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ABSTRACT: The very human interpretation of analytical outputs is a significant challenge in 1 

forensic science making it vital to explore the application of protocols as we enhance our practices. 2 

This study assesses decision making in forensic anthropological analyses utilizing eye-tracking 3 

technology to quantify an observer’s estimate of confidence and reliability. Ten individuals with 4 

varying levels of education and experience were asked to score cranial morphologies for two 5 

human crania. Each participants' fixation points, fixation duration, and visit count and duration 6 

were assessed using TobiiTM Pro 2 eye-tracking glasses. Mid-facial morphologies capturing 7 

relative widths were the quickest scored traits with an overall median time of 14.59 seconds; more 8 

complex morphological assessments took longer. Using time as a proxy for confidence, Kruskal-9 

Wallis rank sum results indicate individuals with less experience differed significantly from 10 

individuals with greater experience (p = 0.01) although differences in level of education were not 11 

significant. Interestingly, intraclass correlation coefficients (ICC) indicate interobserver reliability 12 

is high between observers, suggesting experience only slightly improves agreement. These 13 

preliminary results suggest experience is more important than level of education. Through 14 

empirical decision making studies, forensic anthropologists can improve practices—decreasing 15 

participant differences by targeting confusing or problematic aspects of a data collection practice 16 

and improving training protocols. 17 

 18 

 19 

 20 

 21 
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Forensic anthropology is a field rooted in the visual assessment of shape, collecting and 24 

recording all forms of data related to human variation with the purpose of assisting medicolegal 25 

death investigators in the identification of a decedent. These visual assessments remain a large 26 

component of current practice when estimating aspects of the biological profile, including age (1-27 

6), sex (7,8), and population affinity (9-13). Many of these methods utilize morphological traits to 28 

estimate some part or component of the biological profile. Some of these protocols are inherently 29 

subjective, requiring assessments based on both codified and tacit knowledge—for example, the 30 

experience of the observer (14-16). In recent years, there have been a number of studies assessing 31 

the decision making processes involved in the interpretation and analysis of skeletal remains (15-32 

18).  Many of these studies focused on the effect of cognitive and contextual biases (16-18) and 33 

most highlighted the need for developing a greater understanding of the decision making strategies 34 

involved in the collection, assessment, and interpretation of human skeletal remains (18). In 35 

forensic science, there also has been an increased engagement with—and a rapidly growing 36 

evidence-base addressing—decision making and the human factors affecting interpretations in 37 

forensic reconstruction approaches (19).  38 

The challenges arising in human decision making have been documented in the published 39 

literature (15-19, 24, 37-47).  However, evaluating decision making strategies by measuring the 40 

gaze patterns of the human actors making those assessments has not yet been fully evaluated (15). 41 

Defining an expert in forensic science varies worldwide and is not universally agreed. Generally 42 

speaking, in forensic anthropology the minimum expectation for a forensic anthropology expert 43 

witness in court is a doctoral degree or equivalent forensic anthropological experience. Some 44 

regions and countries (e.g. Latin America, United Kingdom, United States) establish forensic 45 

anthropological professional bodies and a board certification process for forensic anthropologists 46 
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(20-23). Yet, empirical studies to determine the role of expertise and experience in how visually-47 

derived information is captured for sex, age, population affinity, trauma, or taphonomic protocols 48 

are only moderately addressed or researched.  As with many expert observations (24), the data 49 

captured for forensic anthropological analyses are minutiae of visually-derived information that 50 

are difficult to teach to those with limited osteology experience. Consequently, training forensic 51 

anthropologists in visual processing protocols and describing the procedures used to capture these 52 

visual cues is difficult. Eye-tracking research can provide greater insight into forensic 53 

anthropological methods and applications. For example, we can use gaze pattern and duration to 54 

identify weaknesses in the definitions of specific morphologies or in a general protocol to refine 55 

definitions or to enhance training (21,26-30). 56 

The aim of this paper is to demonstrate how eye-tracking technology can grant further 57 

insights into the application and, in turn, education of forensic anthropological protocols. We use 58 

cranial morphology to direct the participants, to test the eye-tracking technology, and to analyze 59 

gaze pattern data. This approach has been tested for other regions of the skeleton and using other 60 

types of data (e.g., pelvic morphology). We hypothesize that using visual methods of cranial 61 

morphology would deliver similar results to the assessment on age and sex methods (15).  62 

New insights into the challenges faced in the collection of morphological data can be 63 

identified by studying eye gaze behavior, including shortcomings in current methods and practices. 64 

Here, we use cranial morphology to identify shifts that may be necessary when teaching students 65 

to assess and collect these types of data. We also identify whether there is a difference in the time 66 

to score and the actual scores between individuals having different levels of experience and 67 

education. This study assesses whether observers with more experience/education felt more 68 

confident in their assessments than those with less experience/education. Finally, we assessed the 69 
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consistency between observers using eye-tracking technology to identify why some observers 70 

more consistently agreed and whether those differences reflected a nuanced understanding of a 71 

morphological feature, the observer’s experience, or resulted from a poorly defined morphology.  72 

Eye-tracking research in the forensic sciences 73 

Eye-trackers capture eye movements and enable the collection of data related to how long 74 

participants view areas of interest (15,31-33). This technology has been applied in various fields 75 

to assess practitioner performance (31,33). Eye-tracking technology has generally dominated 76 

psychology research, but has recently been utilized within a number of other scientific disciplines 77 

for educational purposes, protocol development, proficiency testing, and cognition studies (34-78 

37).  The use of eye-tracking technology as a research tool to study decision making in criminal 79 

investigations and other forensic sciences has been utilized, but for only a few published studies 80 

covering fields such as handwriting analysis, fingerprint examination, identifications in criminal 81 

line-ups, blood spatter analysis, and general crime scene investigation (34,36,38-40). The results 82 

of these studies provide insight into an experts’ gaze fixations and the areas of interest when 83 

evaluating evidence (34) and in the application of search strategies to process crime scenes (40) 84 

As an example, studies looking at forensic document examiners demonstrate experienced 85 

examiners are more accurate than lay persons; simply put they are just significantly better at 86 

identifying  counterfeit signatures (39,41). In one of those studies, eye-tracking technology was 87 

used to record each participants’ eye movements and their response times (39). The eye movement 88 

and search pattern data for all subjects showed similarities in search strategy (how they looked and 89 

where); however, forensic document examiners took double the amount of time to reach their final 90 

decision suggesting the key to distinguishing between forgeries and disguises in signatures is in 91 

some part related to a more careful inspection of the item and longer consideration of multiple 92 
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features in the item of interest (39). Another study used eye-tracking technology to quantify 93 

consistency and variability among forensic experts, showing experts were more consistent than 94 

novices when inspecting and describing the features they used for latent fingerprint analysis (38). 95 

Additionally, search duration and search sequence between expert crime scene investigators and 96 

inexperienced novices differed significantly; experts are much more consistent in the search 97 

sequence compared to a novice group (40).  98 

Only one study to date has used eye-tracking technology to study gaze pattern strategies 99 

among forensic anthropologists analyzing skeletal remains (15). In that study, eye-tracking 100 

technology focused on nonmetric features used in sex and age-at-death estimations. That research 101 

quantified analyst gaze fixation points, fixation duration, and visit counts for the interpretation of 102 

features on the skull and os coxa. Building on that research, we use cranial morphological features 103 

to assess gaze patterns, gaze duration, and fixation among a sample of individuals with varying 104 

levels of experience and education.  105 

Materials and Methodology 106 

Experiment Design  107 

Cranial morphological data were collected from two human skulls by participants wearing 108 

TobiiTM Pro 2 eye-tracking glasses. This wearable eye-tracking camera recorded the pattern of 109 

visual attention of each participant by directing near infrared light on the eyes, identifying the 110 

focus point, duration of focus, and fixation pattern for each cranial morphology on each skull for 111 

each participant. Each participant was asked a series of questions to identify their level of 112 

experience with cranial morphological trait data (less than or greater than 2 years) and level of 113 

education (undergraduate, graduate with Master’s degree, professional with PhD). The mean 114 

number of years of experience with cranial morphology was two years for all participants and, as 115 
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such, was used as the sectioning point for experience. Individuals with master’s degrees were 116 

further divided according to their experience assessing cranial morphology. These demographics 117 

may identify factors driving any discrepancies between observers. Each observer’s level of 118 

education was also collected, to evaluate the relationship between the visual collection of cranial 119 

morphological data and an observer’s level of education. These data should situate the visual gaze 120 

pattern, the visual acuity, and the duration of an observer’s gaze in a broader context to identify 121 

trends.  122 

Data collected from the glasses provide information on the users’ eye fixation patterns. 123 

This includes 1) time recorded for each morphology or morphological region, 2) the overall time 124 

spent on each skull, and 3) the total duration of the analysis. In addition to these data, a visual 125 

representation of gaze fixation, visualized as a heat density map, can be generated for each 126 

participant and used to further assess gaze patterns and fixation. 127 

Cranial Morphological Data 128 

Seventeen morphological traits of the skull were used to assess the impact of education and 129 

experience on gaze patterns (Table 1). Participants were asked to score these morphologies on two 130 

different skulls. The two skulls were selected to provide variability in trait expressions (11,44,49). 131 

Each participant was provided a data collection sheet with line drawings of each trait. This allowed 132 

the eye-tracking glasses to capture exactly what participants were looking at in real time as they 133 

made their assessments. Cranial morphological data were divided into two divisions: those 134 

assessed in a single, linear direction and related to size or breadth [unidimensional] and those 135 

assessed minimally in two directions that capture shape [multidimensional]. 136 

[Table 1 here] 137 

Participants and Procedures 138 
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Ten participants were asked to wear the eye-tracking technology and score the individual 139 

skulls. Participants with varying levels of experience were recruited. The participants ranged in 140 

general levels of practical (<1-32 years) and analytical experience (0-18 years). Practical 141 

experience includes all forensic anthropological experience while analytical experience only 142 

considers cranial morphology. Two undergraduate students, six graduate students with Master’s 143 

degrees, and two individuals with doctoral degrees participated. Six individuals reported having 144 

less than two years of experience collecting cranial morphology data; the remaining participants 145 

had more than two years of experience. This sample represents a preliminary usability study and 146 

is suitable for assessing data collection protocols and protocol efficiency (52). 147 

Each participant conducted the analysis separately in a laboratory. All necessary equipment 148 

was provided. The two skulls were situated on a table and presented to the participants 149 

simultaneously. The mandible was present for both even though no mandibular traits were 150 

considered. To minimize any potential influence on the decision making process, participants in 151 

this study were not told to start the analysis on a specific skull. Instead, participants were free to 152 

choose. Participants were asked to use the scoring sheet to record all answers. The scoring sheet 153 

presented seventeen cranial morphological traits in alphabetical order. Each participant was asked 154 

to provide their confidence for each score to quantify self-assurance in the interpretation of these 155 

morphologies. No time limit was imposed on the participants. 156 

Analysis  157 

Metadata collected with eye-tracking technology provides novel information on the collection of 158 

cranial morphological data. However, three questions can be addressed using the demographic 159 

data. First, can we identify differences in the time to completion and the morphological scores 160 

between individuals with more experience? Second, are participants with more experience always 161 
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more confident? And finally, regardless of confidence, are scoring procedures consistently 162 

reproducible across participants? 163 

To facilitate analysis, we also generated an image in a vector graphics editor to highlight 164 

the area around each of the cranial morphological features or areas (Figure 1). This allowed the 165 

recording of metrics and count data for each region, using the images as a baseline for reference. 166 

Visualizations and metrics documented where participants were looking (gaze fixation), how long 167 

they were looking (gaze duration), and if participants were going back to certain traits more than 168 

once (visit counts). These data are used to generate a heat map to visualize gaze patterns. 169 

[Figure 1 here] 170 

Several measures of confidence were used to assess how each participant assessed cranial 171 

morphology and whether their reported confidence matched their gaze pattern. These include: 1) 172 

heat maps to visualize education/experience-level variation; 2) fixation duration as a proxy for 173 

decision making measured as the overall time to completion and the amount of time spent on each 174 

cranial morphology; and, 3) real-time decision making and confidence assessed through the eye 175 

tracking software with ad-hoc confidence scores situating the implicit and explicit assurance in the 176 

collection cranial morphological data. Finally, after data collection we calculated an intraclass 177 

correlation coefficient (ICC) to quantify the association between participant scores. ICC does not 178 

require a ‘correct’ score, rather ICC assesses the reliability among all individuals and within each 179 

sub-group of the data (i.e., education or experience levels). 180 

Statistical Analyses 181 

Using time-to-score as a proxy to measure the observer’s level of confidence, a Kruskal-182 

Wallis rank sum test assessed differences between the various groups. Kruskal-Wallis is a non-183 

parametric multiple-comparison test approximating a chi-square distribution to compare two or 184 
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more groups. Summary statistics were calculated by fixation duration to understand variation 185 

among confidence levels, by trait. A two-way mixed-effects model for ICC was applied to assess 186 

observer agreement between the cranial morphological traits for multiple participants, and 187 

assessed following Koo and Li (53). Interclass correlation coefficients can range from 0.0 to 1.0 188 

(where 1 is perfect agreement between observers). To assess self-reported confidence rates, 189 

observers were also asked to provide a measure of their confidence between 1 (not confident) and 190 

10 (very confident) for each morphology.  The medians of each trait were recorded by years of 191 

experience (less than 2 years or more than 2 years).  192 

Results 193 

Density maps 194 

Density maps were created by concatenating the fixation and duration times of all analysts. 195 

These gaze patterns were combined into a single density map by individual, by education level, 196 

and finally by years of experience (Figure 2) to visualize eye-tracking data. Darker areas indicate 197 

higher levels of attention.  198 

[Figure 2 here] 199 

Fixation Duration 200 

The results for the Kruskal-Wallis test indicate experience is the only variable with 201 

significantly different duration times (Table 2).  202 

[Table 2 here] 203 

Participants with a master’s degree were slightly faster than those with doctorate degrees 204 

and both were faster than the undergraduate cohort (Figure 3). Separating the masters-level group 205 

into two subgroups (one with < 2 years of experience and one with > 2 years of experience), those 206 

with more experience were faster than those with less experience (Figure 4). Although these 207 
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differences do not reach the level of statistical significance they may indicate participants with 208 

more experience arrive at a decision faster than others (Figure 5).  209 

[Figure 3 here] 210 

[Figure 4 here] 211 

[Figure 5 here] 212 

Next, each cranial morphological trait was analyzed individually, using time as a proxy to 213 

measure confidence. Figure 6 highlights summary statistic data for each trait. The slowest trait for 214 

the participants to score covers a larger area of the midfacial region and is more akin to 215 

multidimensional, morphological data (NBC) compared to the fastest which captures 216 

unidimensional, linear data (SNS). The median time to score was 27.97 seconds. Of the seven 217 

unidimensional traits, four traits (NAW, SNS, NO, ANS) fell below the median speed and three 218 

traits (PZT, MT, IOB) fell above the median. Of the ten multidimensional traits, four (NFS, OBS, 219 

ZS, NAS) fell below the median speed while six traits (PS, INA, PBD, NBS, TBS, NBC) were 220 

scored at a slower pace falling above the median. To most accurately capture confidence, all 221 

potential outliers (identified in Figure 6) were retained as they offer great insight into the variance 222 

between observers. 223 

[Figure 6 here] 224 

Individual Confidence Ratings 225 

Self-reported confidence, divided by the median score for each cranial morphology, 226 

(Figure 7), illustrates variability in various levels of experience scoring these traits. More 227 

experienced participants were most confident (6.5 to 9). Those with less experience had median 228 

self-reported confidence levels ranging from 5 to 8. Interestingly, participants with more 229 

experience were only more confident for 14 of the 17 traits. The three traits those with less 230 
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experience were more or equally confident in compared to more experienced raters were 231 

multidimensional traits (OBS, INA, and PBD). 232 

[Figure7 here] 233 

Interobserver Reliability 234 

Table 3 provides the ICC data. The correlation coefficients ranged from 0.72 to 0.96. 235 

(Table 3). 236 

[Table 3 here] 237 

Discussion 238 

This study assessed eye-tracking technology as a tool to quantify how experience and 239 

education influence participant decision making and to visualize their gaze patterns when assessing 240 

cranial morphology. Acknowledging that participant sample sizes were limited, though 241 

appropriate for protocol efficiency testing, the results of this study still demonstrate how the level 242 

of experience with scoring protocols has a direct impact on fixation and duration times. The eye-243 

tracking data was used to visualize gaze fixation and to generate data for quantifying gaze fixation 244 

and duration for all participants and for each cranial morphology.  245 

To identify differences in the amount of time it takes to score each skull and the scores 246 

each observer selected, fixation duration by group was analyzed. Individuals with more experience 247 

(>2 years) elicited quicker response times and it appears experience is an important contributing 248 

factor to the decision making process. Individuals with more than two years of experience were 249 

overall faster than individuals with less than 2 years of experience. Assessing the overall individual 250 

morphologies, median time to score all traits suggests unidimensional traits are more likely to be 251 

scored faster, or more confidently. All observers took considerably longer to score traits that 252 

assessed broad regions or had more complex, multidimensional morphologies, some more than 35 253 
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seconds longer than others (e.g. NAW and NBC). The results of the Kruskal-Wallis tests indicate 254 

statistically significant differences between fixation duration and experience (p = 0.01).  255 

The unidimensional traits are generally quicker to score. However, individuals may be 256 

slower at scoring multidimensional traits, but those with less experience seem to have more 257 

confidence in their scores. Three of the four traits the less experienced raters reported the highest 258 

confidence are multidimensional (OBS, PBD, TPS) and yet, two of the three traits they are least 259 

confident scoring are unidimensional (NO, MT).  More experienced observers were most confident 260 

scoring multidimensional (NFS, NBS, TPS, NBC) traits. Although, unlike less experienced 261 

observers, more experienced raters were less confident scoring a number of multidimensional traits 262 

(OBS, INA, PBD). These traits (OBS, INA, PBD) were the only three traits that less experienced 263 

raters were equally or more confident in scoring than the more experienced raters.  264 

There are two possible explanations for these differences. First, multidimensional traits 265 

potentially take longer to score due to complexity (various angles or using tools). So, while they 266 

take longer to score observers feel more confident having conducted a more thorough analysis. 267 

Conversely, this observation may be an example of the Dunning-Kruger effect: participants with 268 

less experience or knowledge do not have insights into their potential shortcomings leading to 269 

more confidence than more experienced participants (54). Less experienced raters were most 270 

confident in multidimensional traits that took longer for them to score. In the current context, 271 

experienced raters potentially have seen more human variation giving them insight into the true 272 

range of variation meaning that that the drawings for these traits potentially do not encompass the 273 

true range of variation, influencing a subconscious bias that the more experienced users have when 274 

scoring the regions.  275 
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Finally, regardless of each observer’s confidence, the derived scores for all of the cranial 276 

morphological traits were consistent. The ICC results indicate moderate reliability (ICC=0.72-277 

0.74), particularly when comparing individuals with similar education (ICC=0.86) or experience 278 

levels (ICC= 0.86-0.92). When dividing participants into four groups based on both experience 279 

and education, the ICC results indicate good agreement (ICC = 0.82-0.88). These results all 280 

suggest experience is a key consideration for higher reliability between participants and suggests 281 

increases in experience lead to more consistent visualization of cranial morphological features.  282 

Conclusion 283 

How experts make decisions, process visual cues, and interpret evidence is influenced by 284 

intrinsic and extrinsic factors (55). To understand these factors we can apply modern technologies 285 

like eye-tracking capabilities. Such efforts will allow us to quantify the degree of influence that 286 

experience and education have on practitioners and to develop more transparent approaches for 287 

forensic inference (15). New technologies are increasingly fusing the physical, digital, and 288 

biological realms. This fusion is exciting and will generate novel opportunities for research 289 

addressing human identification using, for example, the automated pattern analysis (56,57). In 290 

forensic anthropology, machine learning, including deep learning algorithms, now facilitate 291 

automated decisions on skeletal remains (58-60). However, to fully apply these technologies to the 292 

improvement of procedures in forensic anthropology, we must understand the factors that play a 293 

role in the interpretation process.  294 

Similar to previous research using eye-tracking to assess aspects of the forensic sciences 295 

(15,34,36,38-40), this study documented the usability of eye-tracking technology as a research 296 

tool. That technology offers significant potential to understand the importance of certain factors 297 

(like experience) when observers are collecting subjective, morphological data. Undertaking 298 
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further empirical research building on these data will provide insight into those factors impacting 299 

the decision making and interpretative processes involved in forensic anthropological methods.  300 

Future research should test these factors using a larger number of participants, 301 

incorporating a broader variety of experience levels, and measuring what, if any, effect training 302 

has on confidence and consistency. Beyond cranial morphology, postcranial data and dental 303 

variation should be similarly treated, potentially even in combination with cranial morphological 304 

approaches (10,13,61). Eye-tracking data, in relation to multiple scoring modalities will be helpful 305 

to assess how scoring methods vary across different data modalities such as photos, 3D models, 306 

CT scans, and other virtual data (62-66). Finally, the pedagogical implications of these results 307 

require further exploration. The impact of modifying the teaching and training of forensic 308 

anthropologists in visual techniques needs robust assessment and remediation. 309 

Eye tracking technology is the only way to objectively record, analyse, and interpret visual 310 

gaze behaviours. Without this technology, quantifying the time a researcher spends assessing a 311 

particular feature, trait, or region of the skull would not be possible. With eye-tracking technology 312 

we have been able to study and quantify each observer’s eyes during data collection. The insight 313 

these data provide into the cognitive processes underlying any forensic anthropological analysis is 314 

exciting and has great potential to reveal patterns and analyst gaze behaviours heretofore 315 

unconsidered and most definitely unmeasured. 316 
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