. 2014; Baracchi et  al. 2017), migration (Noyce 
and Garshelis 2014; Nagy et  al. 2018; Torney et  al. 
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2018) and habitat selection (Fletcher 2007; Buxton 
et al. 2020). Evidence in other diadromous fish such 
as salmon, suggests that social interactions between 
individuals may play an important role in migration 
(Berdahl et  al. 2016), and conspecific attraction and 
social cues are important for habitat selection across 
a wide range of fish species (Buxton et al. 2020). As 
such, investigations into the social drivers of move-
ment in eel is an important next step for this field.

Many closed lentic water bodies, such as reser-
voirs, hold significant populations of anguillid eel 
(Bašić et al. 2019; Piper et al. 2020) which provide an 
opportunity as closed experimental systems to inves-
tigate questions on anguillid eel ecology. One excit-
ing avenue for study is the influence of sociality on 
movement and space use. Acoustic telemetry can 
be a useful tool for monitoring social interactions 
and networks of aquatic organisms (Villegas-Ríos 
et  al. 2022). By recording co-occurrences of tagged 
individuals, information on the social interactions 
between them can be inferred (Mourier et  al. 2017; 
Heupel et  al. 2018). In addition, new technologies 
such as high-resolution acoustic telemetry systems 
can record precise, direct, associations between indi-
viduals (Aspillaga et  al. 2021; Villegas-Ríos et  al. 
2022). These data sets can be used to construct social 
networks within populations (Jacoby and Freeman 
2016; Mourier et  al. 2018) which can help inform 
the social ecology, connectivity, and drivers of move-
ment, as well as aiding research into population struc-
ture, spatial management and connectivity, fisheries, 
aquaculture, and disease management (Villegas-Ríos 
et  al. 2022). As seen in this study, acoustic telem-
etry is regularly used for monitoring movements of 
anguillid eels, and as such, the tools to investigate 
social cues of movement are available to research-
ers but are currently underutilised. Using these tools 
could greatly aid our understanding of movement of 
eel in both lentic and lotic systems, as well as increase 
knowledge on the social drivers of movement ecology 
more generally, which are currently poorly under-
stood (Calabrese et al. 2018).

Pertinent questions for future research

Based on this review we provide a list of what we 
believe to be the most pertinent questions that require 
answering to enable the effective management and 
conservation of anguillid eel within closed lentic 

systems. Further, these data are required to facilitate 
the extradition of land-locked eel populations with 
high potential to contribute to the wider panmictic 
spawning stock:

1. Are there sex differences in movement patterns in 
anguillid eels?

2. Can eels in closed lentic systems, with no escape-
ment, fully mature?

3. Can anguillid eels reverse the silvering/matura-
tion process?

4. How does maturation stage influence eel move-
ment in lentic waterbodies?

5. What size do anguillid eels mature/silver in lentic 
systems?

6. Do eels aggregate, or socialise, in lentic systems?
7. If eels do aggregate, what are the drivers of such 

behaviours?
8. If eels do aggregate, what is the social structure 

of eel aggregations?

Conclusions

To our knowledge this is the first systematic map 
of the drivers of anguillid eel movement in lentic 
water bodies. Lentic waterbodies are important habi-
tat for anguillid eels and also offer opportunities as 
experimental systems to advance our knowledge of 
eel ecology. Many of the lentic water bodies where 
significant populations of anguillid eels occur are 
closely managed by stakeholders, such as water com-
panies or the state (Noga and Wolbring 2013; Bašić 
et al. 2019; Loftus et al. 2019; Piper et al. 2020). To 
be effective, conservation plans must be formulated 
with the engagement of such stakeholders and be 
founded on firm scientific evidence. In depth knowl-
edge of wildlife movements, and the drivers of move-
ment, is essential to inform conservation manage-
ment and policy of threatened species (Ogburn et al. 
2017; Fraser et al. 2018). Only by understanding the 
extrinsic and intrinsic drivers of anguillid eel move-
ment, will the spatial (e.g. what regions) and temporal 
scales (e.g. what time periods) required for optimal 
and targeted management decisions be revealed. Such 
an evidence-based approach maximises the benefits of 
limited funds and time to undertake conservation and 
management plans, and minimises impacts to stake-
holder interests (Allen and Singh 2016). Information 
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on movement ecology will also allow managers to 
identify alternative management actions, should pri-
mary action plans clash with stakeholder interest 
or other conservation measures, as well as allowing 
managers to develop trade-off scenarios that balance 
conservation needs with land-use practices (Allen and 
Singh 2016). For anguillid eels this information will 
inform optimal temporal and spatial scales for miti-
gation techniques such as trap and transport (Béguer-
Pon et al. 2018a, b; Piper et al. 2020), the location of 
eel passes (Calles et al. 2012; Pecorelli et al. 2019), 
or timings of pump shutdown to reduce eel mortal-
ity (Eyler et al. 2016; Baker et al. 2020), all of which 
can have a significant impact to the conservation and 
management of this threatened family.
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