
Joint models for bivariate discrete
longitudinal outcome and survival

Shengning Pan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Statistical Science

University College London

December 14, 2022



2

I, Shengning Pan, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.



Abstract

In analytical studies of longitudinal and time-to-event data, measuring the relation-

ship between longitudinal outcomes and the time of event occurring simultaneously

is of interest. It is common in medical statistics to have non-negative integers as

longitudinal responses, and there will often be more than one response variable in

the data. The main aim of this thesis is to construct the corresponding bivariate joint

models to analyse these discrete longitudinal and time-to-event data. We construct

two types of joint models, namely the bivariate shared random-effects joint model

and the bivariate latent-class joint model. For the longitudinal model, we use ex-

tensions of the binomial distribution and the categorical distribution. In addition, to

deal with attrition due to death or dementia, we use the exponential hazard model,

the Weibull hazard model and the Gompertz hazard model as the survival model.

We will assume that the longitudinal model and the survival model are independent

of each other conditional on random effects. The joint models are applied to analyse

three datasets. The first data is the English Longitudinal Study of Ageing (ELSA).

The second is the PAQUID data, whose full title is PAQUID: Longitudinal data on

cognitive and physical aging in the elderly. The third is PBC2: Mayo Clinic primary

biliary cirrhosis data.
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In medical statistics, data are usually recorded in the form of longitudinal and time-

to-event data, and there is often more than one response variable. The bivariate joint

models we constructed in this thesis can be wildly used to analyse discrete longitu-

dinal and time-to-event data. Therefore, our research has practical applications.

These joint models we constructed can be divided into bivariate binomial joint

models and bivariate categorical joint models, depending on the longitudinal model

used. The bivariate binomial joint models are applicable to datasets where the re-

sponse variables are the sum of scores. It means that the bivariate binomial joint

models can be widely applied to data collected through questionnaires or inter-

views. The data in medical statistics, particularly concerning cognitive abilities, can

be analysed using bivariate binomial joint models. For example, in the ELSA data

used in this thesis, we concentrate on the relationship between cognitive ability and

an individual’s risk of death. In the PAQUID data, we focused on the relationship

between cognitive ability and the risk of dementia.

The categorical joint models have a more comprehensive application than the

binomial joint models. First, we can construct a joint model for the sum of scores

data by considering each possible value as a category. Secondly, we can categorise

the responses before applying the joint model to discrete data with a wide range

of values. Using the example of the MMSE, a test with a range of values from 0

to 30, we can categorise the data into sub-categories using the common analytical

criteria for MMSE before constructing the model: 24-30 is normal cognitive ability;

while 19-23 is mild, 10-18 is moderate, and 0-9 is severe cognitive impairment.

Modelling according to these four sub-categories makes our joint model applicable
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and allows the researcher to obtain model estimates that are more directly relevant

to the research question. Finally, for continuous data, similar to discrete data with

a large range of values, we can use a categorical joint model to analyse responses

after categorising them.

To summarise, the joint model proposed in this thesis can be used for a wide

range of applications in medical statistics.
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Chapter 1

Introduction

1.1 Background

1.1.1 Longitudinal and time-to-event data

Typically, longitudinal and time-to-event data include several longitudinally mea-

sured responses and the time until one or more events of particular interest occurs.

In medical statistics, such data provide a wealth of information for studies on age-

ing, health, longevity, and aspects of disease processes leading to death. The data

consist of two main components, the first of which is the longitudinal data. Lon-

gitudinal data, also called panel data, are obtained by following the same sample

at different time points. This sample could include individuals, households, or-

ganisations, etc. Longitudinal data allows researchers to measure changes in the

outcome over time, measure the duration of an event, and record the timing of vari-

ous events. For example, suppose unemployment stays high over a long period. The

government could use longitudinal data to determine whether the same group of in-

dividuals has been unemployed throughout the period or whether different groups

of individuals have been unemployed.

Generally, longitudinal data are multi-dimensional data containing measure-

ments that change over time. These data include observations of multiple phe-

nomena obtained over various periods for the same person, household or organisa-

tion [Diggle et al., 2002]. For instance, the English Longitudinal Study of Ageing

(ELSA) data contain several cognitive tests. The results of these tests are considered
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to reflect, to some extent, the cognitive ability of the tested individual. Individuals

are tested every few years, and the results are recorded in the data. Based on these

results, the researchers attempt to measure something potentially representative of

cognitive function. The ELSA data will be used in Chapter 6 and we will cover it in

detail in Chapter 5. Because of the characteristics of longitudinal data, longitudinal

studies are widely used in medical science, psychology, sociology, economics and

other fields [Rushton et al., 2002].

The second component of the longitudinal and time-to-event data is called sur-

vival data (time-to-event data). It shows whether a specific event of interest oc-

curred and when that event occurred [Rizopoulos, 2012]. The response variable in

the time-to-event data is the time until that event occurred, often referred to as the

failure time, survival time, or event time. The time-to-event data can be treated as

data which consist of the last observations for each individual in the longitudinal

data. We take the Acquired immune deficiency syndrome (AIDS) data as an exam-

ple [Organization et al., 2000]. The data record the number of CD4 cells changing

over time for 467 patients who are infected by advanced human immunodeficiency

virus (HIV). Some patients died at the end of the study, and their time of death was

recorded in the data. The number of CD4 cells at the end of the study and the cor-

responding time was recorded for other patients. Individuals in this dataset were

treated with two drugs: didanosine (ddI) and zalcitabine (ddC). The corresponding

survival study is designed to compare the efficacy and safety of these two drugs

and, more specifically, to identify which drugs can effectively extend the lifespan

of patients.

The application of time-to-event data is addressed in different areas of research.

For example, the event of interest in ageing research often represents death or de-

mentia. In clinical and epidemiologic studies, the event might be death, the ap-

pearance of a tumour, the development of certain diseases, recurrence of a disease,

conception, or smoking cessation. The time-to-event data are also widely used in

other disciplines. For example, in sociology, the event of interest could be the du-

ration of a first marriage, while in marketing, it might be the timing of a newspaper
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subscription [Rizopoulos, 2012].

1.1.2 Joint models

The longitudinal and time-to-event data studies often require a separate analysis

of the recorded outcomes: the analysis of longitudinal outcomes and that of time-

to-event outcomes. Corresponding longitudinal models and survival models are

needed, respectively. When we focus on the longitudinal outcomes, we wish to

investigate the effect of time and time-dependent covariates on the outcomes [Ri-

zopoulos, 2012]. It needs to be analysed by the corresponding longitudinal model.

The attrition due to any event of interest (e.g. death or dementia) is also recorded

and cannot be ignored. The survival models could investigate this nonrandom at-

trition. When time-to-event outcomes are the focus of the research, we also want

to analyse how responses change over time when the event of interest has not oc-

curred. The work in Laird and Ware [1982]; Cox [1972] model longitudinal data

and time-to-event data separately. However, if the two processes are correlated, this

may lead to biased effect size estimates [Ibrahim et al., 2010]. Moreover, there is

evidence in the literature that the average age trajectory of physiological variables

in individuals with short lifespans differs from the trajectory of physiological vari-

ables in individuals with long lifespans [Yashin et al., 2009, 2012; Arbeev et al.,

2014]. Therefore, it is reasonable to use a joint model to simultaneously analyse

longitudinal data and time-to-event data. Previous research has shown that joint

modelling can improve the efficiency of statistical inference and reduce bias, and it

can provide significant benefits when designing experiments [Dupuy and Mesbah,

2002; Hogan and Laird, 1998].

The statistical methods designed to analyse time-to-event data jointly with lon-

gitudinal measures are known as joint models [Arbeev et al., 2014]. A joint model

for longitudinal responses describes the change of responses using a model for lon-

gitudinal data and measures the risk of the event using a survival model [Proust-

Lima et al., 2009]. The principle of joint models is to link these two models using a

common latent variable. This common latent variable captures the association be-

tween the processes so that the two processes are conditionally independent given
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the latent variable, which is the random effect. We assume that random effects ex-

plain all interdependencies [Rizopoulos, 2012], i.e. the longitudinal outcome is con-

ditionally independent of the time-to-event outcome; the repeated measurements in

the longitudinal outcome are conditionally independent of each other. Based on this

principle, two widely used joint models have been proposed: the shared random-

effects joint model [Henderson et al., 2000] and the latent-class joint model [Lin

et al., 2000].

Over the past three decades, researchers have contributed considerably to re-

search on the joint modelling of longitudinal data and time-to-event data [Hickey

et al., 2016; Henderson et al., 2000]. For the shared random-effects joint model, the

seminal articles in this field were written by Faucett and Thomas [1996]; Wulfsohn

and Tsiatis [1997] in 1996 and 1997, respectively, and many extensions to the joint

model have been proposed by researchers after that [Mauff et al., 2020]. At the

beginning of joint modelling research, the focus was mainly on single longitudinal

responses and single time-to-event responses, i.e. univariate joint model. The uni-

variate joint model is widely used in the analysis of clinically related data [Touloumi

et al., 2004], and many researchers have written mainstream software packages for

computing corresponding problems, such as Rizopoulos [2012]; Philipson et al.

[2012]; Crowther et al. [2013]. However, as we mentioned above, longitudinal

and time-to-event data, especially the longitudinal component, are usually multi-

dimensional and contain observations of multiple phenomena obtained by the same

individual over multiple periods [Diggle et al., 2002].

Although univariate joint models allow us to investigate the relationship be-

tween a single time-to-event outcome and a single longitudinal outcome, it is often

the case that there will be multiple biomarkers associated with the event of interest

[Mauff et al., 2020]. The construction of multivariate joint models is therefore nec-

essary. It allows us to consider more information at the same time, thus enabling

us to understand better the dynamic complexity of changes in diseases or biological

indicators. In recent years, a number of researchers have worked on multivariate

joint models. For instance, Ibrahim et al. [2004]; van Boven et al. [2018]; Hatfield
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et al. [2011] investigate multivariate joint models for continuous responses. There

are also joint models for other data types, e.g. Huang et al. [2001] contemplates

multivariate binary data; the model in Rizopoulos and Ghosh [2011] combines con-

tinuous responses and binary responses and Wang et al. [2002] focuses ordinal data.

Rue et al. [2017] developed a joint multivariate model associated with discrete data.

It is worth noting that although the responses in Rue et al. [2017] are discrete vari-

ables, the longitudinal data model in the article still uses a normal distribution model

and a beta model.

Many packages also provide relevant functions for joint models. Examples

include the merlin package in Stata [Crowther, 2020]; the JMbayes pack-

age [Rizopoulos et al., 2022], the JM package [Rizopoulos, 2012], the joineR

package [Philipson et al., 2012], the lcmm package [Proust-Lima et al., 2017],

the frailtypack package [Rondeau et al., 2012], and the rstanarm package

[Goodrich et al., 2022] in R. Amongst these commonly used packages, packages

JMbayes, JM and rstanarm can be used to construct multivariate joint models.

However, in these multivariate joint models, the relationships between the longitudi-

nal responses are captured by the random effects. This means that in addition to the

interdependencies explained by the random effects we mentioned above: the lon-

gitudinal outcome is conditionally independent of the time-to-event outcome; the

repeated measurements in the longitudinal outcome are conditionally independent

of each other. Random effects are also used to explain the relationships between

multiple longitudinal responses. For the lcmm package, we can use a longitudinal

IRT model to analyse homogeneous and heterogeneous data. However, the lcmm

is a package that focuses on latent-class joint models which cannot be used to con-

struct shared random-effects joint models.

In addition to the above, sometimes the observed responses do not fully reflect

the heterogeneity of the outcomes, and the population may be composed of ’latent

subpopulations’ defined by some unobserved characteristics [Arbeev et al., 2014].

A special type of joint model, the latent-class joint model, has been developed to

measure this implicit heterogeneity in the population, see Proust-Lima et al. [2014].
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Articles Rouanet et al. [2016]; Proust-Lima et al. [2009, 2016] used latent-class joint

models to construct multivariate joint models. The advantage of building a latent-

class joint model over a shared random-effects joint model is that we no longer need

to do numerical integration, which greatly improves the computational efficiency of

the model. The limitation of latent-class joint models is that the classification may

not be interpretable because we do not know what the different classes represent.

Furthermore, we could only calculate the probability of an individual belonging to

a specific class. Although we can assign an individual to a specific class, we can

never be sure that the individual belongs to that class.

1.1.3 Ageing research

In this thesis, we will use three datasets related to medical statistics. Two of the

datasets, the English Longitudinal Study of Ageing (ELSA) data [J. et al., 2021]

and the PAQUID: Longitudinal data on cognitive and physical aging in the elderly

(PAQUID) data [Rondeau et al., 2008], are relevant to ageing research. In ageing

research, various cognitive function tests are often collected as longitudinal data.

As with other longitudinal data in medical statistics, longitudinal data on ageing re-

search is also multi-dimensional [Diggle et al., 2002]. For instance, the ELSA data

contain several cognitive tests related to literacy, numeracy, memory and informa-

tion processing [Banks et al., 2006]. Individuals are tested every few years, and the

test scores are recorded; these test scores are recorded as non-negative integers. An

important area of investigation in ageing research is change of cognitive function

over time.

Cognitive function, also known as cognitive ability, refers to an individual’s

ability to process information. It mainly reflects an individual’s ability to learn

and solve problems. Researchers use different tests to obtain scores that reflect an

individual’s level of cognitive functioning. In analysing these test scores, changes in

test scores represent changes in cognitive function. A well-known test that measures

cognitive function is the Mini-Mental State Examination (MMSE), also known as

the Folstein Test [Folstein et al., 1975]. It is a 30-point questionnaire examining

several areas, such as verbal ability, attention, memory, etc. The more questions the
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participants answered correctly, the higher the score they received, and the higher

score indicates a better cognitive function. The MMSE is widely used in clinical

and research settings to reflect cognitive functioning.

It is crucial to investigate changes in individual cognitive function in ageing re-

search. The relationship between changes in cognitive function and the risk of death

or dementia is also of interest [Hickey et al., 2016]. We could establish the relation-

ship between time-to-event and risk of death or dementia through survival analysis.

Researchers analyse the relationship between cognitive decline and ageing to pro-

vide advice on whether older people need care [Van Den Hout and Muniz-Terrera,

2016]. For example, suppose an individual has a sudden decrease in cognitive func-

tion over a period of time. In that case, he/she may suffer from a condition that

causes cognitive impairment or even life-threatening changes, such as Alzheimer’s

disease. By analysing the data, the researcher can note this cognitive decline trend

and thus make recommendations on the specialist medical care he/she needs.

1.2 Motivation

As we mentioned in Section 1.1.2, studies of longitudinal and time-to-event data

often need to be analysed by means of corresponding longitudinal models, and

attrition due to any event of interest (e.g. death or dementia) cannot be ignored

[Rizopoulos, 2012]. The nonrandom attrition could be investigated by the survival

models. In this thesis, we will therefore develop joint models to simultaneously

measure the longitudinal response and the event of interest at the time of occur-

rence.

In addition, researchers often use more than one test in the same study to mea-

sure longitudinal outcomes (multivariate). For example, the PAQUID data contain

five measures of cognitive test: the Mini-Mental State Examination, the Benton Vi-

sual Retention Test, the Isaacs Set Test, the score of physical dependency, and the

score measuring depressive symptomatology [Proust-Lima et al., 2017]. Each in-

dividual attended these five tests, and the results of these tests reflect the cognitive

function of the individual under test. Although the scores on all five tests represent
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cognitive function, the different tests have different emphases. All of these results

may be important to the research question, and as we consider more of the cor-

responding variables in the research process, we will obtain more comprehensive

information about an individual’s cognitive abilities. Therefore, it is worthwhile

to construct a multivariate model. We build a bivariate joint model to address the

potential estimation bias caused by separate modelling and the need to discard lon-

gitudinal responses when using a univariate joint model.

Moreover, we have mentioned in Section 1.1.2 that packages JMbayes [Ri-

zopoulos et al., 2022], JM [Rizopoulos, 2012] and rstanarm [Goodrich et al.,

2022] can be used to analyse multivariate joint models. In these multivariate joint

models, the correlations between the longitudinal response variables are captured

with random effects. It is not easy to intuitively discern the relationship between the

longitudinal responses through random effects. We address the inability to observe

relationships between longitudinal responses directly by using a bivariate extended

binomial distribution [Altham and Hankin, 2012].

1.3 Scope of research

In this thesis, the longitudinal and the survival models are linked by sharing random

effects, and we assume that these two models are independent given random ef-

fects. The random effects can account for unobservable individual-specific or class-

specific characteristics, i.e. in medical science, the unobserved susceptibility for

morbidity and mortality can be included in the random effect [Rizopoulos, 2012].

We will use two types of random effects in this thesis. The first is the random ef-

fect following the bivariate normal distribution, in which we assume the unobserved

individual-specific effects are normally distributed. The normal distribution is the

standard modelling choice for random effects [Hickey et al., 2016]. We use nor-

mally distributed random effects to construct shared random-effects joint models.

Moreover, we introduce the second type of random effect, where the random ef-

fects are discrete and class-specific. The corresponding joint models with discrete

random effects are namely latent-class joint models [Proust-Lima et al., 2009]. The
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latent-class joint models avoid the calculation of integrals and increase the model’s

efficiency.

As we mentioned in Section 1.1.3, test scores for cognitive abilities in ageing

studies are usually in the form of non-negative integers. Not only limited to ageing

studies but in other datasets in the field of medical statistics, response variables are

often recorded as non-negative integers. As mentioned in the Abstract, we will use

three datasets in this thesis. The longitudinal responses in these three datasets are all

non-negative integers, with the responses for the first two datasets being the sum of

the scores and the response for the third dataset being categorical variables. In this

thesis, we will collectively refer to the types of responses as discrete variables. In

each dataset, we choose two outcomes as responses for the longitudinal model, i.e.

we build bivariate joint models in this thesis. The bivariate joint model could ad-

dress the potential estimation bias caused by separate modelling and avoid the lack

of information caused by dropping longitudinal responses when using a univariate

joint model.

We use two distributions to model the discrete longitudinal responses. For the

first distribution, we assume that the probability of an individual increasing score

by one unit for the longitudinal response follows a Bernoulli distribution. The cor-

responding probability of obtaining a non-negative score for the response variable

follows a binomial distribution. The bivariate extension of the binomial distribution

proposed by Altham and Hankin [2012] is applied in the longitudinal model. This

distribution not only measures overdispersion or underdispersion compared to the

standard binomial distribution but also uses a parameter that measures the associ-

ation between the two longitudinal outcomes. The model allows us to avoid using

random effects to capture all the correlations of the joint model. We could also

consider each possible value of the responses as a category and model responses

using the categorical distribution [Murphy, 2012]. For the survival part, the expo-

nential hazard model, the Weibull hazard model and the Gompertz hazard model are

used. In univariate joint models, the link functions contained in both the longitudi-

nal model and the survival model are well defined [Diggle et al., 2008]. However,
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we do not know beforehand which link will provide the best result for the bivariate

joint model. We will therefore discuss several different link functions.

We apply the models to analyse the English Longitudinal Study of Ageing

(ELSA) data [Banks et al., 2006], the PAQUID: Longitudinal data on cognitive

and physical aging in the elderly (PAQUID) data [Rondeau et al., 2008] and the

Primary biliary cholangitis (PBC2) data [Mayo, 2022]. The ELSA data are related

to verbal learning and recall. Individuals are required to learn ten words and recall

these words at two different time points (immediate and later); see Van Den Hout

and Muniz-Terrera [2019]. The PAQUID data are random samples of cognitive test

scores for people aged over 65 years old in two administrative areas of southwestern

France. The PBC2 data are from a group of trials on primary biliary cholangitis of

the liver (PBC) conducted between 1974 and 1984 [Mayo, 2022].

As we mentioned in Section 1.1, longitudinal and time-to-event data are used

in various fields, such as psychology, sociology and medicine. Therefore, the ap-

plication of the joint models in this thesis is not limited to the analysis of the three

datasets used. The base joint models we have constructed could be used to analyse

other discrete longitudinal and time-to-event data by modifying some parameters.

In summary, the main contribution of the thesis is the construction of bivariate

joint models that can be widely applied to longitudinal and time-to-event data with

discrete responses relevant to medical research. In addition to the discrete data

we analysed in this thesis, our joint model can also be applied to the analysis of

continuous data and discrete data with a wide range of values. For continuous data,

we can discretise the data into several categories and use the joint model presented

in this thesis for analysis. By categorising the response variables into subcategories,

the bivariate joint models we construct can also be used to analyse discrete data with

a wide range of values.

1.4 Outline

Chapter 2 provides a brief overview of the models in this thesis: the extension of the

bivariate binomial distribution proposed by Altham and Hankin [2012], the categor-
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ical distribution, the exponential hazard model, the Weibull hazard model and the

Gompertz hazard model. The link between the longitudinal model and the survival

model is also discussed in this part. Chapter 3 constructs the marginal log-likelihood

function for joint models, discusses the left truncation and proposes the method for

computation. In Chapter 4, we use simulation studies to validate the accuracy of

the joint model parameter estimates. We introduce the three data used in this thesis

in Chapter 5. We analyse these three datasets by fitting the shared random-effects

joint models and the latent-class joint models in Chapter 6. The conclusion of this

thesis and possible extension options for the joint model are discussed in Chapter 7.



Chapter 2

Models

In this chapter, we will introduce a series of models used to compose the joint

model. As mentioned in Section 1.1.2, the joint model uses a common latent vari-

able to link the longitudinal model and the survival model. These two models are

independent given the common latent variable [Rizopoulos, 2012]. We will there-

fore present several different longitudinal models to analyse discrete longitudinal

data and several commonly used survival models.

The joint model used in this thesis is given by

p(yyy, ttt, tlast) =
∫

p(yyy|ttt,bbb) p(tlast |bbb) p(bbb)dbbb, (2.1)

where yyy denotes the longitudinal outcomes, ttt represents the corresponding time

points, tlast is the time point for the last observation and bbb represent the random

effects. Distribution p(yyy|ttt,bbb) represents the longitudinal model, p(tlast |bbb) is the

survival model and p(bbb) is the distribution of the random effect.

Section 2.1 introduces the extension of the binomial distribution proposed by

Altham and Hankin [2012] and the categorical distribution [Murphy, 2012] used for

the longitudinal model. Section 2.2 proposes hazard models for analysing events of

interest. Section 2.3 defines the link function between the longitudinal model and

the survival model, which consists of the common parameters and random effects

of these two models. Finally, we define the distribution of random effects in the

shared random-effects joint model in Section 2.4. For what follows, assume the



2.1. Distributions for the longitudinal outcomes 31

random effects are given by vector bbb ∈Rp, where the dimension p is determined by

the model definition.

2.1 Distributions for the longitudinal outcomes

2.1.1 Binomial distribution

Typically, many response variables used to describe individuals’ cognitive abilities

in longitudinal data are expressed as non-negative integers. For example, the Mini-

Mental State Examination (MMSE) test is a 30-point questionnaire in which an

individual’s score is taken as an integer from 0 to 30 [Folstein et al., 1975]. This

test is widely used in clinical and research settings to measure cognitive function.

A higher score on the MMSE test means that the individual has a better cognitive

ability. For such discrete data, we model the probability of success, i.e. the indi-

vidual gets the question right and earns a point. We assume that the 30 questions

are independent of each other so that the distribution of the total scores obtained by

individuals could be treated as following a binomial distribution. It is worth noting

that even though each question had a different probability of success, the total score

distribution still follows the binomial distribution [McCullagh and Nelder, 1989].

Let Y denote the response and p denote the probability of success. Parameter

m denotes the number of trials. Altham [1978] presented the following extension of

the binomial distribution.

p(Y = y) =

(m
y

)
py(1− p)(m−y)θ y(m−y)

Cuni
, (2.2)

for y ∈ {0,1, ...,m}, where 0 < p < 1, θ > 0, and

Cuni =
m

∑
y=0

(
m
y

)
py(1− p)(m−y)

θ
y(m−y). (2.3)

Compared to the standard binomial distribution, this extended distribution adds the

parameter θ to change the shape of the distribution, making it more flexible when

fitting the data. When θ > 1, distribution (2.2) is under-dispersed compared to the

standard binomial distribution; when 0 < θ < 1, the distribution is over-dispersed
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relative to the standard distribution.

In this thesis, we are committed to simultaneously measuring the two responses

appearing in the longitudinal data. Therefore we use the bivariate extension of

Equation (2.2) [Altham and Hankin, 2012]. Let Y1 and Y2 denote the bivariate re-

sponses.

p(Y1 = y(1),Y2 = y(2)) =
g(Y1 = y(1))g(Y2 = y(2))φ y(1)y(2)

Cbiv
, (2.4)

for y( j) ∈ {0,1, ...,m j}, j = 1,2.

g
(

Y j = y( j)
)
=

(
m j

y( j)

)
py( j)

Y j
(1− pY j)

(m j−y( j))
θ

y( j)(m j−y( j))
Y j

, (2.5)

where pY j denote the probability of success for j = 1,2; 0 < pY1, pY2 < 1, θY j ,φ >

0. Compared to the univariate binomial extension distribution (2.2), the bivariate

extension of the binomial distribution has a new parameter φ . The parameter φ is

used to measure the correlation between two responses. When 0 < φ < 1, there

is a negative correlation between the two responses; when φ is greater than 1, the

responses are positively correlated. The denominator of the Equation (2.4) is:

Cbiv =
m1

∑
y(1)=0

m2

∑
y(2)=0

g(Y1 = y(1))g(Y2 = y(2))φ y(1)y(2). (2.6)

The integers m1 and m2 define the range of the two responses y(1) and y(2). In this

distribution, the ranges of the two responses could be unequal.

The reason for choosing this bivariate extension of the binomial distribution

is that the formula of the probability density function is relatively simple, and it

belongs to the exponential family [Altham and Hankin, 2012]. Moreover, this dis-

tribution allows Y1 and Y2 to have separate choices of m1 and m2.

Assume that the random effect bbb is a vector, where bbb = (b10,b11,b20,b21)
T .

This vector includes random intercepts (b10 and b20) and random slopes (b11 and

b21). We use the parameters b j0 and b j1 to denote the corresponding random inter-

cept and random slope for the responses Y j, j = 1,2. The parameter t represents the
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time or age of observation for individuals in the longitudinal data.

To investigate the relationship between time (age) and the responses, we use

the logistic regression model, which contains random-effects:

pY j =
exp
(
(η

( j)
0 +b j0)+(η

( j)
1 +b j1)t

)
1+ exp

(
(η

( j)
0 +b j0)+(η

( j)
1 +b j1)t

) . (2.7)

Parameter η0s are the fixed intercepts in the model, and η1s are the fixed slopes

for response Y j. We could include other covariates, such as gender and education

level, in model (2.7) to investigate the effects of these covariates on an individual’s

cognitive function. We use x to represent any possible covariate, and the extended

logistic regression model containing covariates (2.7) can be written as follows:

pY j =
exp
(
(η

( j)
0 +b j0)+(η

( j)
1 +b j1)t + γ

( j)
L x
)

1+ exp
(
(η

( j)
0 +b j0)+(η

( j)
1 +b j1)t + γ

( j)
L x
) . (2.8)

Parameter γ
( j)
L is the coefficient of the corresponding covariate, and subscript L

represents the longitudinal model.

In this thesis, we will investigate restricted models, i.e. the model contains

random intercepts or random slopes for the corresponding two responses. We will

explain why restricted models are used in Section 2.3.1 and Chapter 6. The re-

stricted model is defined by changing the value of the random effects, for example:

b10 = b20, b11 = b21, (2.9)

where two responses Y1 and Y2 share the same random intercept b10 and the same

random slope b11.

We could also set

b11 = b21 = 0, (2.10)

which means that we only use random intercept for each response. Also, we can
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assume

b10 = b20 = 0, (2.11)

where responses have different random slope (b11 and b21) and do not have corre-

sponding random intercepts.

2.1.2 Categorical distribution

As we mentioned in Chapter 1, some biomarkers are represented by discrete non-

negative integers. Therefore, each of the possible outcome values could be con-

sidered a category. Let us use Mini-Mental State Examination (MMSE) again as

an example [Folstein et al., 1975]. There are 31 possible outcome values for the

MMSE scores, i.e. the individual’s score could be any integer from 0 to 30. There-

fore, these 31 outcome values can be considered as 31 categories. We could use the

categorical distribution to analyse these discrete biomarkers.

The categorical distribution is a discrete probability distribution, also known as

the generalised Bernoulli distribution and the multinoulli distribution. The distribu-

tion describes the possible outcomes of a variable that can be one and only one of K

possible categories, with the probability of each category being specified separately

[Murphy, 2012]. For example, we need to model the probabilities of 31 outcomes

separately when using categorical distribution to analyse the MMSE scores. It is

worth noting that a categorical distribution is a special case of a multinomial dis-

tribution. Compared with the multinomial distribution, the categorical distribution

gives the probability of the potential outcome of one trial rather than multiple trials.

Using the example of dice rolling, the categorical distribution measures the prob-

ability of getting a particular side on a single roll rather than the number of times

a side is rolled on multiple rolls. Numeric labels are often used in the categorical

distribution to indicate the corresponding category.

There are two primary types of response outcomes in categorical distributions:

nominal and ordinal. For nominal outcomes, the order of labels is not important for

the allocation of outcomes. For example, suppose the response is the preferred type
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of music (jazz, rock, blues, etc.), we can label any type as category 1 since there is

no natural order between these categories. Correspondingly, ordinal outcomes refer

to response variables for which there exists an order between categories. Examples

include the number of words immediately recalled and the number of delayed recall

words in the ELSA data and histology and edema in the PBC2 data used in this

thesis. Agresti [2003] has mentioned that the methods used to analyse nominal can

also be used to analyse ordinal. In this thesis, we will use baseline-category logit

models [Agresti, 2003] to construct the joint model, which uses the categorical

model as the longitudinal model.

Let Yj denote the response, in which j = 1,2 represents the index of responses.

Vector ppp is the parameter vector for the categorical distribution. Parameter k repre-

sents the number of categories. Index i represent the ith category. The probability

mass function can be written as:

P(Y j|ppp) =
k

∏
i=1

[
y j = i

]
p( j)

i , (2.12)

where [y = i] evaluates to 1 if y = i, 0 otherwise.

The probability mass function can also be written as:

P(Yj|ppp) =
k

∏
i=1

p( j)y ji
i . (2.13)

In this formula, the sample space of y can be thought of as a set of k vectors of

dimension k. Moreover, these vectors have the property that exactly one element

has a value of 1, and the other elements have a value of 0.

Assume that b j0 represents the random intercept of the response Yj, and b j1

represents the random intercept of the response Yj. Let t represent time or age.

We still use the logistic regression model to investigate the distribution of time

and responses. Suppose set A j is the set of all possible category indexes except the

baseline category l for response Yj. We use i∗ to denote the category with random
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effects, and pY ji∗ represents the corresponding probability. We have:

pY ji∗ (t) =
exp
(

ηηη
( j)
i∗

)
1+ exp

(
ηηη
( j)
i∗

)
+∑i∈A j\{i∗} exp

(
η
( j)
0i +η

( j)
1i t
) , (2.14)

where ηηη
( j)
i∗ = (η

( j)
0i∗ +b j0)+(η

( j)
1i∗ +b j1)t represents the linear predictor correspond-

ing to category i∗ and response Yj. In constructing a logistic regression, we need a

baseline category l, where

pY jl(t) =
1

1+ exp
(

ηηη
( j)
i∗

)
+∑i∈A j\{i∗} exp

(
η
( j)
0i +η

( j)
1i t
) . (2.15)

Similar to Equation (2.8) in Section 2.1.1, we could also include other covariates

in the logistic regression models (2.14) and (2.15). We still use x to denote the

covariate used and γ
( j)
L to denote the corresponding parameter of that covariate. The

extension of the models ((2.14) and (2.15)) containing the covariate can be written

as:

pY ji∗ (t) =
exp
(

ηηη
( j)
i∗ + γ

( j)
L x
)

1+ exp
(

ηηη
( j)
i∗ + γ

( j)
L x
)
+∑i∈A\{i∗} exp

(
η
( j)
0i +η

( j)
1i t
) , (2.16)

and

pY jl(t) =
1

1+ exp
(

ηηη
( j)
i∗ + γ

( j)
L x
)
+∑i∈A\{i∗} exp

(
η
( j)
0i +η

( j)
1i t
) , (2.17)

respectively.

The possible restricted models are the same as in Section 2.1.1:

b10 = b20, b11 = b21, (2.18)

where two responses Y1 and Y2 share the same random intercept b10 and the same
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random slope b11. When

b11 = b21 = 0, (2.19)

it means that only the random intercept is added into the logistic regression. Simi-

larly, when

b10 = b20 = 0, (2.20)

responses have different random slopes (b11 and b21) and do not have corresponding

random intercepts.

2.2 Hazard models

We now define the hazard and the corresponding survival models for the analysis

of time-to-event data. The hazard model is a parametric regression model with the

formula:

h(t) = h0(t)exp(∆(ααα,ηηη ,bbb,γS, t)) . (2.21)

The expression h0(t) represents the baseline hazard function. Function ∆ is defined

as a link function which refers to an expression included in both the longitudinal

model and the survival model. The link function is composed of random effects

bbb, additional parameters ααα and parameters common to both the longitudinal and

survival models ηηη . We will introduce the link function in detail in Section 2.3. The

vector ηηη = (η
( j)
0 ,η

( j)
1 ) represents the fixed intercept and fixed slope for response Yj,

which we also use in the logistic regression models (2.7) - (2.8) and (2.14) - (2.17).

Similar to the Equation (2.8), γS is the parameter of the covariate and the subscript

S represents the survival model. Time t in the survival model is the last observed

time point (or age).

In survival analysis, there are a number of widely used parametric hazard mod-

els, such as the exponential hazard model, the Weibull hazard model, the Gompertz
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hazard model and the log-logistic hazard model. In this thesis, we use three widely

used hazard models to construct the survival component of the joint model: the

exponential model, the Weibull hazard model and the Gompertz hazard model.

The exponential hazard model, denoted by Exponential(λ ), is a simple hazard

model with only one parameter. We build the joint model with the exponential haz-

ard model based on the model estimation results in Chapter 6, and we will explain

in detail the reasons for using this hazard model in Chapter 6. The Weibull hazard

model denotes by Weibull(λ ,τ) is a generalisation of the exponential hazard model.

Compared to the exponential hazard model, the Weibull hazard model has an addi-

tional positive parameter τ , and the model’s shape could be modified by varying the

value of parameter τ . The Weibull model and the exponential model are equivalent

when τ equals 1. Liu [2012] mentions that of all the families of parametric survival

distributions, the Weibull model is probably the most widely used parametric func-

tion in survival analysis due to its simplicity and flexibility. Therefore, we chose it

as one of the survival models used in this thesis.

The Gompertz hazard model is the most widely used model within the re-

search field of quantitative description of human mortality and survival [Pollard

and Valkovics, 1992; Liu, 2012]. In contrast to the Weibull model, the numerical

estimation of the Gompertz model is computationally robust because there is no

power function in the Gompertz model. Death is the event of interest for the ELSA

data and PBC2 data used in Chapter 6. Given that the event of interest is death, we

chose the Gompertz model as one of the survival models. Although we restrict the

survival model to the exponential, Weibull and Gompertz models in this thesis, the

survival part of our joint model could be easily replaced by other frameworks.

The baseline hazard model for the three models is expressed as:

Exponential : h0(t) = λ (2.22)

Weibull : h0(t) = λτtτ−1 (2.23)

Gompertz : h0(t) = λ exp(ξ t) (2.24)
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where λ ,τ > 0, and the corresponding survivor functions are:

Exponential : S(t) = exp(−λ t) (2.25)

Weibull : S(t) = exp(−λ tτ) (2.26)

Gompertz : S(x) = exp
(
−λ

ξ

(
exp(ξ t)−1

))
. (2.27)

We use the parameterisation λ = exp(β ) in the joint model for computational rea-

sons to ensure a positive hazard for any β ∈ R.

The range of ξ in the Gompertz model has been defined variously in the lit-

erature. For example, some researchers have defined ξ as ξ ∈ R. In this situation,

the hazard grows exponentially with time when ξ > 0 and decreases when ξ < 0

[Kleinbaum and Klein, 2010]. However, if the parameter ξ is less than 0 when time

t tends to infinity, we have the following property of the survival function:

lim
t→∞

S(t) = exp
(

λ

ξ

)
> 0. (2.28)

This equation shows that the probability of survival is still greater than zero, even

if the time is quite long. It means that the events of interest will not occur in a

proportion of the population. The events of interest for the three datasets used in this

thesis are death or dementia, and the process from health to the event is irreversible.

Therefore we cannot set ξ to ξ ∈ R. We follow the definition given by Wienke

[2010] and restrict ξ to be positive. In this case, the hazard function is equal to λ

when t = 0 and it increases to ∞ when t = ∞. The corresponding survival function

is equal to 1 when t = 0 and it decreases to 0 when t rises to ∞.

2.3 Link between the models
This section introduces the link function ∆(ααα,ηηη ,bbb,γS, t) of the model, defined as an

expression containing the common parameters in both the longitudinal model and

the survival model. The link function ∆ contains the following parameters: random

effects bbb; fixed parameters ηηη ; the covariate x and corresponding parameters γS and

parameters ααα . Parameters in the link function except ααα are included in both the
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longitudinal and the survival models.

We divide this section into two parts: the link functions used in the shared

random-effects joint model and the latent-class joint model. In each part, we will

first introduce the expression for the link function and discuss possible restriction

models for the link function. After that, we will provide some explanations of the

corresponding hazard models based on the link functions. Since in this section

we will focus on the structure of the random intercept and random slope, we will

simplify the link function ∆(ααα,ηηη ,bbb,γS, t) to ∆(ααα,ηηη ,bbb, t).

2.3.1 Link functions for shared random-effects models

In the joint model, hazard model (2.21) allows for several specialisations. For uni-

variate joint models, the expression ∆(ααα,ηηη ,bbb, t) is usually specified as α(η0 +b+

(η1 + b)t) [Diggle et al., 2008]. Linear predictors are also commonly used as link

functions in many articles relating to multivariate joint models. In our thesis, we

also use the linear predictor as the link function. When investigating the bivariate

joint model, we do not know in advance which link function will provide the best

results. We, therefore, list in this section several possible expressions for the link

function and compare the joint models constructed by the different link functions in

Chapter 6.

As mentioned in Section 2.1, we restrict models based on Equations (2.10) and

(2.11) when constructing link functions. We use restricted models for two main

reasons. Suppose we use the full model, i.e. models containing Equation (2.7) or

(2.14) for j = 1,2, it would be unclear how to construct the link between the models

and how to interpret the impact of the corresponding parameters on the risk of the

event. Moreover, we encounter challenges in computing high-dimensional integrals

in the shared random-effects joint models. Therefore, we reduce the dimensionality

of the integration, i.e. the number of corresponding random effects. For each re-

sponse variable, we include only one corresponding random effect. We consider a

range of definitions of ∆, starting with

∆(ααα,ηηη ,bbb, t) = α

(
η
( j)
0 +b j0

)
, (2.29)
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where η
( j)
0 +b j0 is the fixed intercept and the random intercept for response Yj, for

j = 1 or 2. When the longitudinal model is a categorical distribution, we write the

corresponding link function according to Equation (2.14) and (2.15):

∆(ααα,ηηη ,bbb, t) = α

(
η
( j)
0i∗ +b j0

)
. (2.30)

We can also include the random intercept for both responses Y1 and Y2:

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α j

(
η
( j)
0 +b j0

)
, (2.31)

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α j

(
η
( j)
0i∗ +b j0

)
. (2.32)

The advantage of (2.29) - (2.32) is that these link functions does not include time, so

they are computationally easier than the link function that contains time. However,

changes in longitudinal outcomes over time may have a greater impact on the risk

of death or dementia compared to the value of the outcomes at the start of the time

scale. Therefore, we try to add random slopes to the link function in the same way:

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α j

(
η
( j)
1 +b j1

)
t, (2.33)

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α j

(
η
( j)
1i∗ +b j1

)
t. (2.34)

For the above link function containing random slopes, we also consider the re-

stricted version, i.e. setting one of the α js to 0:

∆(ααα,ηηη ,bbb, t) = α

(
η
( j)
1 +b j1

)
t, (2.35)
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∆(ααα,ηηη ,bbb, t) = α

(
η
( j)
1i∗ +b j1

)
t. (2.36)

Equation (2.33) - (2.36) takes into account the trajectory of Y1 and Y2 changing over

time by adding the fixed slope and the random slope.

Although we only use restricted models in this thesis, we still discuss the link

functions that could be used for the full model. The random intercept and the ran-

dom slope could be included in the same link function at the same time:

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α1 j

(
η
( j)
0 +b j0

)
+α2 j

(
η
( j)
1 +b j1

)
t, (2.37)

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α1 j

(
η
( j)
0i∗ +b j0

)
+α2 j

(
η
( j)
1i∗ +b j1

)
t. (2.38)

In other literature investigating multivariate joint models, there are many com-

mon forms of link functions in addition to those mentioned above. For instance, in

many joint models that use a linear-mixed model as their longitudinal model, the

conditional expectation of the response is commonly used as the link function:

∆(ααα,ηηη ,bbb, t) = α j

(
η
( j)
0 +b j0 +(η

( j)
1 +b j1)t

)
. (2.39)

Equation (2.39) is a common form of using expectation E(Y j) in the construction

of the link function. We will not use this link function in our thesis. The reason is

that in our distribution, the expectation of the response is not a linear predictor. The

expectation in our joint model is a function of the range m j of the response and the

probability of success pY j .

Alternatively, we could further extend the link function using an expression of

probabilities. We choose the probability in the categorical longitudinal model as an

example. This probability is constructed from the last observed survival time ts, i.e.

(pY ji∗ (ts)). When we add random intercepts into the i∗th category in the longitudinal
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model, the corresponding link function can be written as:

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α j pY ji∗ (ts). (2.40)

When random slopes are included in the i∗th category in the longitudinal model, we

write the link function as

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α j pY ji∗ (ts)t. (2.41)

When we combine the above ∆ expressions into the baseline hazard models

h0(t), we need to be careful with the parameters λ , τ and ξ in the Weibull hazard

model and the Gompertz hazard model.

For the Weibull hazard, when random intercepts are contained in the link func-

tion ∆, i.e. the expression of ∆ is equal to (2.29) - (2.32) or (2.40). The hazard

model can be written as:

h(t) = λ
∗
τt(τ−1). (2.42)

With ∆ equal to (2.31) or (2.40), the scaling parameter λ ∗ can be rewritten as an

individual-specific parameter:

λ
∗ = exp

(
β +

2

∑
j=1

α j

(
η
( j)
0 +b j0

))
, (2.43)

or

λ
∗ = exp

(
β +

2

∑
j=1

α j pY ji∗ (ts)

)
, (2.44)

respectively. The Weibull hazard model can also be written as a hazard model with

an individual-specific slope parameter:

h(t) = λτ
∗t(τ

∗−1), (2.45)
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where

τ
∗ = exp

(
2

∑
j=1

α j

(
η
( j)
0 +b j0

))
τ, (2.46)

or

τ
∗ = exp

(
2

∑
j=1

α j pY ji∗ (ts)t

)
τ, (2.47)

respectively. In this thesis, when we use the Weibull hazard model, we write the

corresponding expression in the form of Equation (2.42). When expressions for

∆s include random slopes ((2.35) - (2.38) and (2.41)) and are combined with the

Weibull hazard model, the shape parameter τ becomes a time-dependent parameter.

The time-dependent τ violates the definition of the standard Weibull hazard model.

When we want to add random slopes to the Weibull hazard model, we have to

compute the log cumulative hazard function [Crowther et al., 2012]. This thesis

will not discuss using the log cumulative hazard function.

For the Gompertz hazard, we have:

h(t) = λ
∗ exp(ξ ∗t). (2.48)

In this case, we need to rewrite the part containing the random intercept as λ ∗ and

the part containing the random slope as ξ ∗. Take for example a link function equal

to ∆(ααα,ηηη ,bbb, t) = α1

(
η
( j)
0 +b j0

)
+α2

(
η
( j)
1 +b j1

)
t, the corresponding parameter

λ ∗ and ξ ∗ should be written as:

λ
∗ = exp

(
β +α1(η

( j)
0 +b j0)

)
,

ξ
∗ = α2(η

( j)
1 +b j1)+ξ .

(2.49)

Both λ ∗ and ξ ∗ are parameterised for individuals. The Gompertz hazard model

can easily handle the function ∆ with random slopes. The reason is that a model

conditional on random effects is still a Gompertz hazard model.
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2.3.2 Link functions for latent-class models

The latent-class model, also known as the non-parametric frailty model [Van

Den Hout, 2017], assumes that the population is heterogeneous and can be divided

into a limited number of homogeneous classes [Proust-Lima et al., 2009]. Each

class is distinguished by a specific response trajectory and the specific risk of the

event. In the latent-class joint model, random effects are discretely distributed. We

assume that individuals in the data can be divided into G unobserved classes. For

each individual i, if i belongs to class g, it is expressed in the formula as ci = g,

(g = 1, . . . ,G).

For the latent-class joint model, we need to use the class-specific random ef-

fects bg0 and bg1 instead of the response-specific random effect b j0 and b j1 in the

shared random-effects joint model. (It is worth noting that the response-specific

random effects we refer to here are actually individually specific since in the shared

random-effects model, the random effects follow a distribution rather than a definite

value.)

In contrast to the widely used latent-class joint model [Proust-Lima et al., 2009,

2014, 2016], we use a similar expression to that of the shared random-effects joint

model, i.e. there is a link function between the longitudinal and survival models

containing the parameters α as well as other shared parameters. There are two rea-

sons for us to construct the latent-class joint model in this way: 1. We can compare

the constructed shared random-effects joint model and the latent-class joint model

to some extent by using similar expressions. We will use both models to analyse

the PAQUID data and compare the fitted results in Section 6.1.4. 2. Similar to the

reason for including the link function in the shared random-effects joint model, we

can verify whether there is a correlation between the longitudinal model and the sur-

vival model by using the estimated α , i.e. whether it is necessary for us to construct

a joint model to analyse the data. The choice of the link between the longitudinal

model and the survival model is quite flexible in the joint model. For example,
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considering the impact of the random effect on the hazard model directly:

∆(ααα,ηηη ,bbb, t) = αbg0. (2.50)

In this case, the expression of the hazard model (2.24) can be written as (take the

Gompertz model as an example):

hg(t) = λ
∗ exp(ξ t) = exp(β +αbg0 +ξ t), (2.51)

where

λ
∗ = exp(β +αbg0). (2.52)

In contrast to how the longitudinal model and the survival model share parameters in

the shared random-effects joint model, the grouping probability πig is usually used

in the latent-class joint model to link the two models [Proust-Lima et al., 2009].

We have introduced the link function ∆(ααα,ηηη ,bbb, t) between the longitudinal

model and the survival model for the shared random-effects model in Section 2.3.1.

In order to have similar link functions ∆ between the latent-class joint model and

the shared random-effects model, we use similar expressions as the link function

(2.29) - (2.38).

∆(ααα,ηηη ,bbb, t) = α

(
η
( j)
0 +bg0

)
, (2.53)

which is the random intercept for response Y1 or Y2. We can also plug in the random

intercept for both Y1 and Y2:

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α j

(
η
( j)
0 +bg0

)
. (2.54)

For (2.54), responses Y1 and Y2 share the same random intercept bg0, and we use bg0

for two times.
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To analyse the impact of cognitive decline on the risk of death or dementia, we

plug in the random slopes in the same way:

∆(ααα,ηηη ,bbb, t) = α

(
η
( j)
1 +bg1

)
t, (2.55)

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α j

(
η
( j)
1 +bg1

)
t. (2.56)

As in Section 2.3.1, we discuss the link functions that can be used when using the

full model. In the link function corresponding to the full model we can use the

random intercept and the random slope at the same time:

∆(ααα,ηηη ,bbb, t) = α

(
η
( j)
0 +bg0 +(η

( j)
1 +bg1)t

)
, (2.57)

∆(ααα,ηηη ,bbb, t) =
2

∑
j=1

α j

(
η
( j)
0 +bg0 +(η

( j)
1 +bg1)t

)
, (2.58)

in which the random effects are class-specific, and responses Y1 and Y2 share the

same random effects.

It is worth noticing that for different classes g, some model parameters do not

change. For example, parameters α and η
( j)
0 in (2.53) among different classes are

the same. In this case, the model is quite close to the shared random-effects model,

in which the parameters do not change across the individual specific models. We

can compare the computational efficiency between the shared random-effects model

and the latent-class joint model.

2.4 Distribution of random effects

As we mentioned at the beginning of Chapter 2, we use p(bbb) to represent the distri-

bution of random effects. In this thesis, we use the bivariate normal distribution as
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the distribution of random effects, i.e.

bbb ∼

000,

 σ2
b1 ρσb1σb2

ρσb1σb2 σ2
b2

 . (2.59)

Parameter ρ represents the correlation between random effects. The parameters σb1

and σb2 denote the corresponding random effects’ standard deviation.

When constructing multivariate joint models, the multivariate normal distri-

bution is the most commonly used distribution for random effects [Hickey et al.,

2016]. One advantage of using the multivariate normal distribution is that it allows

the use of Gauss-Hermite quadrature in the numerical optimisation of marginal like-

lihoods. Moreover, it is worth noting that even if we set the random effects distribu-

tion before fitting the model, the estimates of joint models will not have a significant

general bias, according to the conclusions in Pantazis and Touloumi [2007].



Chapter 3

Left truncation and maximum

likelihood estimation

The estimation of parameters is undertaken by maximising the log-likelihood func-

tion. In this chapter, we use the same notation in Chapter 2. For individual i,

i = 1, . . . ,N, the corresponding longitudinal responses are yyyi = (yyy(1)i ,yyy(2)i ). Re-

sponse yyy( j)
i is a vector

(
yyy( j)

i = (y( j)
i1 , . . . ,y( j)

ini
)
)

at age ttt i = (ti1, . . . , tini), where

j = 1,2 is the jth response, ni is the number of observations for each individual.

Random effects explain the inclusion of interdependencies in the joint model [Ri-

zopoulos, 2012].

We will use three datasets in this thesis: the ELSA data [Taylor et al., 2007],

the PAQUID data [Rondeau et al., 2008] and the PBC2 data [Mayo, 2022]. The

time in the ELSA data and the PAQUID data is measured with the age of the in-

dividual when the observations are recorded. Therefore we need to consider the

left truncation when constructing likelihood functions. For the PBC2 data, since

the time variable is the time from the start of the study to the time of recording the

observations, there is no need to consider left truncation. We will introduce these

datasets in detail in Chapter 5.

In this chapter, we will first introduce the left truncation. After that, the shared

random-effects joint model and the latent-class joint model are introduced sepa-

rately. In the sections corresponding to these two joint models, we will present the

likelihood functions with and without left truncation for each type of joint model.
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3.1 Left truncation

Left truncation, also called delayed entry, occurs when individuals are already at

risk before they enter the study[Wienke, 2010]. For example, when the event of

interest is death, individuals who die before the start of the experiment will not be

included in the data. In this case the data analysis is based on the assumption that

individuals who experienced the event before the study are not considered. In other

words, the data analysis in this case assumes that individuals will not experience

the event before the start of the study. Therefore, it is necessary to deal with the left

truncation.

We take the ELSA data [Taylor et al., 2007] used in Chapter 6 as an example.

In the ELSA data, the main time scale is the age of the individual when the obser-

vations are recorded. Since the event of interest in this data is death, individuals can

be included in the data only if they have not experienced the event prior to entering

the study. If we do not deal with the left truncation, the estimation is based on the

assumption that individuals were not at risk of dying before the start of the study.

Therefore, the left truncation should be considered in the joint model.

3.2 Likelihood functions for shared random-effects

joint models

A shared random-effects model, also known as the parametric frailty model [Van

Den Hout, 2017], can be defined as a joint model constructed by incorporating a

mixed model containing random effects as covariates in the survival model [Proust-

Lima et al., 2009]. The random effects in the shared random-effects models follow

continuous distributions, such as normal distribution, log-normal distribution and

gamma distribution. Therefore, the shared random-effects joint model provides

a flexible way of building relationships between longitudinal and survival models

basis on individuals[Van Den Hout, 2017].
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3.2.1 Likelihood function without left truncation

Let ωωω represent all the parameters in the joint model except the random effects.

Assuming independence between responses given the random effect, the marginal

likelihood function is:

p(yyyi, ttt i|ωωω) =
∫

p(yyyi|ttt i,bbbi,ωωω) p(tini|bbbi,δi,ωωω) p(bbbi|ωωω)dbbbi, (3.1)

where tini is the time corresponding to the last observation. Parameter δi = 0 indi-

cates that the event did not occur at the last observation, and δi = 1 indicates that

the event occurred during the study. Distribution p(yyyi|ttt i,bbbi,ωωω) is defined by the

longitudinal model and p(tini|bbbi,δi,ωωω) by the survival model:

p(tini|bbbi,δi,ωωω) = h(tini|bbbi,ωωω)δi p(T ≥ tini|bbbi,ωωω). (3.2)

We define the random effect bbbi ∈Rp by bbbi ∼ N(000,ΣΣΣ), where ΣΣΣ is a p× p covariance

matrix.

The corresponding marginal log-likelihood function for the shared random-

effects model is:

LLL(yyy, ttt last |ttt,δδδ ) = log
N

∑
i=1

p(yyyi, ttt i|ωωω)

= log
N

∑
i=1

∫
p(yyyi|ttt i,bbbi,ωωω) p(tini|bbbi,ωωω) p(bbbi|ωωω)dbbbi (3.3)

= log
N

∑
i=1

∫ [ ni

∏
k=1

p(y(1)ik ,y(2)ik |tik,b ji,ωωω)

]
p(tini|bbbi,δi,ωωω) p(bbbi|ωωω)dbbbi.

3.2.2 Likelihood function with left truncation

When we need to consider the left truncation in the shared random-effects joint

model, we still use ωωω to represent all the parameters in the joint model except the

random effects. Let ti1 denote the time corresponding to the first observation of

the individual, i.e. the truncation time. The likelihood contribution of individual i
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conditionally on truncation time ti1 is:

Li(ωωω|yyyi, ttt i,T ≥ ti1) = p(yyyi, ttt i|T ≥ ti1,ωωω)

=
p(yyyi, ttt i|ωωω)

p(T ≥ ti1|ωωω)
,

(3.4)

where p(T ≥ ti1|ωωω) is the survival function evaluated at ti1. For the shared random-

effects model, the denominator in (3.4) can be written as:

p(T ≥ ti1|ωωω) =
∫

p(T ≥ ti1|bbbi,ωωω)p(bbbi|ωωω)dbbbi. (3.5)

Assuming independence between responses given the random effect, the numerator

in (3.4) is the marginal likelihood function (3.1).

The shared random-effects joint model has several drawbacks. Firstly, be-

cause of the high-dimensional integration required in the computation of the joint

log-likelihood, the estimation process is numerically intensive [Proust-Lima et al.,

2009]. Secondly, random effects capture all the correlations between the joint mod-

els. Examples include correlations between individual observations in longitudi-

nal data and between longitudinal models and survival models. In some commonly

used multivariate joint models (such as those mentioned in Rizopoulos [2012]), ran-

dom effects also capture the correlations between several responses. It is, therefore,

difficult to interpret these correlations separately. In this thesis, we try to use the bi-

variate extension of the binomial distribution (2.4) proposed by Altham and Hankin

[2012] to improve this problem via the parameter φ . In addition, there may be la-

tent heterogeneity in the population, i.e. potential ’latent subpopulations’ defined by

some unobserved characteristics [Arbeev et al., 2014]. When these heterogeneities

are discrete, the shared random-effects joint models with continuous random effects

may not describe them well.

3.3 Likelihood functions for latent-class joint models
In order to avoid the above limitations in the shared random-effects joint model, we

also construct the latent-class joint model in this thesis. We have introduced this
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model in Section 2.3.2, which the model is also called the non-parametric frailty

mode. The basic assumption of this model is that the population can be divided into

a limited number of homogeneous classes [Proust-Lima et al., 2009]. In this model,

the random effects are discretely distributed.

We use the same notation as in Section 2.3.2. We assume that individuals in the

data can be divided into G unobserved classes. For each individual i, the individual

belongs to class g is expressed in the formula as ci = g, (g = 1, . . . ,G).

3.3.1 Likelihood function without left truncation

Compared with the shared random-effects marginal log-likelihood function (3.1),

the latent-class joint model uses summation rather than integral to calculate the

marginal likelihood function. Both the longitudinal model and the survival model

are class-specific in this model.

Let ωωω represent all the parameters in the joint model except the random effects.

Assuming independence between responses given the random effect, the marginal

likelihood function is:

p(yyyi, ttt i|ωωω) =
G

∑
g=1

p(yyyi|ttt i,ci = g,ωωω) p(tini|ci = g,δi,ωωω)πig, (3.6)

where tini is also the corresponding time for the last observation. The parameter

δi = 0, as we mentioned in Section 3.2.1, represents that the event did not oc-

cur at the end of the study (δi = 0) and the event occurred (δi = 1), respectively.

Distribution p(yyyi|ttt i,ci = g,ωωω) represents the class-specific longitudinal model and

p(tini|ci = g,δi,ωωω) is the class-specific survival model, where

p(tini|ci = g,δi,ωωω) = hg (tini|ci = g,ωωω)δi p(T ≥ tini|ci = g,ωωω). (3.7)

Unlike the shared random-effects model, in the latent-class joint model we no longer

use the individual-specific random effect bbbi, but use the class-specific random effect

bbbg =
(
bg0,bg1

)
. The linear predictor with corresponding random effects in Equation
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(2.7) changes to:

ηηη
( j)
g = (η

( j)
0 +bg0)+(η

( j)
1 +bg1)t. (3.8)

The corresponding logistic regression model between time (age) and the responses

is changed to:

pY jg =
exp
(
(η

( j)
0 +bg0)+(η

( j)
1 +bg1)t

)
1+ exp

(
(η

( j)
0 +bg0)+(η

( j)
1 +bg1)t

) . (3.9)

The random effects bg0 and bg1 are discrete class-specific random effects. Function

p(tini|ci = g,δi,ωωω) is the class-specific survival model, where

p(tini|ci = g,δi,ωωω) = hg (tini|ci = g,ωωω)δi P(T ≥ tini|ci = g,ωωω). (3.10)

Probability πig = P(ci = g) is the probability for an individual belongs to the class

g, and ∑
G
g=1 πig = 1. For class g,

πig = P(ci = g|xxxi)

=
exp(µ0g + xxxT

i µµµ1g)

∑
G
l=1 exp(µ0l + xxxT

i µµµ1l)
,

(3.11)

where µ0g is the intercept for class g and µµµ1g is the vector of class-specific parame-

ters associated with the vector of time-independent covariates xxxi [Proust-Lima et al.,

2009]. In order to enforce ∑
G
g=1 πig = 1, when g = 1, we set µ01 = 0 and µ11 = 0:

πi1 = P(ci = 1|xxxi)

=
1

∑
G
l=1 exp

(
µ0l + xxxT

i µµµ1l
) . (3.12)

The corresponding marginal log-likelihood function for the latent-class model
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is:

LLL(yyy, ttt last ,ccc|ttt,δδδ ) = log
N

∑
i=1

p(yyyi, ttt i|ωωω)

= log
N

∑
i=1

G

∑
g=1

p(yyyi|ttt i,ci = g,ωωω) p(tini|ci = g,δi,ωωω)πig

= log
N

∑
i=1

G

∑
g=1

[
ni

∏
k=1

p(y(1)ik ,y(2)ik |tik,ci = g,ωωω)

]
p(tini|ci = g,δi,ωωω)πig.

(3.13)

3.3.2 Likelihood function with left truncation

When using the latent-class joint model, the denominator of (3.4) is the marginal

survival function across the classes. It can be defined as:

p(T ≥ ti1|ωωω) =
G

∑
g=1

p(T ≥ ti1|ci = g,ωωω)πig. (3.14)

3.4 Numerical integration and optimisation
We code the marginal log-likelihood function in the R software [R Core Team,

2013]. The corresponding parameters are estimated using the ucminf function

in package ucminf [Nielsen and Mortensen, 2016].

For the shared random-effects model (3.1), where the random effect bbb follows

a bivariate normal distribution, we use the Gaussian-Hermite method with 11 nodes

to do numerical integration.

It is worth mentioning that the bivariate Gaussian quadrature can be undertaken

using two univariate normal distributions (see, e.g. [Van Den Hout, 2017]). The

bivariate normal distribution f (z,x) can be expressed as:

fZ|X(z|X = x) fX(x), (3.15)

where Z ∼ N(µZ,σ
2
Z), X ∼ N(µX ,σ

2
X) and Z|X ∼ N(µZ −ρ(σZ/σX)x−µX ,σ

2
Z(1−

ρ2)). Parameter ρ represents the correlation between Z and X.



Chapter 4

Simulation study

In this chapter, we conduct three small simulation studies to investigate the parame-

ter estimation for the bivariate shared random-effects joint models and the bivariate

latent-class joint models. The joint model used in the first simulation study is built

based on the bivariate extension of the binomial distribution (2.4) and the Gompertz

hazard model (2.24). In the second simulation study, we use the bivariate extended

binomial longitudinal combined with the Gompertz hazard model to construct the

latent-class joint model. In the third simulation study, we use the categorical model

(2.12) and the Gompertz model to construct the shared random effect joint model.

The simulation study design in this chapter refers to the articles by Van

Den Hout and Muniz-Terrera [2016] and Morris et al. [2019]. We used the ADEMP

structure to plan the simulation study [Morris et al., 2019]. The ADEMP struc-

ture includes Aims, Data-generating mechanisms, Methods, Estimands, and Perfor-

mance measures.

4.1 Bivariate binomial shared random-effects joint

model
The main Aims of our simulation study are:

1. To check the accuracy of the algebra and code to ensure there are no signifi-

cant errors.

2. To check the estimation method and investigate the joint model’s performance
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given various sample sizes.

3. To confirm that the correlation parameter φ of the bivariate joint model can

be estimated well.

4. To ensure that the relevant arguement settings are reasonable. The arguments

refer to the sample size settings for the simulations, the number of nodes for

the Gaussian integration settings, and the number of simulations.

5. To confirm that we can obtain accurate estimates when using the results ob-

tained in the Section 6 as the true values in the simulation study. In other

words, we can use simulation to generate a dataset similar to the data used in

the 6 Section.

Date-generating mechanism: In this section, we will perform a simulation

study based on the bivariate extension of the binomial joint model. We use the

joint model with minimum AIC in Table 6.2 as a reference to build the simulation

study. The data-generating mechanism is to create a bivariate shared random-effects

joint model based on the extension of the bivariate binomial distribution (2.4) and

the Gompertz hazard model (2.27). When investigating data generation mecha-

nisms, it is common to vary the sample size of a simulated dataset, as performance

tends to change with the sample size [Morris et al., 2019]. Therefore, we also

try to use various sample sizes when designing our simulation study, and for the

sample size setting, we refer to the settings in Van Den Hout and Muniz-Terrera

[2016]. For the purpose of investigating small sample bias, we set the sample sizes

N = 100,400,1000 for the joint model, respectively.

In the bivariate extension of the binomial joint model, the logistic regression

model is defined by (2.7) with b11 = b21 = 0, i. e. the model contains two random

effects, and both random effects are random intercepts. The random effects follow a

bivariate normal distribution with expectations of 0. The distribution is specified by

parameters σb1, σb2 and ρ . The corresponding link function is equal to (2.29) for

j = 1. This joint model is the best performing model in the Binomial joint models

Section; see Section 6.1.
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The true values of the parameters, i.e. the values used when generating the

data, are listed as ”Value” in Table 4.1 - 4.3. It is worth noting that we set α to

−0.4 in the model. The parameter α is the relevant parameter of the link function

∆(ααα,ηηη ,bbb, t), if α is significantly different from 0, it means that there is an associa-

tion between the longitudinal model and the survival model, and it is necessary for

us to build the joint model. We select three sets of true values for our simulation ex-

periments. In Table 4.1, we set the correlation parameter φ for the two responses to

1. In this situation, the correlation between the two responses is captured by random

effects, the same as the multivariate joint model mentioned in Rizopoulos [2012].

In Table 4.2, we set the value of φ to 0.8, in which case the correlation between the

two responses is measured using the parameter φ . When the value of φ is between

0 and 1, the two responses are negatively correlated. In addition, a set of simu-

lations is conducted with the estimated values in Section 6.1. The corresponding

simulation results are listed in Table 4.3

Estimands: In this simulation study, the estimates of interest are the model

parameters in the Nsim iteration.

Methods: In generating the data, we set the observation time for all individuals

to start at time 0 in order to eliminate the impact of the left truncation. We set the

time range from 0 to 24, i.e. if an individual has not dropped out at the end of the

study, the corresponding time point of his/her last observation is 24. We set the

follow-up interval to three years to ensure that we have adequate information about

changes in response variables over time. When the follow-up interval is fixed at

every three years, this means that there are 9 observations for individuals who do

not drop out during the follow-up.

Based on the specified parameters and follow-up intervals, we first simulate

the corresponding random effects for an individual by generating data from the

bivariate normal distribution. Given these random effects, bivariate longitudinal

trajectories are simulated using the Metropolis-Hastings algorithm. We refer to the

rMM function in the MM package, which is a function used to generate univariate ran-

dom samples from the multiplicative multinomial [Altham and Hankin, 2012]. We
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write the function to generate data from the extension of the binomial distribution

based on the rMM function. Afterwards, we use the generated individual random

effects again to define the relevant parameter λ of the Gompertz hazard model, i.e.

λ ∗ = exp
(

β +α(η
(1)
0 +b10)

)
, and to derive the survival function S(t) for each

follow-up time point. We use the cumulative distribution function F(t) = 1− S(t)

to calculate the point in time when the event of interest occurs by the inversion

method. After obtaining the generated data, we use the likelihood function of the

joint model as well as function ucminf to estimate the parameters [Nielsen and

Mortensen, 2016]. In the parameter estimation process, the bivariate integral is cal-

culated by the Gauss–Hermite quadrature method, and we set the number of nodes

to 11. The number of iterations of the simulation Nsim is set to 100.

Performance measures: The results of the simulation are analysed by assess-

ing the means, bias, relative bias (%), empirical standard error (SE), Monte Carlo

standard error of bias (4.1) (denoted by MC.Bias) and Monte Carlo standard error

of empirical standard error (4.2) (denoted by MC.SE). The Monte Carlo standard

errors are statistics that quantify the uncertainty of a finite Nsim simulation study

[Morris et al., 2019]. Bias and relative bias are the key performance indicators we

are interested in.

MC.Bias =

√√√√ 1
Nsim (Nsim −1)

Nsim

∑
i=1

(ω̂i − ω̄)2, (4.1)

MC.SE =
ˆSE√

2(Nsim −1)
. (4.2)

Table 4.1, Table 4.2 and Table 4.3 show the simulation results for different

starting values when the sample size is equal to N = 100,400,1000, with follow-up

intervals equal to 3. From Table 4.1 we can observe that in 100 iterations, the mean

of the estimated values does not deviate much from the true values we set. For most

parameters, the relative biases between the true values we set and the mean of the
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final estimates are less than 5%. It shows that our modelling estimates are accurate

for most of the parameters. It is worth noting that when the sample size is 100,

the relative biases of parameters ξ of the Gompertz hazard model, the correlation

coefficient ρ of the random effects, the parameter for the baseline hazard β and

the corresponding parameter α of the link function ∆(ααα,ηηη ,bbb, t) are relatively large.

The values of their relative biases are 19.8%, 11.2%, 5.9% and 9.6%, respectively.

Although the estimates of these parameters have non-negligible biases when the

sample size is small (N = 100, these relative biases decrease rapidly as the sample

size increases. When the sample size is expanded to 1000, the relative biases of all

parameters are fairly close to 0, which is the same as the sample size of the ELSA

data we used in Section 6.1. In general, as the sample size N increases, the mean

of the estimates will be closer to the set value. As the sample size increases, other

relevant estimates such as bias, relative bias and standard error will also improve

significantly.

The difference between the true value used in Table 4.2 and the true value in

Table 4.1 is that we set φ to 0.8 instead of 1. It means that for the joint model using

this set of true values, the correlation between the two responses is measured by the

parameter φ rather than by random effects. From Table 4.2 we can observe that,

even with the small sample size, the mean of the φ estimates is quite close to our set

value. It shows that our joint model can estimate well the correlation coefficients φ

of the two responses. When the sample size is small (N = 100), we encounter the

same problem as when analysing the results in Table 4.1, i.e. large relative biases

for the parameters ξ , ρ and α . This problem can be well resolved by increasing the

sample size.

The true values we use in Table 4.3 are obtained by fitting the ELSA data in

Section 6.1. The results from this set of simulations are close to the true values

and, to some extent, indicate the parameter estimates we obtained in Section 6.1 are

accurate. It is worth noting that the parameter estimates in Section 6.1 are based

on the bivariate extended binomial joint model with left truncation, whereas in this

section, the left truncation is not incorporated.
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Figure 4.1: Bias and corresponding Monte Carlo 95% confidence interval, based on the
results in Table 4.1. Large dots represent biases, and geometry bars represent
Monte Carlo 95% confidence interval.

We plot the values of the biases in Table 4.1 and the corresponding Monte

Carlo standard error of deviation (MC.Bias) values in Figure 4.1. From this figure,

we can see that 0 is included in the 95% Monte Carlo confidence interval for most

parameters. As the sample size increases, i.e. from N = 100 to N = 1000, the cor-

responding confidence intervals for the biases of the parameters show a significant

decrease. We can deduce that the larger the sample size, the closer the average value

of the estimated parameters obtained from the simulation based on these 100 iter-

ations is to the true value, which is consistent with our previous discussion related

to Table 4.1. We have drawn similar plots A.1 and A.2 in the Appendix A based on

the results in Tables 4.2 and Table 4.3, respectively. Both plots demonstrate that the

larger the sample size, the closer our simulation results are to the set true value. We

also present Figure A.3 - Figure A.5 in the Appendix. The figures show box plots

of the corresponding estimates for the simulations in Table 4.1 - Table 4.3.

This simulation shows that

1. The parameters used to generate the data can be reproduced by marginal like-
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lihood estimation.

2. The parameter estimation method we use gives accurate estimates, i.e. the

function ucminf combined with Gauss-Hermite. Moreover, the scenarios in

the simulation study are reasonable, e.g. in the Gauss-Hermite method, the

nodes are set to 11, and in the simulations, the number of iterations is set to

100. It is worth noting that although in this section it is reasonable for us to

set the number of nodes to 11 by simulation, in other cases, e.g. when there

is considerable heterogeneity between subjects, the Gauss-Hermite method

may require more nodes.

3. As the sample size increases, the bias in the parameter estimates is signif-

icantly reduced. In particular, when the sample size is N = 1000, the 95%

confidence interval for the bias of all parameter estimates includes 0. This

result also justifies our choice of a sample size of 1000 in Section 6.1.

4.2 Misspecification
In Section 4.1, we constructed two sets of simulations in Tables 4.1 and Table 4.2.

These two sets of simulation results demonstrate that our joint model can accurately

estimate the correlation between the two longitudinal response variables, i.e. the

parameter φ .

Our Aims in this section is to demonstrate that it is worthwhile to use the bi-

variate extension of the binomial distribution to construct joint models, i.e. that the

correlation coefficient φ is a necessary parameter when constructing the bivariate

joint model.

Data-generating mechanism: We will construct two sets of simulations, A and

B, to prove the need for the existence of the parameter φ . We can observe from

the simulations in Section 4.1 that we can obtain more accurate parameter estimates

when the sample size reaches N = 400. Therefore, simulations in this section set

the sample size equal to 400. In both sets of simulations, we use Gompertz hazard

as the survival model, and the corresponding link function is Equation (2.31). The

logistic regression model is defined by (2.7) with b11 = b21 = 0, i. e. the model
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contains two random effects, and both are random intercepts. The random effects

follow a bivariate normal distribution with expectations of 0. The distribution is

specified by parameters σb1, σb2 and ρ .

In simulation A , we generate data from a shared random-effects joint model

containing two univariate extended binomial distributions. In this data, the corre-

lation between the two longitudinal responses is captured by random effects. The

true value of the parameter ρ is set to 0.3. After obtaining the data, we fit the data

with a joint model containing the extension of the bivariate binomial distribution. In

this simulation, we expect the estimated φ to be equal to 1, i.e. the two longitudinal

responses are independent of each other given random effects. Moreover, φ equals

1 means that the fact that random effects capture the correlation between the two

longitudinal responses can be reflected by the parameter estimation results.

In simulation B, we use the joint model containing the extension of the bivari-

ate binomial distribution to generate data. We set the true value of the parameter φ

to 0.8. Afterwards, we fit the data using the bivariate joint model containing two

univariate extended binomial distributions. In theory, the expectation is that all pa-

rameter estimates, except for parameter ρ will be accurate. The parameter ρ will

not be consistent with the true value because it captures the correlation between the

two longitudinal responses, whereas, in the data part of this correlation is captured

by the parameter φ .

Estimands: The estimates of interest are the model parameters in the Nsim iter-

ation.

Methods: The process of generating data is similar to that in Section 4.1. We

first generate individual-specific random effects based on parameters σb1, σb2 and ρ .

Given generated random effects, we use the Metropolis-Hasting method to simulate

bivariate longitudinal trajectories. It is worth noting that in simulation A , we gen-

erate trajectories from two univariate extended binomial distributions; in simulation

B, we generate trajectories from the bivariate extended binomial distribution. For

the survival part, we use the cumulative distribution function to generate the event

occurrence time. The parameter estimation is undertaken by the function ucminf
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in R [Nielsen and Mortensen, 2016]. We use the Gauss-Hermite method with 11

nodes to calculate the bivariate integral. The number of iterations of the simulation

Nsim is set to 100.

Performance measures: We still use the means, bias, relative bias (%), empir-

ical standard error (SE) and Monte Carlo standard error of bias (4.1) (denoted by

MC.Bias) to evaluate the parameter estimates.

We present the results of simulation A and B in Table 4.4. The corresponding

results for the parameter φ in simulation A (bias, SE, etc.) are obtained by assum-

ing the true φ = 1. The estimated values of simulation A are similar to the true

values. The relative biases for all parameters except for α2 are below 5%. It shows

that the estimates can well reflect the distribution of the data. Moreover, there is

no parameter φ in the true value, and the true value of parameter ρ is equal to 0.3.

Our bivariate joint model successfully estimates these two parameters, with φ close

to 1 and parameter ρ close to 0.3. The estimation results of these two parameters

indicate that even if longitudinal responses are independent of each other given ran-

dom effects, the joint model we propose in this thesis can still fit the parameters

accurately.

In simulation B, we can observe that when the parameter φ exists in the data-

generating model but not in the fitted model, the estimated values of all parameters

differ significantly from the true values.

Combining simulation A as well as simulation B, we can conclude that it is

necessary to use the bivariate extension of the binomial distribution to construct the

joint model. Joint models that only use random effects to capture the correlation

between responses do not always reflect the distribution of the data well.

4.3 Bivariate binomial latent-class joint model

The Aims of this simulation are similar to those in Section 4.1. The first aim is

to check whether we can get accurate parameter estimates for the binomial latent-

class joint model across various sample sizes. The second aim is to verify that the

relevant arguments, such as the sample sizes and the number of iterations we use,
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are feasible.

Date-generating mechanism: We use the joint model with link function (2.53)

to build the simulation study. The data-generating mechanism is to create a bivariate

latent-class joint model based on the extension of the bivariate binomial distribution

(2.4) and the Gompertz hazard model (2.27). The sample sizes are also set to N =

100,400,1000, respectively in order to investigate the small sample bias.

For the marginal likelihood function (3.13), we divide individuals into two

groups (G = 2,g ∈ {1,2}). We set the class-specific random effect b1 = −b2 and

define the probability for an individual belonging to the class g (represented by πig)

as

πi1 =
exp(µ)

1+ exp(µ)
. (4.3)

For the logistic regression model in the longitudinal model, we have:

pY jg =
exp
(
(η

( j)
0 +bg0)+η

( j)
1 t
)

1+ exp
(
(η

( j)
0 +bg0)+η

( j)
1 t
) . (4.4)

For the Gompertz hazard model with the link function ∆ equal to (2.53), and the

corresponding hazard model is written as:

hg(t) = exp(β +α(η
( j)
0 +bg0)+ξ t). (4.5)

The corresponding simulation results are listed in Table 4.5. The true values of

the parameters, i.e. the values used when generating the data, are listed as ”Value”

in the table.

Estimands: In this simulation study, the estimates of interest are the model

parameters in the Nsim iteration.

Methods: In generating the data, we set the observation time for all individuals

to start at time 0 to eliminate the impact of the left truncation. We still set the time

range from 0 to 24, i.e. if an individual has not dropped out at the end of the study,

the corresponding time point of his/her last observation is 24. We set the follow-up



4.3. Bivariate binomial latent-class joint model 70

interval to three years to ensure that we have adequate information about changes

in response variables over time. When the follow-up interval is fixed every three

years, this means that there are 9 observations for individuals who do not drop out

during the follow-up.

Similar to Section 4.1, we first simulate the bivariate longitudinal trajectories

based on the corresponding class-specific random effect bg using the Metropolis-

Hastings algorithm. Afterwards, we use the class-specific random effects again

to define the relevant parameter λ of the Gompertz hazard model, i.e. λ ∗ =

exp
(

β +α(η
( j)
0 +bg0

)
for each follow-up time point. We use the formula men-

tioned in Bender et al. [2005] to generate the event times rather than using the

cumulative distribution function and the inversion method:

T =
1
ξ

log
(

1− ξ log(u)
λ ∗

)
, (4.6)

where u ∼U(0,1) and β is the vector of regression coefficients.

After obtaining the generated data, we use the joint model’s likelihood function

as well as function ucminf to estimate the parameters [Nielsen and Mortensen,

2016]. The number of iterations of the simulation Nsim is set to 100.

Performance measures: We compute the mean of estimated parameters over

Nsim iterations. We still assess means, bias, relative bias (%), empirical standard

error (SE) and Monte Carlo standard error of bias (MC.Bias) [Morris et al., 2019].

Table 4.5 shows the simulation results when the sample size equals to N =

100,400,1000, with follow-up intervals equal to 3. From the table, we can observe

some deviation between the mean of the estimated values and the true values we set

for the 100 iterations. Especially the relative biases of the mean value of parameters

ξ of the Gompertz hazard model and the corresponding parameter α of the link

function ∆(ααα,ηηη ,bbb, t) are relatively large. For most of the remaining parameters, the

relative biases between the true values we set and the mean of the final estimates

are less than 5%. It shows that our modelling estimates are relatively accurate for

most parameters. Although the estimates of parameters have non-negligible biases

when the sample size is small (N = 100), these relative biases decrease rapidly as
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the sample size increases. In general, as the sample size N increases, the mean of

the estimates will be closer to the set value. As the sample size increases, other

relevant estimates, such as bias, relative bias and standard error will also improve

significantly.
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Figure 4.2: Bias and corresponding Monte Carlo 95% confidence interval, based on the
results in Table 4.5. Large dots represent biases, and geometry bars represent
Monte Carlo 95% confidence interval.

We plot the values of the biases in Table 4.5 and the corresponding Monte

Carlo standard error of deviation (MC.Bias) values in Figure 4.2. This figure shows

that 0 is included in the 95% Monte Carlo confidence interval for most parameters.

As the sample size increases, i.e. from N = 100 to N = 1000, the corresponding

confidence intervals for the biases of the parameters show a significant decrease.

We can deduce that the larger the sample size, the closer the average value of the

estimated parameters obtained from the simulation based on these 100 iterations is

to the true value, which is consistent with our previous discussion related to Table

4.5. We also present Figure A.6 in the Appendix. The figures show box plots of the

corresponding estimates for the simulations in Table 4.5.

This simulation shows that: with marginal likelihood estimation, it is possible
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to reproduce the parameter values used to generate the data; the parameter estima-

tion method we use gives accurate estimates, i.e. the function ucminf. In addition,

the arguments set in the simulation study are reasonable - for example, the number

of iterations, the time interval and the sample size. As the sample size increases, the

bias in the parameter estimates is significantly reduced.

4.4 Bivariate categorical joint model

The Aims of this simulation are similar to those in Section 4.1. The first aim is

to check whether we can get accurate parameter estimates for the categorical joint

model across various sample sizes. The second aim is to verify that the relevant

arguments, such as the number of nodes and the number of iterations we use, are

feasible.

Date-generating mechanism: The mechanism is based on the categorical dis-

tribution (2.12) and the Gompertz hazard model (2.27). We also set the sample size

N = 100,400,1000 respectively in order to investigate the small sample bias. For

the longitudinal model, we use the categorical distribution (2.12), in which the lo-

gistic regression model is defined by (2.14) and (2.15) with b11 = b21 = 0. We use

two univariate categorical distributions, with the first distribution having four cate-

gories and the second having three. We set the baseline category to 1, i.e. for both

categorical distributions, we set l = 1 in Equation (2.15) when constructing the cor-

responding logistic regression. The values of i∗ in Equation (2.14) are set to 4 and

2, respectively. For the survival model, we use the Gompertz hazard model (2.27).

The corresponding link function is given by (2.31). The random-effects distribution

for (b10,b20) is specified by σb1, σb2 and ρ . The joint model we use in this section

is based on the model that obtained the best results in Section 6.2.2.

The true values of the parameters are listed as “Value” in Table 4.6. We set

αs to −0.4 in the model. The parameter α is the relevant parameter of the link

function ∆(ααα,ηηη ,bbb, t), if αs are significantly different from 0, it means that there

is an association between the longitudinal model and the survival model, and it is

necessary for us to build the joint model.
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Estimands: In this simulation study, the estimands of interest are also the

model parameters over the Nsim iterations.

Methods: We set the observation time for all individuals to start from zero so

that we do not need to consider left truncation in this joint model. If an individual

does not drop out, the follow-up ends at 20 years. The simulation study in this

section is less computationally expensive than that we constructed in Section 4.1,

so we can add more observations to improve the accuracy of the simulation study.

Follow-up intervals are set to one year to ensure we have enough information about

changes in responses over time.

Given the specified parameters and follow-up intervals, data for an individ-

ual are firstly simulated by drawing random effects. Based on these effects, we

simulate two longitudinal trajectories using sample function separately R Core

Team [2013]. Afterwards, random effects are used again to define the Gompertz

parameter λ ∗ = exp
(

β +α1(η
(1)
0 +b10)+α2(η

(2)
0 +b20

)
for the joint model, and

to calculate the survival function S(t) for each follow-up time point. In this simu-

lation study, we use the formula mentioned in Bender et al. [2005] to generate the

event times, rather than using the cumulative distribution function and the inversion

method:

T =
1
ξ

log
(

1− ξ log(u)
λ ∗

)
, (4.7)

where u ∼U(0,1) and β is the vector of regression coefficients.

It is worth noting that we could not generate data that follows the categorical

distribution by using the function rcat in LaplacesDemon package [Statisticat

and LLC., 2021]. The distribution of the data generated using this rcat function

does not match the categorical distribution we expect. We have verified this by

using rcat to generate the data and then fitting the data with the corresponding

categorical distribution.

When estimating the parameters, we still use the Gauss-Hermite method to cal-

culate the double integral. We choose 11 nodes for the Gauss–Hermite quadrature.
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The corresponding parameters are estimated using the ucminf function in package

ucminf [Nielsen and Mortensen, 2016]. The number of iterations is 100.

Performance measures: As with the previous simulation, we compute the mean

of estimated parameters over Nsim iterations. We still assess means, bias, rela-

tive bias (%), empirical standard error (SE), Monte Carlo standard error of bias

(MC.Bias) and Monte Carlo standard error of empirical standard error (MC.SE)

Morris et al. [2019].

As expected, the mean of the estimated value will be closer to the set value

when N is increased. The relative bias shows a large difference (11.1%) between

the mean of the estimated values and the true value of α1 when the sample size

is 100. We can reduce this bias by increasing the sample size. We could already

achieve a relatively accurate estimate when the sample size is expanded to 400.

This sample size is close to the PBC2 data we used in Section 6.2.2. Therefore,

we demonstrate to some extent that the parameter estimates obtained in Chapter 6

are reliable. As in Section 4.1, we also produced plots of the corresponding bias

and Monte Carlo 95% confidence intervals based on the results in Table 4.6. From

Figure 4.3 we could also conclude that the estimated parameters of the joint model

we constructed fit the data well.
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Figure 4.3: Bias and corresponding Monte Carlo 95% confidence interval, based on the
results in Table 4.6. Large dots represent biases, and geometry bars represent
Monte Carlo 95% confidence interval.



Chapter 5

Data

In this chapter, we will introduce the data used in Section 6: the English Longitudi-

nal Study of Ageing (ELSA); Longitudinal data on cognitive and physical aging in

the elderly (PAQUID); the primary biliary cholangitis (PBC2).

5.1 English Longitudinal Study of Ageing (ELSA)
The English Longitudinal Study of Ageing (ELSA) is a repository of information

on changes in the health, social, welfare and economic status of the UK popula-

tion aged 50+ over time. This study was established in 2002. The study’s original

sample was drawn from households that had responded to the Health Survey for

England (HSE) between 1998 and 2001 [J. et al., 2021]. The same group of individ-

uals was interviewed every two years to measure changes in their health, economic

and social status. ELSA data are available via the Economic and Social Data Ser-

vice (www.esds.ac.uk) [J. et al., 2021]. The information collected provides data on

household and individual demographics, health, social care, work and pensions, in-

come and assets, housing, cognitive function, social participation, effort and reward,

expectations, walking speed and weight for individuals [Taylor et al., 2007].

In this thesis, we focus on a test with two responses in the ELSA data [Banks

et al., 2006]. This test requires individuals to read aloud and remember 10 words in

the same interview. The first response in the test, which to some extent represents an

individual’s short-term memory capacity, is the number of words the individual re-

calls immediately (immediate-recall). An individual’s long-term memory capacity
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is indicated by recording the number of words he/she can remember after 5 minutes

(delayed-recall) [Banks et al., 2006]. The number of immediate-recall words is de-

noted by Y1, and the number of delayed-recall words is Y2. In our data analysis, we

use age as the time scale. On this basis, when we analyse the ELSA data, we need to

take into account the left truncation. For confidentiality reasons, the corresponding

ages in ELSA data are given in integers [Taylor et al., 2007].

From 1998 to 2009, ELSA had 11932 interviewees [Van Den Hout, 2017].

The collected data are pre-processed following four aspects: excluding individuals

with only one interview and missing data; excluding individuals without birth year

information; excluding individuals younger than 50 years at first observation; and

excluding individuals with censored first observed age [Van Den Hout and Muniz-

Terrera, 2019]. The sample size of the pre-processed data is N = 10852. Of these

10852 individuals, 1884 die during the follow-up period, and the attrition rate is

17.36%. The attrition rate is too large to be ignored. In the joint model, this at-

trition is modelled by using the age of death as the time-to-event. There are 5946

women and 4906 men in the data. In the ELSA data, the highest education refers

to a National Vocational Qualification level 2 or a General Certificate of Educa-

tion equivalent to O level or above. Individuals with any of these qualifications

are considered to have a higher education level, which is represented with value 1,

otherwise 0 [Banks et al., 2006]. There are 4699 individuals with high educational

qualifications in the data.

The main purpose of this thesis is to illustrate the methodology rather than a

study of the ELSA data. Moreover, we need to compute high-dimensional integrals

for the shared random-effects joint model, and the large sample size will lengthen

the computation time. Therefore, we use a subset of 1000 individuals in this thesis.

This subset is randomly drawn from the full data under two constraints: individuals

are younger than 90 years at the time of the first observation and have no censored

ages during the follow-up period; and there are at least two records for each indi-

vidual, which should include two observations or one observation and one time of

death.
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This subset was also used in Van Den Hout and Muniz-Terrera [2019]. There

are 4038 observations in the subset, and the number of individuals with 2, 3, 4,

5 and 6 observations (including death) is 174, 146, 156, 516 and 8, respectively.

The number of deaths is 195, where the attrition rate is close to the full data. The

ratio of women to men in the data is 540 : 460, which is also close to that ratio

for the full data. There are 445 individuals with higher education levels selected

in the data. The minimum recorded age is 50, and the maximum is 89 years old.

The average first recorded immediate-recall words for all individuals is 5.60, and

that for the delayed recall is 4.19. This phenomenon indicates that individuals can

recall more words through short-term memory than through long-term memory, i.e.

short-term memory is better than long-term memory to some extent. Other details

for this subset can be found in Van Den Hout and Muniz-Terrera [2019].
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Figure 5.1: Frequency distribution of recalled words at the first interview. Y1 represents
immediate-recall words; Y2 represents delayed-recall words.

Figure 5.1 presents the frequency distribution of recalled words at the first in-

terview. The distribution of delayed-recall words is clustered to the left compared to

immediate-recall words. This phenomenon could also reflect that individuals have

better short-term memory than long-term memory, which is in line with the con-

clusion we reached in the previous paragraph by analysing the average of the first

responses. In Figure 5.2, we select thirty individuals and plot their response trajec-
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Figure 5.2: Recalled words trajectories. Left-hand side: immediate-recall words Y1 trajec-
tories. Right-hand side: delayed-recall words Y2 trajectories. Individuals are
represented by same colour in both plots.

tories. We can observe from the graph that individuals’ ability to memorise words

(cognitive ability) fluctuates and that, generally, the number of words memorised

decreases with ageing.

In Chapter 6, we have rescaled the age by subtracting 49 years, which means

that 50 years old is expressed as 1, and the maximum age is expressed as 40.

5.2 PAQUID data

Both responses in the ELSA data are integers range from 0 to 10, i.e. m1 = m2 = 10

in Equation (2.5). To demonstrate the flexibility of the method, where the range of

the two responses could be different, we will also use PAQUID: Longitudinal data

on cognitive and physical aging in the elderly [Proust-Lima et al., 2017] in Chapter

6.

The PAQUID (or Paquid) prospective cohort is a group of 3,777 people aged

65 or over. The study began in 1988 and lasted until 2004 [Rondeau et al., 2008;

Letenneur et al., 1994]. Researchers selected this group from more than 91 different

regions in southwest France. This study was designed to investigate the effects

of different environmental, behavioural and social vectors of age-related medical

conditions and diseases. One of the main goals of the study is to identify some of

the causes of dementia and Alzheimer’s disease [Nejjari et al., 1997].
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Five repeated measures of cognition are included in the data: the Mini-Mental

State Examination (MMSE), a psychometric test of overall cognitive function (inte-

ger in the range 0−30); the Benton Visual Retention Test (BVRT), a psychometric

test of spatial memory (integer in the range 0−15); the Isaacs Set Test (IST), with

a 15-second cutoff, is a test of verbal memory (integer in the range 0− 40); the

physical dependency; and the CES-D, a brief self-report scale designed to mea-

sure depressive symptoms in the general population (integer in the range 0− 52)

[Letenneur et al., 1994]. These measurements are collected together along with

dementia information for up to 20 years. Dementia information includes age at de-

mentia diagnosis and dementia diagnosis information. In addition, the data provide

sociodemographic information such as gender and age.

This thesis uses the MMSE and the BVRT as the bivariate responses Y1 and Y2.

5.2.1 Mini-Mental State Examination (MMSE)

The Mini-Mental State Examination (MMSE) or Folstein test, initially developed

by Folstein et al. [1975], is a 30-point questionnaire. This questionnaire is widely

used in clinical and research settings to measure cognitive impairment [Pangman

et al., 2000]. The test was originally proposed to distinguish between patients with

organic and functional psychiatric disorders [Folstein et al., 1975]. It is currently

used in medicine and healthcare to detect dementia. It also allows estimating the

severity and progression of a patient’s cognitive impairment and monitoring their

cognitive processes over time. Therefore, it has become an effective recording of

an individual’s response to treatment. The test lasts 5 − 10 minutes and covers

recording, attention and calculation, memory, language use, the ability to follow

simple commands and sense of direction [Tuijl et al., 2012].

In our model, we refer to the MMSE as Y1, and the range of the MMSE is

Y1 ∈ {0, . . . ,30}. Typically researchers consider individuals who score 24 or more

out of 30 on the test to have normal cognitive abilities. Individuals who score below

this may be considered to have mild (19−23), moderate (10−18) or severe (≤ 9)

cognitive impairment [Vertesi et al., 2001].

The advantages of the MMSE are that no special equipment or training is re-
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quired to use this test; it is reliable and valid for diagnosing and longitudinal assess-

ment of Alzheimer’s disease [Harrell et al., 2000]. The disadvantages of using the

MMSE are that it is influenced by demographic factors, such as age and education;

it lacks sensitivity to mild cognitive impairment and does not accurately distinguish

between patients with mild Alzheimer’s disease and normal patients; the MMSE

test lacks an adequate examination of visuospatial cognitive abilities [Tombaugh

and McIntyre, 1992].

To compensate for the shortcomings of the MMSE in testing visuospatial cog-

nitive abilities, we used the BVRT as the second response.

5.2.2 Benton Visual Retention Test (BVRT)

The Benton Visual Retention Test (referred to as the Benton Test or BVRT) is a

separately administered test that measures visual perception and visual memory in

individuals aged eight years to adulthood [Walsh and Betz, 1995; Lockwood et al.,

2011]. The test is designed to provide a brief assessment of immediate nonverbal

memory, i.e., it is used to assess visual memory, perception, and construction abil-

ities [Benton, 1945; Tamkin and Kunce, 1985; Lockwood et al., 2011]. It can be

used to help researchers identify individuals who may have learning disabilities and

other disorders that may affect memory. Participants are shown 10 designs, one

at a time, and are asked to reproduce each design as accurately as possible from

memory on plain paper [Lockwood et al., 2011]. The test has no time limit, and

the results are professionally scored by form, shape, pattern and arrangement on the

paper. The test score is a non-negative integer between 0−15, with a higher score

indicating greater cognitive function. The BVRT is represented as Y2 in the model,

in which Y2 ∈ {0, . . . ,15}.

The PAQUID data consist of a sub-sample of the PAQUID prospective co-

hort study. It can be obtained from LCMM package in R [Proust-Lima et al., 2017].

The dataset contains 500 individuals, with 2250 observations and 12 variables. We

remove all missing observations to obtain a subset of 500 individuals and 1950 cor-

responding observations. Of these individuals, 128 got dementia disease.
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Figure 5.3: Trajectories of three individuals in the PAQUID data

5.3 Primary biliary cholangitis (PBC2)
The PBC2: Mayo Clinic primary biliary cirrhosis data (PBC2) is the third dataset

we use in Chapter 6. Primary biliary cholangitis (PBC), formerly known as pri-

mary biliary cirrhosis, is a chronic progressive cholestatic liver disease [Mayo,

2022; Lammert et al., 2013]. The disease is caused by an autoimmune attack on

the small bile ducts. As a result, the bile ducts in the patient’s liver are slowly de-

stroyed [Kaplan, 1996]. Its pathogenesis is largely unknown, and some researchers

have suggested that there may be a complex interaction between environmental and

genetic factors and susceptibility to this disease [Kaplan, 1996; Lazaridis and Tal-

walkar, 2007]. The PBC occurs almost exclusively in women between the ages of

35 and 70 [Lammert et al., 2013]. We access the PBC2 dataset via the JM package

in R [Rizopoulos, 2010; R Core Team, 2013].

The PBC2 data are from the Mayo Clinic trial of hepatic primary biliary

cholangitis (PBC) conducted between 1974 and 1984 [Rizopoulos, 2010]. Dur-

ing this decade, 424 patients with PBC were referred to the Mayo Clinic and

met the eligibility criteria for a randomised placebo-controlled trial of the drug

D-penicillamine, but only the first 312 cases in the dataset were enrolled in the
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randomised trial [Hickey et al., 2018]. Therefore, there are 312 individuals in this

data. There are 1945 observations in the data, and time in the data is defined as

the number of years between registration and the time of death, transplantation or

study analysis (whichever is earlier). Our event of interest is death for the PBC2

data. The ratio of individuals surviving to die in this dataset is 172:140, which is

too large to ignore the effect of death on the data analysis process. In addition, we

mentioned above that PBC almost exclusively occurs in women, and this feature is

also reflected in the gender ratio in the dataset: 36:276 men to women.

We focus on two responses in the PBC2 dataset. The first response, represented

by Y1 is the histologic stage of liver biopsy. We used the classification criteria for the

histological stages given in the dataset [Rizopoulos, 2010]. Assume Yi ∈ {1,2,3,4}.

The corresponding stages (categories) indicate the following states [Rizopoulos,

2010]:

- Stage 1: Inflammation, abnormal connective tissue, or both, confined to the

portal areas.

- Stage 2: Inflammation, fibrosis, or both, confined to the portal and periportal

areas.

- Stage 3: Bridging fibrosis.

- Stage 4: Cirrhosis.

An individual with PBC may be asymptomatic for up to 10 years. If an individual

has PBC in the early stages (stage 1 or stage 2), their life expectancy is normal.

There is no cure for cirrhosis, but eliminating the cause of the disease can slow it

down. If the damage is not too severe, the liver can heal itself over time [Mayo,

2022]. However, PBC usually progresses to an advanced stage within 15 to 20

years. If an individual with PBC develops advanced symptoms, the average life

expectancy is reduced to 10-15 years [Mayo, 2022].

The second response is the edema conditions, represented by Y2. Edema is one

of the signs and symptoms of advanced cirrhosis [Mayo, 2022]. There are three

categories in this response in Rizopoulos [2010]:
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- ”No edema” = 1

- ”edema no diuretics” = 2

- ”edema despite diuretics” = 3

We made a cross tabulation of these two responses in Table 5.1. We can ob-

Table 5.1: PBC2: Cross tabulation of two responses in PBC2.

Edema conditions

1 2 3

Histologic
stages
of liver
biopsy

1 90 5 0

2 234 29 3

3 471 107 34

4 606 238 128

serve from Table 5.1 that when Y1 = 1 and Y2 = 3, there are no corresponding ob-

servations in the dataset. The reason for this phenomenon may be the one we men-

tioned above: edema is a possible symptom of advanced primary biliary cholangitis

[Mayo, 2022] that does not appear in the early stages of the disease.



Chapter 6

Data Analysis

In this chapter, we will use different joint models to analyse the three datasets men-

tioned in Chapter 5. We divide this chapter into two main sections based on the

longitudinal model used in joint models: binomial joint models and categorical

joint models. These longitudinal distributions are mentioned in Section 2.1. Sec-

tion 6.1 on binomial joint models, we construct shared random-effects models and

latent-class models to analyse ELSA and PAQUID data. We will use the ELSA

and PBC2 data in the Categorical joint models Section; see Section 6.2. The Gom-

pertz hazard model, the Weibull hazard model and the exponential hazard model

mentioned in Section 2.2 are used for the survival model. The longitudinal and the

survival models are joined together, given the random effects. The random effects

for shared random-effects joint models follow a bivariate normal distribution (2.59)

with a mean of 0.

6.1 Binomial joint models

Longitudinal parts of all joint models presented in this section are based on the

extension of the binomial distribution (2.4). We first present the bivariate exten-

sion shared random-effects joint models based on the univariate model proposed by

Van Den Hout and Muniz-Terrera [2016]. Afterwards, we present bivariate shared

random-effects and latent-class joint models, respectively. These joint models are

constructed on the basis of the link functions we discuss in Section 2.3.
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6.1.1 Bivariate extended shared random-effects joint model

based on previous paper

Van Den Hout and Muniz-Terrera [2016] constructed univariate shared random-

effects joint models with the binomial and beta-binomial distributions. We want to

build a bivariate joint model using a similar approach, the shared random-effects

method. Notwithstanding that we will use different binomial distributions and have

a different number of responses, we still think it is worthwhile to construct a bivari-

ate joint model based on the univariate joint model proposed in Van Den Hout and

Muniz-Terrera [2016] because the same shared random-effects approach is applied.

In constructing the bivariate joint model, we use the same format as the random

intercept and random slope presented in Van Den Hout and Muniz-Terrera [2016]

to model one of the responses, and for the other response, we use the fixed effects

in the corresponding logistic regression model.

In Van Den Hout and Muniz-Terrera [2016], they use a similar structure to the

link function ∆ we discussed in Section 2.3. For ease of understanding, we represent

this structure as follows:

∆(ααα,ηηη ,bbb, t) = α1(η0 +b1)+α2(η1 +b2)t. (6.1)

The estimates of the link function’s parameter αs in the univariate joint model are

negative. These estimates illustrate that: (i) there is a relationship between the

longitudinal and survival models, i.e. it is reasonable to model the joint model

rather than modelling the longitudinal data and time-to-event data separately; (ii)

take random slope as an example, the parameter α of the random slope is negative

indicating that the risk of death of an individual increase as time t increases.

If the estimates of αs for the bivariate joint model are similar to those of the

univariate joint model, i.e. both αs are negative, we could infer that our approach

is consistent with the analysis based on the univariate joint model, i.e. the idea of

constructing bivariate joint models in this thesis is feasible. Since the response in

the univariate joint model is delayed-recall Y2, we also include the random effects
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to the linear predictor associated with Y2. We assume that the logistic regression

model for delayed-recall words pY2 is equal to (2.7), where j = 2. For immediate

recall Y1, we have the logistic regression model pY1:

pY1 =
exp(η(1)

0 +η
(1)
1 t)

1+ exp(η(1)
0 +η

(1)
1 t)

. (6.2)

To build the joint model, we need to add expressions that include random effects in

the survival model, i.e. the link function. The corresponding link function, similar

to Equation (6.1), is

∆(ααα,ηηη ,bbb, t) = α1

(
η
(2)
0 +b20

)
+α2

(
η
(2)
1 +b21

)
t, (6.3)

where the random effects b20 and b21 follow a bivariate normal distribution with a

mean zero (2.59). The link function associated with delayed recall is included in

the hazard model. We use the Gompertz hazard model in this section, which equals

to (2.48). Parameter λ ∗ and ξ ∗ in the Gompertz hazard model equal to (2.49) for

j = 2. The estimated results are shown in Table 6.1.

Table 6.1: ELSA: Parameter estimates for the bivariate extension based on the joint model
in [Van Den Hout and Muniz-Terrera, 2016]. Values in brackets are the standard
error of the corresponding parameters.

η
(1)
0 -0.857 (0.053) θY1 1.122 (0.009) σb1 1.116 (0.073) β -6.800 (0.497)

η
(2)
0 -1.969 (0.094) θY2 1.167 (0.011) σb2 0.055 (0.005) ξ 0.097 (0.012)

η
(1)
1 -0.014 (0.002) φ 1.432 (0.016) ρ -0.682 (0.190)

η
(2)
1 -0.038 (0.004) α1 -0.400 (0.168) α2 -0.193 (0.086)

The estimates of both parameters αs for the link function in the joint model in

Table 6.1 align with our expectations. The estimate of the parameter α1 associated

with the random intercept is negative and significantly different from zero (α̂1 =

−0.400), implying that the risk of death is relatively low when individuals have

a better cognitive function at baseline age (t = 0). Meanwhile, the parameter α2

associated with the random slope is also negative (α̂2 =−0.193), which means that
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the risk of death increases over time when b21 is equal to 0 on average.

We can calculate the probability of remembering a word at baseline age (t = 0)

utilising the fixed intercepts η̂
( j)
0 , j = 1,2, given that the random effects b20 and

b21 are both equal to their mean 0. For the number of immediate-recall words, we

have the fixed intercept η̂
(1)
0 = −0.857, with a corresponding probability equal to

0.298; for the number of delayed-recall words, the corresponding probability drops

to 0.122 with η̂
(2)
0 =−1.969. At baseline age (t = 0), the probability of recalling a

word immediately is higher than the probability of recalling it later. It means that

the number expected to be remembered immediately is greater than the number of

words expected to be delayed. The fixed slopes of both responses η̂
(1)
1 and η̂

(2)
1

are less than 0, indicating that individuals’ memory or cognitive function declines

with age. Furthermore, since η̂
(1)
1 > η̂

(2)
1 , we can infer that for each individual,

temporary memory decays more slowly with age than long-term memory.

The estimates of the parameters θ̂Y1 and θ̂Y2 are greater than 1, meaning that for

two responses of the dataset, their corresponding distributions are under-dispersed

compared to the standard binomial distribution. Moreover, φ̂ > 1 means a positive

correlation between the responses.

6.1.2 Discussion of bivariate shared random-effects joint models

with different link functions ∆

After verifying the feasibility of the joint model in Section 6.1.1, we will now con-

struct the shared random-effects joint models based on the link function mentioned

in Section 3.2. In our joint models, we use the bivariate extension of the binomial

distribution (2.4) as the longitudinal model and the Gompertz hazard or the Weibull

hazard as the survival model. Gender is added to the model as a covariate (0 for

women, 1 for men). The corresponding logistic regression model is:

pY j =
exp
(
(η

( j)
0 +b j0)+(η

( j)
1 +b j1)t + γ

( j)
L sex

)
1+ exp

(
(η

( j)
0 +b j0)+(η

( j)
1 +b j1)t + γ

( j)
L sex

) , (6.4)
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where j = 1 or 2.

In the link function we add the covariate gender and the associated parameter

γS, i.e. the function is written as ∆(ααα,ηηη ,bbb,γS, t). Taking Equation (2.31) as an

example, in this section, we write it as follows:

∆(ααα,ηηη ,bbb,γS, t) =
2

∑
j=1

α j

(
η
( j)
0 +b j0

)
+ γSsex. (6.5)

As mentioned in Section 2.1 and Section 2.3, we will investigate restricted joint

models. We restrict models by adding only one random effect for each response for

two reasons. Firstly, we want to be able to distinguish the effect of changes in the

two responses overtime on the risk of death. Secondly, because the shared random-

effects joint models require the calculation of high-dimensional integrals, we want

to reduce the computational difficulty. It means that we will only discuss the situa-

tions where the expressions associated with the two responses both contain random

intercepts or random slopes. Furthermore, in these joint models, four parameters

could be used to measure the correlation between two responses: φ in the bivariate

extension of the binomial model (2.4); correlation ρ between corresponding ran-

dom effects for two responses and link function parameters α1 and α2. Therefore,

we will discuss the case in which α1, α2 and ρ are equal to 0, respectively.

We use I to denote the joint model with a random intercept in the link function,

i.e. link function equals to (2.29) or (2.31). In this situation we restrict the random

effects in the longitudinal model to b11 = b21 = 0 (Equation (2.10)). The letter S

is used to denote a model in which the link function contains a random slope. In

this situation the corresponding link function is equal to either (2.33) or (2.35), and

the corresponding longitudinal is restricted to Equation (2.11). The letters G and W

denote joint models containing the Gompertz hazard model and the Weibull hazard

model, respectively.

Table 6.2 lists the AIC values and the corresponding parameters for the link

function ∆. Model IW1 - IW4 and Model IG1 - IG4 in Table 6.2 represent joint

models with random intercepts. For Model SG1 - SG4, we construct the joint model
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with random slopes.

When individuals have a good cognitive function at baseline age (t = 0) or

have a slow trajectory of cognitive decline over time, we expect the risk of death to

be relatively low. In Table 6.2, the αs estimates are less than 0 for all models except

the Model SG1. For Models IW1 - IW4 and Models IG1 - IG4, αs estimates less

than 0 imply a relatively low risk of death when individuals have a better cognitive

function at time 0. For models that include a random slope (Models SG2 - SG4),

a negative α means that the risk of death is lower when individuals experience a

relatively slow decline in cognitive function.

For Model SG1, when the link function has random slopes for both responses

(2.33), the model estimate of α1 is inconsistent with our expectations of the process.

The estimated parameter associated with the random slope α̂1 = 0.062 in the Model

SG1 is positive. This positive α1 affects an individual’s risk of death. It represents

that affected by the random slope and the fixed slope of immediate recall, an in-

dividual’s risk of death becomes smaller over time. This result is contrary to our

expectation: the risk of death decreases instead of increasing over time.

Generally, the AIC value for the model with random intercept (e.g. Model IW2)

is smaller than that for the corresponding model with random slope (e.g. Model

SW2). It means that the heterogeneity in slope between individuals is small, so the

increase in model likelihood is negligible compared to the increase in complexity.

6.1.2.1 Random intercept for both Y1 and Y2

The joint Model IG2, using the Gompertz survival model with link function (2.29)

for j = 1, has the smallest AIC value of all joint models that include random inter-

cepts. We consider this model the best fit among all models that include random

intercepts. We list the parameter estimates in Table 6.3.

In Table 6.3, we first analyse the corresponding parameters η
(1)
0 and η

(2)
0 for

the fixed intercepts of the two responses. we have η̂
(1)
0 = −0.580 greater than pa-

rameter for random intercept Y2 (η̂(2)
0 = −2.014), and we can use these two pa-

rameters to calculate the corresponding probability of remembering a word at time

0. With b = 0, the probability of recalling a word immediately at time 0 is 0.359,
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Table 6.3: ELSA: Parameter estimates for shared random-effects Model IG2 with
(2.29) j = 1. Values in brackets are the standard error of the corresponding
parameters.

η
(1)
0 -0.580 (0.080) θY1 1.206 (0.035) σb1 0.447 (0.101) β -7.043 (0.350)

η
(2)
0 -2.014 (0.108) θY2 1.123 (0.028) σb2 0.649 (0.094) ξ 0.122 (0.009)

η
(1)
1 -0.024 (0.002) φ 1.425 (0.061) ρ 0.316 (0.082)

η
(2)
1 -0.029 (0.003) α -0.616 (0.227)

γ
(1)
L -0.063 (0.042) γ

(2)
L -0.130 (0.051) γS 0.370 (0.148)

which is higher than the probability of recalling a word later (0.118). A high proba-

bility of remembering words means better expected cognitive function. The number

of words expected to be recalled immediately is greater for an individual than the

number of words for delayed recall.

Meanwhile, the estimate of the parameter α included in the link function is

−0.616. A negative estimate of the parameter α indicates that the risk of death is

relatively low when the individual has a better cognitive function. We could cal-

culate that the estimate of α is significantly different from 0 based on the standard

error. This phenomenon indicates that there is a relationship between the longitudi-

nal process and the survival process.

Furthermore, both fixed slope η̂
(1)
1 and η̂

(2)
1 are less than 0, which implies that

the probability of recalling a word decreases with age. We also notice that random

effects b1 and b2 are positively correlated with ρ̂ = 0.370. This situation suggests

that if individuals have good short-term memory (immediate recall ability) at the

beginning of the study, corresponding long-term memory (delayed recall ability)

will be slightly positively affected. The parameters θ̂Y1 and θ̂Y2 are greater than 1,

implying that the estimated distribution has a more top-shaped distribution than the

standard bivariate binomial distribution. The two gender-related parameters γ̂
(1)
L

and γ̂
(2)
L in the longitudinal model are both less than 0. This result implies that all

other parameters being equal, men are expected to have lower cognitive function

than women. Parameter γ̂S = 0.370 represents a higher risk of death for men than
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for women, given the same conditions.

6.1.2.2 Additional remarks

Compared to the probability of remembering words at time 0 calculated from η
(1)
0

and η
(2)
0 , we would expect changes in cognitive ability over time to have a greater

impact on the risk of death.

For the Gompertz hazard model, we rewrite the hazard model based on (2.48):

h(t) = exp
(

β +η
( j)
0 +α(η

( j)
1 +b j1)t +ξ t

)
= exp

{
β +η

( j)
0 +

(
α(η

( j)
1 +b j1)+ξ

)
t
}
.

(6.6)

In this case, the parameter ξ ∗ for the Gompertz model is:

ξ
∗ = α(η

( j)
1 +b j1)+ξ . (6.7)

In Table 6.2, we constructed four models that use random slopes as link func-

tions (Model SG1 - SG4). The Model SG2, using the Gompertz survival model with

link function (2.35) for j = 1, has the best fit among the four models.

In Model SG2, the estimation of η̂
(1)
0 =−0.631 is higher than η̂

(2)
0 =−1.956,

representing the higher probability of remembering a word. An individual’s ex-

pected number of immediate-recall words is greater than the delayed recall. The

parameter α̂ associated with the random slope and the fixed slope for the imme-

diate recall has a negative estimate (−0.617), and the estimate of the fixed slope

is negative, indicating that when an individual’s cognitive function declines slowly,

he/she has a relatively low risk of death. Estimated η̂
(1)
1 and η̂

(2)
1 are below 0, indi-

cating that the probability of remembering a word decreases with age. As with the

results presented in Table 6.3, the correlation between random effects b1 and b2 is

positive (ρ̂ = 0.436). In this model, with the inclusion of a random slope, this re-

sult shows that if an individual’s instant memory declines rapidly with age, his/her

long-term memory may also decline fast. The estimation results for Model SG2 are

presented in Table B.1 in Appendix B.

In Table 6.2, we have α̂1 > 0 when the random effects for both Y1 and Y2 are
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included in the survival model, i.e. Model SG1. A positive estimate of the parameter

α1 means that when an individual’s cognitive ability declines relatively slowly per

unit of time, his/her risk of death becomes higher. Even if the AIC value of Model

SG1 is not the smallest of all joint models that include random slopes, we still think

it is worthwhile to analyse the estimated value of α1. This result may be caused

by the correlation between responses Y1 and Y2. In constructing the bivariate joint

model, we capture the correlation between the two responses several times through

the parameters φ , ρ and αs. Overfitting of correlations between responses may lead

to this estimate.

6.1.2.3 Model fit

In order to investigate the fit of the model, in this section, we will first calculate the

corresponding individual-specific random effects using the maximum a posterior

(MAP) method. After that, we will calculate the mean of these individual-specific

random effects and plot the fitted distribution based on the mean. Finally, we will

discuss the accuracy of the model predictions by comparing the predicted survival

curves with the observed survival curves (Kaplan-Meier survival curves).

We use ỹyyi to represent the response of individual i. The parameter t̃ini indicates

the corresponding age to the last observation of the individual, and t̃i1 denotes the

age corresponding to the first observed age. When an individual has only one ob-

servation, we set t̃ini and t̃i1 to be equal. We need the corresponding values of the

random effects to predict individual trajectories given the observed data. The MAP

estimation is used to derive the most probable value of the random effect:

p(bbbi |̃ti1, t̃ini,δi = 0, ỹyyi;ωωω = ω̂)

∝ p(̃tini|δi = 0,bbbi;ωωω = ω̂)p(ỹyyi|bbbi;ωωω = ω̂)p(bbbi|ωωω = ω̂).
(6.8)

In the shared random-effects joint model, the distribution of random effects is

set before fitting the model. This thesis sets the random effects are set to follow

a bivariate normal distribution (2.59) with a mean of 0. After obtaining the corre-

sponding random effects from Equation (6.8), we can verify whether the estimated

random effects are the same as the distribution we set. Using the model fitted in Sec-
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tion 6.1.1 as an example, the estimated random effects follow the bivariate normal

distribution bbbi ∼ N

−0.017

0.002

 ,

 0.306 −0.345

−0.345 0.001

.

The mean values of random effects are close to what we set. However, the esti-

mated variances and correlation are smaller than the result in Table 6.1. According

to Laird [2004], it is common for the variance of the estimates to be smaller than the

set value. Therefore the distribution of the random effects we calculated from the

MAP is consistent with our expectations. Both survival and longitudinal responses

can be predicted, given estimated random effects and assumed ages.
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Figure 6.1: Fitted bivariate binomial distribution for immediate recall (Y1) and delayed re-
call (Y2) based on Table 6.1.
Left hand side: conditional on age 50; Right hand side: conditional on age 80.

We plot the three-dimensional fitted images of the bivariate extended binomial

distribution (Figure 6.1) based on Table 6.1. Random effects b̂is are equal to the

mean of bbbi estimated in (6.8) in Figure 6.1. The density plot on the left is conditional

on age 50, and the density on the right is conditional on age 80. We can observe

from the plot that the number of words recalled by an individual is likely to decrease

with age. At age 50, the number of immediate-recall words is concentrated between

4 and 10. When age reaches 80, the number of immediate-recall words decreases
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to 2− 8. This change is more pronounced in the number of delayed-recall words

than than in immediate-recall words. At the age of 50, the number of delayed-recall

words is concentrated at 3− 8. However, when the individual reaches the age of

80, the number of delayed-recall words drops dramatically to 0− 5 for most peo-

ple. Numerically, we can confirm this finding with the corresponding expectations:

E(Y1,Y2|t = 50) = (6.8,5.6); E(Y1,Y2|t = 80) = (4.6,3.0). Figure B.1 - Figure B.4

in Appendix B are the corresponding three-dimensional plots for Models IG1 - IG4

in Table 6.2. We list the expectation values of Models IG1 - IG4 in Appendix B as

well.
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Figure 6.2: Comparison of K-M survival curves: predicted survival curves (grey lines), the
mean of those survival curves (blue line) and the median of survival curves (red
line).

We expect our joint model could predict the risk of death given the observed

age and the corresponding responses. To demonstrate this, we plot the predicted

survival curves based on the calculated random effects and compare these curves
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with the observed survival curves (i.e. the Kaplan-Meier survival curves). Figure

6.2 shows the comparison of Kaplan-Meier survival curves and predicted model

survival curves based on the model fitted in Section 6.1.1. The blue line shows the

mean of predicted survival curves, and the red line shows the median of predicted

survival curves. Only the baseline test score is used in Figure 6.2. The comparative

plots illustrate our joint model’s relatively good predictive power for individual risk

of death.

6.1.3 Bivariate extended latent-class joint models

The shared random-effects joint model is computationally intensive because we

need to calculate the integral associated with the random effects when fitting the

model. Moreover, as we mentioned in Section 1.1.2, sometimes the observed re-

sponses do not fully reflect the heterogeneity of the results, and the population may

be composed of discrete ’latent subpopulations’ defined by some unobserved char-

acteristics [Arbeev et al., 2014]. A shared random-effects joint model with con-

tinuous random effects may not fit these ’latent subpopulations’ well. Therefore,

instead of constructing shared random-effects joint models with individual-specific

random effects, in this section, we build latent-class joint models with class-specific

random effects.

For the marginal likelihood function (3.13), we divide individuals into two

groups (G = 2,g ∈ {1,2}). We set the class-specific random effect b1 = −b2 and

define the probability for an individual belonging to the class g (represented by πig)

with the gender and education level of the individual, where

πi1 =
exp(µ01 +µ11sexi +µ21educi)

1+ exp(µ01 +µ11sexi +µ21educi)
. (6.9)

We use the same longitudinal model and survival models as in the shared

random-effects joint models in Section 6.1.2 to construct latent-class joint mod-

els. The only class-specific element in the latent-class joint model is the random

effect bg. Taking Equation (3.9) as an example, in this logistic regression model,

only the random effect bg0 and bg1 vary according to the grouping, while all other



6.1. Binomial joint models 100

parameters are response-specific. For logistic regression model (3.9) we have: (i)

Assuming bg1 = 0 in (3.9), i.e. random intercepts are included in the linear predic-

tor,

pY jg =
exp
(
(η

( j)
0 +bg0)+η

( j)
1 t
)

1+ exp
(
(η

( j)
0 +bg0)+η

( j)
1 t
) . (6.10)

The corresponding link functions in this case are Equation (2.53) and Equation

(2.54). (ii) Assuming bg0 = 0 in (3.9), i.e. random slopes are included in the linear

predictor,

pY jg =
exp
(

η
( j)
0 +(η

( j)
1 +bg1)t

)
1+ exp

(
η
( j)
0 +(η

( j)
1 +bg1)t

) . (6.11)

In this situation the corresponding link functions are Equation (2.55) and Equation

(2.56).

According to Table 6.2, the joint model containing the Gompertz hazard has a

lower AIC value than the Weibull hazard under the same conditions. Therefore, we

could infer that the joint model containing the Gompertz hazard is more suitable for

analysing ELSA data than the joint model containing the Weibull hazard. Therefore,

we only use the Gompertz hazard model for latent-class joint models.

When we use the Gompertz hazard model, the only class-specific element is

the random effect bg. We take the example of the link function ∆ equal to (2.53),

and the corresponding hazard model is written as:

hg(t) = exp(β +α(η
( j)
0 +bg0)+ξ t). (6.12)

As with the shared random-effects models, we divide the joint models into

several types according to the expression of the logistic regression models (3.9). We

still use I to represent joint models with a random intercept in the link function, i.e.

where the link function is equal to (2.53) or (2.54). In this case for the longitudinal

model, we restrict bg1 = 0 (Equation (6.10)). We use S to denote the model with a
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random slope in the link function. In this situation, the corresponding link function

is equal to (2.55) or (2.56) and the corresponding longitudinal model is restricted to

Equation (6.11). The letter G represents a model containing the Gompertz hazard

model. The AIC values and the corresponding parameters of link function ∆ are

presented in Table 6.4.

Table 6.4: ELSA Data: AIC and estimated αs for latent-class joint models
−2LL represents the -2loglikelihood

MODEL pYj Link function −2LL AIC α α1 α2

IG1

(6.10)

(2.53) j = 1 29335.34 29363.34 -2.096

IG2 (2.53) j = 2 29372.58 29400.58 -1.670

IG3 (2.54) 29629.06 29659.06 -1.086 1.364

SG1

(6.11)

(2.55) j = 1 29496.99 29524.99 -1.604

SG2 (2.55) j = 2 29476.84 29504.84 -1.138

SG3 (2.56) 29534.6 29564.6 -4.149 2.833

The AIC values for the joint models with link functions for one response

((2.53) and (2.55)) present better fit than models with link functions for two re-

sponses ((2.54) and (2.56)). The AIC values of these models in Table 6.4 are pretty

close. We choose Model IG1 with the smallest AIC for further inference.

Table 6.5: ELSA: Parameter estimates for latent-class Model IG1 with (2.53) j = 1. Values
in brackets are the standard error of the corresponding parameters.

η
(1)
0 -0.529 (0.060) θY1 1.153 (0.009) b1 0.260 (0.010) β -6.838 (0.372)

η
(2)
0 -1.780 (0.077) θY2 1.038 (0.006) b2 -0.260 (0.010) ξ 0.097(0.009)

η
(1)
1 -0.022 (0.002) φ 1.372 (0.015)

η
(2)
1 -0.024 (0.002) α -2.096 (0.377)

µ01 -0.757 (0.170) µ11 -0.778 (0.184) µ21 2.042(0.190)

Similar to the discussion for the shared random-effects models, the probability

of remembering a word at baseline age (t = 0) can be obtained via parameter η̂
(1)
0 =
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−0.529 and η̂
(2)
0 = −1.780. The probability of recalling a word immediately is

higher than recalling it later. It means that the expected immediate recall number

is larger than the expected number of the later recall. Both fixed slopes for two

responses η̂
(1)
1 and η̂

(2)
1 are smaller than 0, which shows that individuals’ memory

or cognitive function declines with age. Moreover, since η
(1)
1 > η

(2)
1 , we can infer

that for each individual, the transient memory decays more slowly than long-term

memory with age. The estimation of α̂ =−2.096 is negative, which means that the

risk of death is relatively low when the individual has a better cognitive function at

baseline age.

The probability for an individual belongs to the first class is negatively related

to gender (µ̂11 = −0.778) and positively correlated with education level (µ̂21 =

2.042). It indicates that highly educated females are more likely to be grouped into

the first class. It is worth noting that although we used the level of higher education

as one of the criteria for grouping individuals into two classes, the results obtained

through such grouping criteria are not necessarily accurate. The reason is that an

individual’s level of education is to some extent related to his/her age, i.e. the

education level contains different information in the different calendar years. For

example, an individual born in 1950 is less likely to be in higher education than a

person born in 2000.

Based on the estimated α̂s for Model IG3 and Model SG3, we still have the

parameter estimation problem, in which the estimations of αs are still positive after

converting the model from the shared random-effects joint model to the latent-class

joint model. Moreover, we have verified in Section 4.1 that our joint model esti-

mates for the bivariate binomial shared random-effects joint models are accurate.

Therefore, we can infer that this problem is not caused by the limitation of the

shared random-effects joint model.

6.1.4 Bivariate binomial joint models using PAQUID data

In the previous section, we have used the ELSA data, where the range of the two

responses is the same, i.e. m1 = m2 = 10 in Equation (2.4) - (2.5). In fact, the bi-

variate extension of the binomial distribution (2.4) allows us to have two responses
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with different ranges. To verify the distribution’s flexibility and compare the shared

random-effects model and the latent-class model, we use the PAQUID data men-

tioned in Section 5.2.

We use the same model in Section 6.1.2 and Section 6.1.3 to analyse the

PAQUID data. For the longitudinal model, the discrete ranges of the two responses

are 0− 30 and 0− 15, respectively. Based on the results in Table 6.2, under the

same conditions, the AIC value of the model using the Gompertz hazard is smaller

than the model with the Weibull hazard. Therefore, for the survival model part, we

still only use the Gompertz hazard model.

We add the letters S and L to the model numbers to denote the shared random-

effects joint models and the latent-class joint models, respectively. The rest of the

model numbers are the same as that used in Tables 6.2 and 6.4. For example,

Model SIG1 represents a random intercept included in the shared random-effects

joint model, and the survival model uses the Gompertz hazard model. Moreover,

we provide the running time for the corresponding joint models to compare the fit-

ting efficiency for these two types of models. Table 6.6 summarises the AIC values,

estimated αs and the running times.

Although the running time of these models may be affected by the computer

configuration and the number of programs running simultaneously, we could clearly

see that the running speed of the latent-class model is considerably faster than the

shared random-effects model. In the shared random-effects model, we use two-

dimensional integration, which increases the computational challenge. Since the

shared random-effects model is more directly aimed at the individual, it is worth-

while to use the shared random-effects joint model to estimate individual-specific

quantities [Proust-Lima et al., 2009]. Compared to the shared random-effects

model, the latent-class model does not involve any numerical integration. However,

the latent-class model also has the notable drawback that it is difficult to define what

the classes in the model represent.

In Table 6.6, the αs are estimated to be less than 0. It means that the risk of

dementia is relatively low when the individual has a better cognitive function at the
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baseline age; the risk of dementia is relatively low when the cognitive declines in

individuals are relatively slow. Comparing the estimation in Table 6.4 with Table

6.6, we obtain different results when we apply the same model with random inter-

cept/slope for both Y1 and Y2 to different data. We take the joint model with random

intercepts for both Y1 and Y2 as an example. For the ELSA data (Model IG3 in

Table 6.4), the estimation of α2 is positive, representing higher risk of death when

the number of later recall words are relatively larger at baseline age. This result is

opposite to what we expected. By contrast, for the PAQUID data (Model SIG3 in

Table 6.6), the estimations of α̂s are negative, representing a lower risk of dementia

when individuals have greater test scores at baseline age. Therefore we can infer

that the unexpected estimation for joint models with two α parameters is caused by

the specific feature of the ELSA data.

6.2 Categorical joint models
We will now use the categorical distribution (2.12) instead of the extension of the

binomial distribution (2.2) and (2.4) to construct the joint model. We consider each

possible value of the response as a category. One advantage of using the categorical

distribution rather than the extension of the binomial distribution is that we could

model each category of the response separately.

In this section, we will first construct a univariate joint model to analyse the

ELSA data, after which we will construct two different bivariate shared random-

effects joint models to analyse the PBC2 data. In each subsection, we compare

the categorical distribution with the extension of the binomial distribution to verify

whether the categorical distribution can fit the data better than the extension of the

binomial distribution.

6.2.1 Univariate shared random-effects categorical joint models

We still focus on the recall test in the ELSA data in this subsection. We refer to

the ELSA data in Section 5.1, in which the test consists of remembering a list of

10 words and recalling them immediately and later. The test score is the number

of words remembered by the individual. We will start by comparing the fit of the
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categorical distribution and the extension of the binomial distribution. After that,

we will construct the univariate categorical shared random-effects joint model.

In this univariate shared random-effects joint model, we will use the number

of delayed-recall words as the response variable. When using the categorical dis-

tribution to analyse the number of delayed-recall words, we treat the 11 possible

outcomes (from 0 to 10) as 11 categories. The probabilities for each category will

be modelled separately.

To make the notation consistent with the previous sections, we also use Y1 and

Y2 to denote the number of immediate-recall words and the number of delayed-recall

words separately. The corresponding time scale in ELSA data is age.

6.2.1.1 Comparison of categorical distribution and binomial distri-

bution

As mentioned in Chapter 1 and Section 6.1.1, many researchers assume that integer

biomarkers follow a binomial distribution. The models proposed in these articles

fit the data well. In particular, we have analysed ELSA data using the extension

of the binomial distribution in Section 6.1.2 and verified in the simulation Section

4.1 that the bivariate binomial joint model fits the data well. We would like to

validate whether it is worth replacing the extension of the binomial distribution

with a categorical distribution before fitting the categorical shared random-effects

joint model. Therefore, we will use the first interview data for each individual and

compare fitting the categorical distribution (2.13) and the extension of the binomial

distribution (2.2) proposed by Altham and Hankin [2012].

The first interview refers to the first observation of an individual in the study.

We draw the histogram of immediate-recall words at the first interview. Data from

the first interview are fitted with the categorical distribution and the extension of the

binomial distribution, respectively.

Based on Figure 6.3, the histogram of categorical distribution is closer to that

for the first interview data than the histogram of the extension of the binomial dis-

tribution. More precisely, the histogram of the categorical distribution is the same

as the histogram of the data. This phenomenon is especially obvious when the data
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Figure 6.3: Comparison of immediate-recall words at the first interview: histogram of the
first interview data (light blue), fitted extension of the binomial distribution
(blue) and fitted categorical distribution (green bar).

equals 4 or 8. Therefore, we could expect a better fitting effect of the categorical

distribution than the extension of binomial distribution based on this histogram.

We also draw the comparison plot for the delayed-recall words at the first in-

terview (Figure 6.4). Compared with the distribution of immediate recall words,

the distribution of delayed-recall words is more concentrated to the left. Figure 6.4

illustrates more clearly the large deviations between the extension of the binomial

distribution and the first observations. In contrast, the corresponding histograms

obtained from the categorical distribution are the same as those for the first obser-

vations.

Since individuals take the test for the first time at different ages, we use the

linear predictors and corresponding logistic regression to describe the relationship

between time (age) and the responses. The corresponding expressions are quite

similar to Equations (2.7), (2.14) and (2.15). For the extension of the binomial
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Figure 6.4: Comparison of delayed-recall words at the first interview: histogram of the first
interview data (light blue), fitted extension of the binomial distribution (blue)
and fitted categorical distribution (green bar)

distribution, we have:

ηηη
( j) = η

( j)
0 +η

( j)
1 t. (6.13)

The corresponding probability can be written as:

pY j =
exp
(

ηηη( j)
)

1+ exp
(
ηηη( j)

) . (6.14)

For the categorical distribution, let i denote the number of recalled words, where

i ∈ A, A= {0, ...,9}:

ηηη
( j)
i = η

( j)
0i +η

( j)
1i t. (6.15)
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Therefore, the corresponding probability can be written as:

pY ji =
exp
(

ηηη
( j)
i

)
1+∑i∈A exp

(
ηηη
( j)
i

) , for i ∈ A, (6.16)

pY j10 =
1

1+∑i∈A exp
(

ηηη
( j)
i

) . (6.17)

Equations (6.13) - (6.17) are applied to fit the corresponding extension of the bi-

nomial distributions and categorical distributions with/without time effects, respec-

tively. The models without time effects are defined by setting η
( j)
1 and η

( j)
1i to 0 in

Equations (6.13) - (6.17). The AIC values for the models are presented in Table 6.7.

Table 6.7: ELSA: Model comparison of binomial and categorical models, based on AIC
values for models.

Without time

Immediate recall Delayed recall

Extended Binomial Categorical Extended Binomial Categorical

3935.694 3903.018 4274.507 4150.822

With time

Immediate recall Delayed recall

Binomial Categorical Binomial Categorical

3762.569 3713.046 4093.111 3975.365

From Table 6.7, we can observe that the AIC of the categorical distribution is

smaller than that of the binomial distribution for the same response. From Table

6.7 and Figures 6.3 - 6.4, we can infer that using the categorical distribution as a

longitudinal model may give a better fit than the extension of the binomial distri-

bution. Therefore, it is reasonable to construct a joint model with the categorical

distribution as an alternative to the extension of the binomial distribution.
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6.2.1.2 Discussion of univariate joint models with different link

functions ∆

For the extension of the binomial joint model, there is only one corresponding prob-

ability for each response. Thus we only need to discuss how to include random

effects in the corresponding logistic regression model. When constructing a joint

model using the categorical distribution, since we will model the probability of each

response value separately, there are more options for link functions in categorical

joint models than in the extension of the binomial joint models.

Taking a univariate joint distribution as an example, in the extension of the

binomial distribution in the case of using logistic regression, only one probability p

needs to be modelled. Whereas in the categorical distribution, since we model the

probability of each category separately, we need to discuss which probability we

will model using random effects across the k categories.

In this section, we use the delayed-recall number as the response variable. For

longitudinal model (2.12), the probability with a random effect is written as Equa-

tions (2.14) and (2.15) for k = 11. Index j = 2, representing the response is the

number of relayed-recall words. We use the Gompertz hazard as the survival model.

The corresponding link function is (2.30) when the random effects are random inter-

cepts. We assume that the random effect b follows a normal distribution N(0,σ2).

We discuss univariate joint models given left truncation (3.4), where random effects

are included in the models for the selected probabilities.

The AIC values for these models are presented in Table 6.8. We use the letter U

to indicate the univariate joint model and C to indicate the categorical joint model,

and the subscript indicates the corresponding categories containing random effects.

We use the AIC value to select models. The selected model is Model UC0 in which

the random intercept is included in the corresponding probability of 0 words being

recalled (Equation (2.14) for i∗ = 0). The estimated parameters of this model are

presented in Table 6.9.

From Table 6.9 we can observe that parameter α̂ of the link function equals to

0.201. It means that the higher the probability of an individual getting a score of 0,
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Table 6.8: ELSA Data: AIC and estimated αs for the univariate categorical shared random-
effects joint models
−2LL represents the -2loglikelihood.

MODEL pYj Link function −2LL AIC α

UC0 (2.14) i∗ = 0

(2.30)

16738.57 16786.57 0.201

UC1 (2.14) i∗ = 1 16966.17 17014.17 1.726

UC2 (2.14) i∗ = 2 16966.17 17014.17 1.728

UC3 (2.14) i∗ = 3 16944.91 16992.91 0.033

UC4 (2.14) i∗ = 4 16939.02 16987.02 -0.479

UC5 (2.14) i∗ = 5 16936.81 16984.81 -0.413

UC6 (2.14) i∗ = 6 16914.24 16962.24 -0.066

UC7 (2.14) i∗ = 7 16921.02 16969.02 -0.158

UC8 (2.14) i∗ = 8 16930.61 16978.61 -0.007

UC9 (2.14) i∗ = 9 16966.17 17014.17 0.118

Table 6.9: ELSA: Parameter estimates for univariate categorical joint model with random
intercept for the number of delayed-recall words is 0. Values in brackets are the
standard error of the corresponding parameters.

η
(2)
00 -3.463 (0.664) η

(2)
10 0.215 (0.031) η

(2)
01 -0.372 (0.505) η

(2)
11 0.126 (0.028)

η
(2)
02 0.584 (0.482) η

(2)
12 0.103 (0.028) η

(2)
03 1.675 (0.465) η

(2)
13 0.083 (0.027)

η
(2)
04 2.652 (0.458) η

(2)
14 0.058 (0.027) η

(2)
05 3.035 (0.458) η

(2)
15 0.030 (0.027)

η
(2)
06 3.169 (0.459) η

(2)
16 0.006 (0.027) η

(2)
07 2.877 (0.467) η

(2)
17 -0.023 (0.028)

η
(2)
08 2.095 (0.490) η

(2)
18 -0.034 (0.030) η

(2)
09 1.389 (0.568) η

(2)
19 -0.078 (0.038)

σ 2.458 (0.894)

ξ 0.119 (0.087)

β -5.773 (0.303) α 0.201 (0.047)
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i.e. the higher the probability of not recalling any word, the higher the risk of death

for him/her. This conclusion is consistent with our expectation that individuals with

poorer cognitive abilities may have a higher risk of death. Estimates of fixed inter-

cepts η
(2)
0i , i ∈ {0, . . . ,10} are also worth noting. At baseline age (t = 0) conditional

on random effects being equal to its mean 0 (b = 0), an individual’s probability of

remembering i words increases and then decreases as i increases. For example, for

category 0, i.e. the number of words recalled is 0, we have η̂
(2)
00 = −3.463 and the

corresponding probability equals to 0.0003; for category 6, the corresponding prob-

ability increases to 0.244 with η
(2)
06 = 3.169; after that the probability continues to

decrease and drops to 0.010 at i = 10.

Moreover, estimates of fixed slopes η
(2)
1i decrease as the number of recalled

words i increases. To give an example, for i = 0, η̂
(2)
10 = 0.215 is greater than 0,

which leads to an increase in the probability of the corresponding category with

age. It means that the probability of an individual not being able to remember any

word increases with age. For i = 9, η̂
(2)
19 = −0.078 is negative, which means that

the probability of an individual being able to remember 9 words decreases with age.

We can infer from the analysis above that as people get older, their ability to recall

words will decrease.

We have represented all relevant probabilities in Figure 6.5. In this figure,

we plot a comparison of the probabilities of different categories when the random

effect takes the value of its expectation. We have calculated three corresponding

probabilities for each category around ages 50, 70 and 90, respectively.

From Figure 6.5, we can see that the corresponding probabilities for each cat-

egory increase and then decrease when b = 0 and the age of the individuals is not

that large, i.e. 50 and 70. We can conclude that at baseline age given b = 0, the

probability of an individual remembering 0 words is smaller than the probability of

remembering 1 word. Among all possible categories, an individual has the highest

probability of scoring 6 when he/she is 50 years old, i.e. remembering 6 words at

baseline age given b = 0. When the individual’s age increased to 70 years, his/her

most likely score decreased to 4. As age increases further, reaching 90 years, we can
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Figure 6.5: Comparison of probabilities between different categories: given that random
effects bs equal to the mean, i.e. 0.

observe an inevitable decline in the individuals’ long-term memory ability. When

they are asked to recall some words they saw a few minutes ago, there is a high

probability that they will not be able to recall any of them. These conclusions are in

line with our expectations. Individuals’ memory declines with age.

We also plot the distribution of the observed data versus the estimated proba-

bilities, see Figure 6.6. Although the corresponding bars and lines do not overlap

precisely, we can see a consistent trend in the distribution of the observed data and

the corresponding estimated probabilities with increasing age. For each category

in the figure, we have a limited number of observations, which may be one of the

reasons cause the difference between the histogram and the line.

6.2.2 Bivariate shared random-effects categorical joint models

We now extend the univariate categorical joint model into a bivariate categorical

joint model. Two variables mentioned in Section 5.3 from the PBC2 data are treated

as response variables in this section: histologic stages of liver biopsy Y1 and edema

conditions Y2.
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Figure 6.6: Comparison between estimated probabilities and data distributions with in-
creasing age: given that random effects bs equal to the mean, i.e. 0. The
histograms represent the distribution of the corresponding data and the line
represent the estimated probabilities of the different categories.

In the PBC2 data, time is defined as the number of years between the start of

the study and the date of the current visit, so we use the marginal likelihood function

(3.1) when constructing the corresponding joint model, i.e. the marginal likelihood

that does not take into account the left truncation.

In this section, we will first compare the fit of the categorical distribution (2.12)

with that of the extension of the binomial distribution (2.2), as we did in Section

6.2.1, to show that the categorical distribution fits the data better than the extension

of the binomial distribution.

After that, we will construct two types of bivariate joint models based on the

categorical distribution. We use two univariate categorical distributions in the first

joint model to model the corresponding responses separately. In contrast to Section

6.1, the correlation between the two outcomes in the first joint model is captured by

the random effects rather than measured by the longitudinal model. This method

of capturing correlation between outcomes is the same as that proposed for the
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multivariate joint model in Rizopoulos [2012]. We construct the two responses in

the second joint model as a table. Using the PBC2 data as an example, the two

responses in this data actually define a table. We have converted two univariate cat-

egorical models with 4 and 3 categories into a categorical model with 12 categories.

We will explain this approach in detail in Section 6.2.2.3.

6.2.2.1 Comparison of categorical distribution and the extended bi-

nomial distribution

Before fitting the bivariate model, we compare the fit effect of the categorical dis-

tribution (2.13) with the extension of the bivariate distribution (2.2) proposed by

Altham and Hankin [2012], as in Section 6.2.1.

We still choose the first interview data as the sample to test the fit of the two

distributions. We draw the histogram of histologic stages at the first interview. The

first interview data are fitted with the extension of the binomial distribution and the

categorical distribution, respectively.

As illustrated by Figure 6.7, the histogram for the categorical distribution is

the same as the histogram for the first interview data, while the histogram for the

extended binomial distribution deviates from the first interview data. The reason is

that the categorical distribution allows us to model the probabilities of each category

separately. Therefore, the fit of the categorical distribution is better than that of the

extension of the binomial distribution.

We also draw the comparison plot for the edema conditions at the first interview

(Figure 6.8). Again, the categorical distribution is the same as the histogram of the

data.

The AIC values for the above four models are presented in Table 6.10. With

this table, we can observe how much the extended binomial distribution deviates

from the categorical distribution. Furthermore, since in the categorical distribution,

we model each category separately, and the histogram of the first interview data

and the histogram of the categorical data in Figures 6.7 and 6.8 are the same, we

can assume that the categorical distribution is the distribution that can perfectly

first observations for this non-negative longitudinal data. Therefore we can also say
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Figure 6.7: Comparison of the histologic stages at the first interview: histogram of the first
interview data (light blue), fitted extension of the binomial distribution (blue)
and fitted categorical distribution (green).

that this table shows how much deviation there is between the extended binomial

distribution and the best model.

It is clear that for the first observations, the categorical distribution has a better

fit than the extension of the binomial distribution. Therefore, for the PBC2 data, we

assume that using categorical distribution to construct a bivariate joint model can

improve the fit effect of the model.

Table 6.10: PBC2: Model comparison of binomial and categorical models, using first ob-
servations, and based on AIC values for models.

Immediate recall Delayed recall

Extended Binomial Categorical Extended Binomial Categorical

809.3079 765.7705 537.0429 405.1175
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Figure 6.8: Comparison of the edema conditions at the first interview: histogram of the first
interview data (light blue), fitted extension of the binomial distribution (blue)
and fitted categorical distribution (green bar).

6.2.2.2 Discussion of bivariate joint models with different link func-

tions ∆

In this section, we use two variables mentioned in Section 5.3 from the PBC2 dataset

as responses: histologic stages of liver biopsy Y1 and edema conditions Y2. For

these two response variables, their longitudinal distribution (2.12) has k equal to

4 and 3, respectively. The probability with random effects is written as Equation

(2.14 - 2.15) for A1 = {2,3,4} and A2 = {2,3}. We use the exponential hazard,

the Weibull hazard and the Gompertz hazard as survival models for joint models.

We assume that in each joint model, there are two correlated random effects, which

follow a bivariate normal distribution, i.e. Equation (2.59):

bbb ∼

000,

 σ2
b1 ρσb1σb2

ρσb1σb2 σ2
b2

 .
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The corresponding link function is (2.32) or (2.34) when the random effects are ran-

dom intercept and random slope respectively. For these bivariate categorical joint

models, the correlation between the two responses is captured by random effects. It

is worth noting that for the PBC2 data, since the time t for each individual starts at

0, we do not need to consider left truncation.

We have already discussed in Section 6.2.1.2 that there are more possible link

functions for the categorical joint model than for the extended binomial joint model.

In a bivariate categorical joint model, the possible scenarios are more complex.

The main purpose of this thesis is to illustrate the method rather than an in-depth

clinical-relevant study of the dataset. Therefore, we select a few possible scenarios

and analyse potential models.

We use I to denote the joint model containing random intercept in the link

function, i.e. link function equals to (2.32). In this case for the longitudinal model

we restrict b11 = b21 = 0 (Equation (2.19)). We use S to represent models with the

random slope in the link function. In this situation the corresponding link func-

tion is equal to Equation (2.34), and the corresponding longitudinal are restricted

to Equation (2.20). The model named after PROB means that the corresponding

probabilities are included in the link function (Equation (2.40)). The model with

sex in the name means that we have used individuals’ gender as the covariate in this

joint model. The corresponding logistic regression models are given by:

pY ji∗ (t) =
exp
(

ηηη
( j)
i∗ + γ

( j)
L sex

)
1+ exp

(
ηηη
( j)
i∗ + γ

( j)
L sex

)
+∑i∈A j\{i∗} exp

(
η
( j)
0i +η

( j)
1i t
) , (6.18)

pY jl(t) =
1

1+ exp
(

ηηη
( j)
i∗ + γ

( j)
L sex

)
+∑i∈A j\{i∗} exp

(
η
( j)
0i +η

( j)
1i t
) . (6.19)

The gender variable is also added to the link function ∆(ααα,ηηη ,bbb,γS, t). Taking Equa-
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tion (2.31) as an example, in this section we write Equation (2.31) as:

∆(ααα,ηηη ,bbb,γS, t) =
2

∑
j=1

α j

(
η
( j)
0 +b j0

)
+ γSsex, (6.20)

where γ
( j)
L and γS are the corresponding parameters of the covariates defined in

Chapter 2. The reason we include covariates in only one of the categories is similar

to the reason we include random effects in only one of the categories. We assume

that it is possible for a category that is relatively important across all categories.

That category is something we want to investigate. We will investigate this choice

later in this section.

The letters G, E and W denote models containing the Gompertz hazard model,

the exponential hazard model and the Weibull hazard model, respectively. The two

numbers in the model name indicate the number of categories where the random

effect is included, i.e. the values of i∗ in Equation (2.14). For example, IG12 means

that the joint model uses the Gompertz hazard model with two random intercepts;

the first random intercept is included in the probability of the first category of Y1,

and the second random intercept is included in the second category probability of

Y2.

The AIC values for these models are presented in Table 6.11 and Table 6.12.

By comparing the AIC values of Model IG32 and Model IG32.sex, we can see that

using sex as a covariate can make the model fit better to some extent. When we use

random intercepts to model the same categories, changing the type of hazard model

does not significantly change the AIC values. For example, the differences in the

corresponding AIC values for models IG32, IW32 and IE32 are quite small.

The model that has the smallest AIC value in Table 6.11 is IG42, i.e. the joint

model uses the Gompertz hazard model, where the random intercept of the first

response is included in the corresponding probability of stage 4 for histologic stages

of liver biopsy and the probability of stage 2 for edema conditions. This result is

to some extent in line with our expectations, as both stage 4 of Y1 and stage 2 of

Y2 are stages where disease symptoms are pronounced, and we assume that more
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accurate model estimates will be obtained when the corresponding random effects

are included in these stages. We will analyse the estimation results of this model in

detail later. The estimated parameters of this model are presented in Table 6.13.

By observing the AIC values of the models in Table 6.12, we could obtain

similar conclusions to those in Table 6.11: when we include the random effects into

the same categories, the corresponding AIC values, as well as parameter estimates,

are quite similar whether we use the Gompertz hazard or the exponential hazard.

Moreover, when we use the Gompertz hazard to build the model, including random

slopes, the corresponding parameter ξ is estimated to be 0. Although this is incon-

sistent with our defined parameter ξ in Section 2, Van Den Hout and Muniz-Terrera

[2016] have mentioned that when ξ is equal to 0, the corresponding Gompertz haz-

ard model is equal to the exponential hazard model. We infer from the above that in

the joint model containing random slopes, the longitudinal part of the model already

captures most of the time dependence and adding parameter ξ does not affect the fit

effect of the joint model.

The model with the lowest AIC value in Table 6.12 is SE42. This joint model

uses the exponential hazard model in which the random slope of the first response

Y1 is included in the corresponding probability of category 4 and the random slope

of the second response Y2 is included in the corresponding probability of category

2. Estimated parameters for this model are shown in Table 6.14.

Table 6.13: PBC2: Parameter estimates for Model IG42. Values in brackets are the stan-
dard error of the corresponding parameters.

η
(1)
02 1.170 (0.162) η

(1)
12 -0.066 (0.049) η

(1)
03 1.748 (0.151) η

(1)
13 0.046 (0.044)

η
(1)
04 1.083 (0.221) η

(1)
14 0.799 (0.071)

η
(2)
02 -2.350 (0.169) η

(2)
12 0.182 (0.028) η

(2)
03 -2.710 (0.157) η

(2)
13 0.157 (0.024)

σb1 6.934 (0.713) σb2 1.779 (0.076)

ρ 0.468 (0.019) ξ 0.089 (0.326)

β -2.786 (0.219) α1 0.116 (0.022) α2 0.186 (0.066)

From Table 6.13 we can observe that parameter α̂1 = 0.116 and α̂2 = 0.186
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Table 6.14: PBC2: Parameter estimates for Model SE42. Values in brackets are the stan-
dard error of the corresponding parameters.

η
(1)
02 1.149 (0.156) η

(1)
12 -0.056 (0.045) η

(1)
03 1.768 (0.145) η

(1)
13 0.038 (0.040)

η
(1)
04 1.180 (0.160) η

(1)
14 0.883 (0.079)

η
(2)
02 -1.712 (0.098) η

(2)
12 0.139 (0.028) η

(2)
03 -2.695 (0.131) η

(2)
13 0.153 (0.024)

σb1 1.675 (0.133) σb2 0.626 (0.083)

ρ 0.335 (0.025)

β -2.860 (0.110) α1 0.050 (0.014) α2 0.080 (0.036)

of the link function are both positive. This means that the higher the probability of

an individual being in stage 4 of Y1 and stage 2 of Y2 at the baseline, the higher the

probability of mortality.

Estimates of fixed intercept η
(1)
03 is the largest estimated intercept in Y1, and

based on this result we could calculate the probability of the corresponding stage

3 at the beginning of the study (t = 0), i.e. pY13(0) = 0.445 given b = 0. This

phenomenon indicates that at the start of the study individuals have a nearly 50%

probability of being in histologic stage 3 of liver biopsy. For Y2, we could use

the same method to calculate the probability of the corresponding category at the

beginning of the research equal to 0.861, 0.082 and 0.057, respectively.

The probability of an individual being at stage 1 is highest at t = 0, meaning

that the majority of individuals do not have symptoms of edema at the beginning

of the research. Estimates of fixed slopes η
( j)
1i increases as the stage increases. For

histologic stages of liver biopsy Y1, η̂
(1)
12 =−0.066, the probability of the patient re-

maining at stage 2 decreases as time increases. The probability of the patient’s con-

dition being at stage 3 and stage 4 increases with time. The estimated η
(1)
14 = 0.799

is much larger than η̂
(1)
13 = 0.046, which means that the probability of a patient’s

condition deteriorating to stage 4 is higher than the probability of deterioration to

stage 3 per unit time. For edema conditions Y2, we can obtain similar conclusions:

The probability of the patient’s condition being at stage 2 and stage 3 increases with

time, and the risk of reaching stage 3 increases faster per unit time than stage 2.



6.2. Categorical joint models 124

By analysing the results of the parameter estimates in Table 6.14, we can draw

similar conclusions to the analysis in Table 6.13. The probability of an individual

being in the histologic stage of liver biopsy 1−4 at the beginning of the experiment

is 0.075, 0.238, 0.442 and 0.245, respectively. The probability of an individual not

showing signs of edema is 0.801.

We plot line charts of the corresponding probabilities over time for each cat-

egory of the two responses given b = 0 (Figure 6.9). The histological stage of the

liver biopsy Y1, stages of the individuals at the beginning of the study (t = 0) are

relatively dispersed. The probability of being in stages 2, 3 and 4 is relatively even.

Two years after the start of the study (t = 2), the probability of being in the 1, 2

and 3 stages decreased rapidly. The probability of an individual being in stage 4

increased from 25% to approximately 65%. The probability of an individual be-

ing in the histologic stage 3 of liver biopsy decreases from 0.442 to less than 0.25.

After that, the probability decreases rapidly to close to 0. From the fourth year of

the research, individuals have a quite high probability (close to 1) of progressing to

stage 4. This change in probability is consistent with what we mentioned in Chapter

5, i.e., cirrhosis is incurable, and if the patient is in a more advanced histological

stage, the disease will worsen over time [Mayo, 2022].

For the second response Y2, at the beginning of the study, there is a high proba-

bility that the patient does not experience edema (nearly 80%). However, the prob-

ability of having edema gradually increases over time, and there is a slight increase

in the probability of severe edema. In the 8th year of the study, the probability of

patients having no edema decreased from 80% to 55%. In contrast, the probability

of having edema doubled (from 15% to 30%) and the probability of patients having

severe edema, i.e., failure to eliminate it with diuretics, increased from 5% to 15%.

6.2.2.3 Bivariate categorical joint models based on a univariate cat-

egorical distribution in table form

As we mentioned at the beginning of this subsection, we will represent the two re-

sponses as a table and construct the corresponding joint model using a univariate

categorical distribution. We are using PBC2 data in this subsection, and the two
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Figure 6.9: Line graph of probability for change over time for each category. The first
graph: the histologic stages of liver biopsy Y1 trajectories. The second graph:
the edema conditions Y2 trajectories.
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responses in PBC2 have four and three categories, respectively. Therefore 12 cate-

gories will be present in the matrix form we have constructed. The corresponding

probabilities for twelve categories are listed in Table 6.15.

Table 6.15: PBC2: Probabilities for the corresponding 12 categories.

Edema conditions

1 2 3

Histologic
stages
of liver
biopsy

1 p11 p12 p13

2 p21 p22 p23

3 p31 p32 p33

4 p41 p42 p43

Each probability in Table 6.15 contains two numbers, the first representing the

histology stage of liver biopsy and the second representing the edema condition.

For example, p21 represents the probability that an individual is in histologic stage

2 of liver biopsy and has no edema. In this section, we will build categorical joint

models based on the 12 categories in Table 6.15.

We set p11 as the probability of baseline category. Similar to Equation (2.14)

and Equation (2.15), we use pi∗(t) to represent the logistic regression of the corre-

sponding categorical probabilities, where i∗ represents the number of the category

index which has corresponding random effects.

Suppose the set A is the set of all possible category indices except for the

baseline category. The categories in Table 6.15 are the elements contained in the set

A, i.e. A ∈ {12,13,21,22,23,31,32,33,41,42,43}. We have:

pi∗(t) =
exp(ηηη i∗)

1+ exp(ηηη i∗)+∑i∈A\{i∗} exp(η0i +η1it)
, (6.21)

where ηηη i∗ = (η0i∗ +b0)+(η1i∗ +b1)t represents the linear predictor corresponding

to category i∗ and response Yj. We set category 11 as the baseline category, where

p11(t) =
1

1+ exp(ηηη i∗)+∑i∈A\{i∗} exp(η0i +η1it)
. (6.22)
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The corresponding link function is

∆(ααα,ηηη ,bbb, t) = α1 (η0i∗ +b0)+α2 (η1i∗ +b1) t. (6.23)

However, the joint models we built based on the above set A and Equations

(6.21) - (6.23) encounter problems in estimating the parameters associated with p13.

The standard error of the parameters associated with p13, i.e. the corresponding

fixed intercept and fixed slope, is NaN. According to Table 5.1, we can see that

no observation corresponds to p13 in PBC2, which might be one of the reasons

for this parameter estimation problem. The empty observation on p13 might be a

sampling zero or a structural zero [Agresti, 2003]. During our review of information

on PBC, we learned that edema is a symptom of advanced cirrhosis Mayo [2022].

We presume that in the early stages of the disease, the patient will not develop

severe oedema that diuretics cannot eliminate. Therefore, we assume the missing

observation for p13 is structural zero. To deal with the structural zero, we set the

p13 probability to 0 in the model. The elements contained in the set A modified to

{12,21,22,23,31,32,33,41,42,43}.

We propose one potential way to verify whether the empty observation of cat-

egory 13 is sampling zero or structural zero. We have verified in Section 4.4 that

our code can generate data from the joint model we set up and that the bivariate

categorical joint model estimates are accurate. We could use the results obtained

by Section 6.2 as true values to generate a dataset large enough to represent PBC2.

By verifying the existence of observations of category 13 in this dataset, we may

be able to know the type of this empty observation. There are two main problems

with this approach. Firstly, we cannot guarantee that the PBC2 dataset with 312 in-

dividuals captures the main information about the PBC patient population. It means

that even if our joint model describes the PBC2 data properly, there may be a bias

between the dataset we generate from the joint model and the real data. Secondly,

we generate data randomly from the joint model; even if the empty observation of

category 13 is structural zero, we may still get the corresponding observation in the

generated data. Therefore, we need to develop criteria for determining the outcome



6.2. Categorical joint models 128

as structural zero/sampling zero. We will not validate this method in this thesis.

We present in Table 6.16 the AIC values of the constructed joint model and the

estimated values of the parameter αs. The letters G and E represent the Gompertz

hazard and the exponential hazard in the joint model, respectively. The numbers in

the model names represent the category containing the random effects. For example

model G12 represents a joint model using Gompertz hazard as the survival model

and i∗ = 12 in Equation (6.21) - (6.23).

We choose the model with the smallest AIC value in Table 6.16 to analyse, i.e.

Model E43. The parameter estimation results for Model E43 are presented in Table

6.17. From Table 6.13 we can observe that parameter related to random intercept

of the link function α̂1 = 0.246 is positive. This positive α̂1 means that the higher

the probability of category 43, the higher the probability of death of the individual.

Parameter related random slope of the link function α̂2 = 0.195 is also positive. The

estimated α̂2 means that when time increases, the risk of death for the individual

increases.

Estimates of fixed intercept η̂031 is the largest estimated intercept, and based on

this result we could calculate the corresponding probability at the beginning of the

study (t = 0), i.e. p31(0) = 0.321 given random effects b = 0. This largest intercept

means that at the start of the study, individuals have 30% probability of being in

histologic stage 3 of liver biopsy and without edema. The estimated value of fixed

slope η142 is the largest among all fixed slopes, which means that as time increases,

the corresponding probability of an individual being in category 42 becomes higher.

Probability p42 increases per unit of time the fastest among all categories.

We plot line charts of the corresponding probabilities over time for each cate-

gory given b = 0 (Figure 6.10). From Figure 6.10 we can observe that when t = 0,

the probability of an individual being in category 31 is highest (32%), and the prob-

ability of an individual being in category 41 is also high (27%). As time increases,

the probability of an individual being in category 21 and category 31 continues to

decrease, with the probability of category 21 decreasing from 18% at t = 0 to 6%

at t = 8, and the probability of category 31 decreasing by half at t = 8 compared to
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Table 6.17: PBC2: Parameter estimates for Model E43 with 12 categories. Values in brack-
ets are the standard error of the corresponding parameters.

η012 -2.889 (0.622) η112 -0.001 (0.178) η021 1.074 (0.167) η121 -0.054 (0.049)

η022 -0.645 (0.273) η122 -0.296 (0.129) η023 -3.598 (0.829) η123 0.075 (0.202)

η031 1.643 (0.156) η131 0.005 (0.044) η032 -0.048 (0.198) η132 0.083 (0.052)

η033 -1.856 (0.322) η133 0.254 (0.063) η041 1.478 (0.155) η141 0.146 (0.043)

η042 -1.597 (0.365) η142 0.377 (0.064) η043 -0.379 (0.203) η143 0.221 (0.048)

σb0 2.307 (0.224) σb1 0.471 (0.098)

ρ 0.143 (0.182) β -2.649 (0.158)

α1 0.246 (0.057) α2 0.195 (0.061)
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Figure 6.10: Line graph of probability for change over time for each category for Model
E43 in Table 6.17.
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t = 0. In contrast, the probability of an individual being in category 41 continues to

increase, from 27% (t = 0) to 42% (t = 8). The probability of an individual being in

category 42 and category 43 also increases with time. The trend in these categories

related to stage 4 for the histologic of liver biopsy illustrates that the probability

of individuals’ cirrhosis progressing towards an advanced stage is increasing over

time. This trend is consistent with the information we obtained in Mayo [2022] that

there is no cure for cirrhosis.

Moreover, the probabilities associated with the category of patients being in the

early histologic of the liver biopsy but with edema are small, especially for category

12 and category 23, which are consistently close to 0. This trend also confirms the

high probability of individuals not showing symptoms of edema when they are in

the early histological stage, in line with our discussion in the previous paragraph.

The advantages of the model we construct in this section over the bivariate

joint model constructed in previous sections using two categorical distributions are:

1. The dimensionality of the joint model is reduced. We convert the bivariate

joint model to a one-dimensional joint model by pre-processing the data for

the model (using two response variables to construct a table).

2. This model allows us to analyse the relationship between the two responses

directly rather than capturing the relationship between them via random ef-

fects.

3. The presence of structural zero in the data can be taken into account explicitly.

This model also has some drawbacks. Even though we can use this method to anal-

yse data with more than two corresponding variables, the addition of more response

variables increases the number of parameters in the joint model rapidly. Moreover,

when we use this method to analyse multivariate data, we have a high probability

of encountering empty observations in some categories. It is difficult to distinguish

whether the empty observation for a category consisting of multiple responses is a

structure zero or a sampling zero, and it is also difficult to analyse which responses

jointly lead to the empty observation. Therefore, this method is not suitable for
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analysing multivariate data. In contrast, a joint model using two categorical distri-

butions can capture more responses by increasing the number of categorical distri-

butions.



Chapter 7

Conclusion

In research of longitudinal and time-to-event data, the simultaneous measurement

of trends in longitudinal outcomes over time and the time of occurrence of the event

is an important research direction. Many responses for longitudinal data in medical

statistics are recorded as discrete data. Furthermore, it is common for researchers

to measure more than one biomarker in longitudinal data, i.e. there is more than

one response variable in longitudinal data. In this thesis, we build bivariate discrete

joint models for such discrete longitudinal and time-to-event data.

The joint model for analysing longitudinal and time-to-event data contains a

longitudinal model and a survival model. These two models are linked together by

a link function ∆ containing random effects bbb. Random effects are used to capture

dependence across time and dependence between responses.

For the longitudinal model, we chose two distributions for discrete responses.

The first distribution is the bivariate extension of the binomial distribution. For

the outcome of a sum of scores, we assume that the probability of an individual’s

response increasing by one, i.e. the probability of an individual earning a point,

follows a Bernoulli distribution. Therefore, the response follows a binomial dis-

tribution. We choose a bivariate extension of the binomial distribution rather than

the standard binomial distribution. The advantages of using this extended model

to build a joint model are: (i) Compared to the standard binomial distribution, this

distribution can measure over- or under-dispersion of the data. (ii) This extended

model has a separate parameter φ that can measure the relationship between the
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longitudinal outcomes. In this case, the random effects are not required to capture

all the correlations in joint models. This parameter φ allows us to discern more

clearly the relationship between the two responses. We used the logistic regres-

sion model with random effects to model the probabilities in this extended binomial

distribution.

The second longitudinal model we use in this thesis is the categorical distribu-

tion. We assume that each possible value of the longitudinal response is a category

and model the probability that the data for an individual belongs to a specific cat-

egory. Because the categorical distribution models the probability of each possible

value separately, it provides a better description of the information contained in the

longitudinal data than the extension of the binomial distribution. We demonstrate

this in Chapter 6 by modelling the baseline data using these two distributions sepa-

rately. The corresponding probabilities for each category are also constructed using

the logistic regression model.

We used three parametric hazard models for the survival model: the exponen-

tial hazard model, the Weibull hazard model and the Gompertz model. Our joint

model can be used for prediction through parametric hazard models.

Joint models in this thesis are estimated by maximising the marginal likeli-

hood. Model comparisons are performed by applying the Akaike information cri-

terion. We use two approaches to construct joint models in this thesis. The first

approach, known as the shared random-effects joint model, is a model in which

the random effects follow a continuous distribution. This model provides a flexible

way to measure the correlation between longitudinal response and the risk of the

event occurring, i.e. random effects do not need to be a fixed value. We assume

that the random effects follow a bivariate normal distribution, which is the distri-

bution often used in multivariate shared random-effects joint models [Hickey et al.,

2016]. In general, even if we set the distribution of random effects in advance, the

fixed effects parameter estimates are relatively robust, except for the parameter es-

timates in the survival model [Pantazis and Touloumi, 2007]. However, for heavily

skewed distributed random effects, this may lead to biased estimates if the actual
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distribution differs from the normal distribution.

The shared random-effects joint models are used to analyse the ELSA data,

PAQUID and PBC2 data. For the ELSA data and the PAQUID data, joint models

are constructed with the extension of the binomial distribution. We compare the fit

of joint models using different link functions by AIC values. Based on the same

expressions of the longitudinal model and survival model, the joint model with a

random intercept link function has a smaller AIC than the joint model with a random

slope link function. We use the MAP method to make predictions in Section 6.1.2.3

based on the model estimation results. The analysis of the PAQUID data validates

the flexibility of our joint model, i.e. the two responses of the bivariate extension of

the binomial distribution do not need to have the same range.

For the PBC2 data, we use the categorical distribution to construct the shared

random-effects joint models. We treat each possible value of the responses for the

PBC2 data as a category. A disadvantage of joint models based on the categorical

distribution over joint models based on the bivariate extended binomial distribution

is that we cannot model the relationship between the two longitudinal responses by

a specific parameter.

As we discussed in Section 1.1.2, the shared random-effects model has two

drawbacks: (i) this joint model requires the calculation of multi-dimensional inte-

grals, which greatly slows down the computation; (ii) If the latent heterogeneity

of responses is discrete, i.e. there are ’latent subpopulations’ among individuals

defined according to some characteristics [Arbeev et al., 2014], the shared random-

effects model with continuous random effects may not describe the structure of this

heterogeneity well. Therefore, we also construct latent-class joint models in our

thesis.

The latent-class model connects the longitudinal model and the survival model

through a discrete distribution of random effects. It divides individuals into groups.

This method does not involve any numerical integration. We use the bivariate ex-

tended binomial distribution as the longitudinal model in latent-class joint models.

In Section 6.1.3, we analyse the ELSA data using latent-class joint models and
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select one of the models for detailed analysis. In Section 6.1.4, we analyse the

PAQUID data using both shared random-effects joint models and latent-class joint

models. We compare the running times of the two joint models and conclude that

the joint model runs considerably more efficiently when the computational integral

is removed. The drawback of latent-class joint models is that the divided classes are

difficult to explain. Nevertheless, sometimes explaining the meaning of each latent

class may not be part of the research.

In the research of this thesis, we encountered several problems. (i) When we

attempted to generate data from a categorical distribution in Section 4.4, we are

unable to get the data we expect using the function rcat in LaplacesDemon

package [Statisticat and LLC., 2021]. We demonstrated this by comparing the gen-

erated data distribution with the probabilities we set in rcat. We used the sample

function to generate data from categorical distributions in the simulation study. (ii)

The estimation results of both joint models for analysing the ELSA data encoun-

tered the same problem: when the link function is equal to the random slope of the

two responses, the estimates suggest that the risk of death is higher in individuals

with a slower decline in cognitive function over time. We have shown via simu-

lation study that the estimation results of our joint model are accurate. Moreover,

the joint model for other data does not show such unexpected results. Therefore,

we speculate that the specific feature of the ELSA data causes this phenomenon,

and the true reason for this phenomenon needs further investigation. (iii) We used

education level as a covariate when constructing the probabilities for each class in

the latent-class model. However, an individual’s education level may be related to

his birth year. For example, a person born in 2000 may have a higher probability

of having a higher education than a person born in 1980. Therefore, using edu-

cation level as a covariate may lead to bias in the estimation results and make the

prediction results inconsistent from the true picture.

There are some aspects that could be used as a starting point for further re-

search.

1. First, one of the binomial distribution assumptions is that the questions used
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to collect the data (e.g. words in ELSA data and questions in MMSE) are

independent of each other. However, if there is a dependence between ques-

tions, then this violates the assumptions of the independent Bernoulli test.

Alternatively, we can replace the observed total score with a latent variable

that is linked to the score for a particular question through an item response

theory model [Fox, 2010].

2. We use linear predictors and logistic regression to model the probabilities in

the longitudinal model. In further studies, the linear predictors in logistic

regression can be modelled more flexibly by using B-splines or other semi-

parametric methods.

3. Although we have greatly improved the computational efficiency of the

shared random-effects joint model through code optimisation and the use of

some packages in R (the running time of the code has been reduced from over

24 hours to 9 hours), the code of the shared random-effects model still runs

relatively slow. It is still challenging to compute high-dimensional integrals

quickly when we have more random effects. An alternative might be to use

a Bayesian approach; for recent development in this area, see the JMbayes

package Rizopoulos et al. [2022].

4. In this thesis, we construct bivariate joint models, whereas, in longitudinal

data, there may be more than two responses. We can construct the correspond-

ing multivariate extended binomial distribution based on Altham and Hankin

[2012] and use this distribution in our joint model. We can also construct a

high-dimensional joint model by adding a new categorical distribution.

5. As we mentioned in Chapter 2, our framework is flexible in its choice of

hazard models, i.e. it is easy to replace the exponential hazard model, the

Gompertz hazard model and the Weibull hazard model with other parametric

or semi-parametric hazard models. Joint models using other hazard models

are worth being investigated. Moreover, in this thesis, we discuss the case

of data containing two states, i.e. alive and dead/dementia. Multi-state mod-
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els are worth investigating in future research as individuals have more states

in many datasets. For example, if individuals have three states of health/ill-

ness/death, we can analyse such data by combining the joint model and the

multi-state model.

6. In this thesis, we have used two approaches to construct the joint model.

However, we can use other methods to construct the joint model in further

research. An alternative potential approach is to use a copula model to link

the longitudinal and survival models [Rizopoulos et al., 2008]. When apply-

ing this method, we need to use the cumulative distribution functions of the

longitudinal and survival models.

7. The datasets we use in this thesis are all discrete. When the data to be anal-

ysed are discrete with large ranges or continuous data, we believe that our

model is still applicable. For discrete data with large ranges, by changing the

value of m j in Equation (2.4), we can use the binomial joint model to analyse

the dataset. Alternatively, we can categorise the responses prior to applying

the joint model for discrete data with a wide range of values and continuous

data.

We use the MMSE test as an example. We have introduced in Chapter 5 that

MMSE scores are discrete data that take values in the range of 0 to 30. We

could directly take the 31 possible values as 31 categories and analyse them

using a categorical joint model. However, the number of parameters required

to model the 31 categories is relatively large. In practice, researchers usually

categorise the results of MMSE scores into four categories in order to diag-

nose the cognitive abilities of participants, i.e. 24-30 for normal cognitive

ability, 19-23 for mild, 10-18 for moderate, 0-9 for severe cognitive impair-

ment, respectively [Vertesi et al., 2001]. Therefore, we can categorise MMSE

scores according to this already widely used categorisation method. After cat-

egorising the responses into four categories, we can analyse the data using the

binomial joint model and the categorical joint model proposed in this thesis.
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Pre-processing the data in the manner of our example not only allows for a

wider application of our proposed model but also allows the researcher to

reduce the number of parameters when analysing the data and to obtain infer-

ences explicitly targeting the main research questions.

To conclude, in this thesis, we construct bivariate joint models to simultane-

ously investigate changes in longitudinal outcomes over time and the time of event

occurrence. The bivariate joint models are general and can be used in a wide range

of bivariate discrete-valued outcomes in the medical statistics. In addition, we dis-

cussed link functions which are contained in both the longitudinal model and the

survival model. We hope our discussion will provide ideas for constructing other

multivariate joint models for data consisting of discrete longitudinal outcomes and

time to events.
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Appendix for Simulation Section

We conducted simulation studies using three sets of true values in Section 4.1 and

plotted bias and corresponding Monte Carlo 95% confidence interval according to

Table 4.1. In this section, We plot the images based on Table 4.2 and Table 4.3

as well. We plot box plots based on parameter estimates from the four sets of

simulation studies conducted in Section 4.1, Section 4.3 and Section 4.4, and these

box plots are also presented in this section.
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Figure A.1: Bias and corresponding Monte Carlo 95% confidence interval, based on the
results in Table 4.2. Large dots represent biases, and geometry bars represent
Monte Carlo 95% confidence interval.
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Figure A.2: Bias and corresponding Monte Carlo 95% confidence interval, based on the
results in Table 4.3. Large dots represent biases, and geometry bars represent
Monte Carlo 95% confidence interval.
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Figure A.3: Additional images related to the simulation studies in Table 4.1: Box plots for
estimated parameters.
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Figure A.4: Additional images related to the simulation studies in Table 4.2: Box plots for
estimated parameters.
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Figure A.5: Additional images related to the simulation studies in Table 4.3: Box plots for
estimated parameters.
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Figure A.6: Additional images related to the simulation studies in Table 4.5: Box plots for
estimated parameters.
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Figure A.7: Additional images related to the simulation studies in Table 4.6: Box plots for
estimated parameters.
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Appendix for Application Section

In this chapter, we will first present the estimation results of Model SG2 in Table

6.2. After that, we will plot the three-dimensional images of Models IG1 - IG4 in

Table 6.2 and present the corresponding expectations.

B.1 Estimation results of Model SG2

We have analysed the estimation results of Model SG2 in the Additional remarks

in Section 6.1.2. In this section, we list all estimated parameters of the model as

supplementary.

Table B.1: ELSA: Parameter estimates for shared random-effects Model SG2 with (2.35)

η
(1)
0 -0.631 (0.074) θY1 1.188 (0.032) σb1 0.020 (0.011) β -6.641 (0.290)

η
(2)
0 -1.956 (0.097) θY2 1.102 (0.025) σb2 0.032 (0.013) ξ 0.106 (0.010)

η
(1)
1 -0.022 (0.002) φ 1.423 (0.057) ρ 0.436 (0.087)

η
(2)
1 -0.027 (0.002) α -0.617 (0.201)

γ
(1)
L -0.041 (0.036) γ

(2)
L -0.169 (0.040) γS 0.353 (0.147)

B.2 Plots and expectations of Model IG1 - IG4

In the Model fit in Section 6.1.2, we calculated individual-specific random effects

using the MAP method based on the result in Table 6.1. After that, we plotted

the fitted distribution based on the mean of the calculated random effects and pre-

sented the corresponding expectations. In this section, we list the plots of the three-



B.2. Plots and expectations of Model IG1 - IG4 148

dimensional fitted distributions and the corresponding expectations of Models IG1

- IG4 in Table 6.2. In addition, we add gender as a covariate in the model in Ta-

ble 6.2 so that the three-dimensional plots and the corresponding expectations are

calculated conditional on age and gender.

Expectations for Model IG1:

E[(Y 1,Y 2)|t = 50,sex = 0] = (4.755,3.329) (B.1)

E[(Y 1,Y 2)|t = 50,sex = 1] = (4.448,3.041) (B.2)

E[(Y 1,Y 2)|t = 80,sex = 0] = (3.712,1.092) (B.3)

E[(Y 1,Y 2)|t = 80,sex = 1] = (3.429,0.859) (B.4)
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Figure B.1: Model IG1: Fitted bivariate binomial distribution for immediate recall (Y1) and
delayed recall (Y2).
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Expectations for Model IG2:

E[(Y 1,Y 2)|t = 50,sex = 0] = (5.548,3.927) (B.5)

E[(Y 1,Y 2)|t = 50,sex = 1] = (5.485,3.845) (B.6)

E[(Y 1,Y 2)|t = 80,sex = 0] = (4.978,3.301) (B.7)

E[(Y 1,Y 2)|t = 80,sex = 1] = (4.916,3.22) (B.8)
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Figure B.2: Model IG2: Fitted bivariate binomial distribution for immediate recall (Y1) and
delayed recall (Y2).
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Expectations for Model IG3:

E[(Y 1,Y 2)|t = 50,sex = 0] = (4.683,3.839) (B.9)

E[(Y 1,Y 2)|t = 50,sex = 1] = (4.619,3.755) (B.10)

E[(Y 1,Y 2)|t = 80,sex = 0] = (4.126,3.208) (B.11)

E[(Y 1,Y 2)|t = 80,sex = 1] = (4.063,3.126) (B.12)
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Figure B.3: Model IG3: Fitted bivariate binomial distribution for immediate recall (Y1) and
delayed recall (Y2).
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Expectations for Model IG4:

E[(Y 1,Y 2)|t = 50,sex = 0] = (5.121,3.225) (B.13)

E[(Y 1,Y 2)|t = 50,sex = 1] = (5.06,3.143) (B.14)

E[(Y 1,Y 2)|t = 80,sex = 0] = (4.558,2.604) (B.15)

E[(Y 1,Y 2)|t = 80,sex = 1] = (4.498,2.523) (B.16)
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Figure B.4: Model IG4: Fitted bivariate binomial distribution for immediate recall (Y1) and
delayed recall (Y2).
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Code

We present some of the code written during the research in this chapter. These

codes are used in the simulation study in Section 4.1. This chapter consists of three

parts. The first part is the functions used in the simulation study; the second part is

the code that generates the data from the bivariate joint model; the third part is the

corresponding log-likelihood function used for parameter estimation.

C.1 Code: Functions used in the simulation study
The main functions we use in our simulation study are the function to calculate

the Gaussian-Hermite integral, the density function of Equation (2.4) dbin and

the function to generate data from Equation (2.4) rbivMM. Function rbivMM is

inspired by the rMM function in MM package [Altham and Hankin, 2012], and the

rMM function is used to generate data from Equation (2.2).

# =======================================

# Functions used in the

# bivariate joint model simulation

# =======================================

# Gaussian-Hermite integral:

# ---------------------------------------

library(statmod)

# Calculate nodes and weights for Gaussian quadrature

quad <- gauss.quad(nnodes, "hermite")

nodes <- quad$nodes



C.1. Code: Functions used in the simulation study 153

weights <- quad$weights

# Compute integral

integrateGH.biv <- function(integrand, mu, sigma){

approx <- 0

for(i in 1:nnodes ){

x <- sqrt(2)*sigma*nodes[i] + mu

approx <- (1/sqrt(pi))*weights[i]%*%integrand(x)+ approx

}

return(approx)

}

# ---------------------------------------

# Density function for

# the bivariate extension of the binomial:

# ---------------------------------------

dbin <- function(x,size,prob,theta,phi){

# Define:

# Range of responses Y1 and Y2

n <- size

# Probability of success

p1 <- prob[1]

p2 <- prob[2]

j1 <- x[1]

j2 <- x[2]

theta1 <- theta[1]

theta2 <- theta[2]

if (j1<0 || j2<0) {return(0)}

# Pre-compute binomial coefficients:

C1.choose <- rep(NA,size+1)

part.choose <- rep(NA,size+1)

for(j in 0:size){

C1.choose[j+1] <- choose(size,j)
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part.choose[j+1] <- choose(size,j)

}

# Model:

num1 <- choose(n,j1)*(1-p1)ˆ(n-j1)*p1ˆ(j1)*theta1ˆ(j1*(n-j1))

num2 <- choose(n,j2)*(1-p2)ˆ(n-j2)*p2ˆ(j2)*theta2ˆ(j2*(n-j2))

num <- num1*num2*phiˆ(j1*j2)

C <- 0

for(j in 0:n){

C1 <- C1.choose[j+1]**(1-p1)ˆ(n-j)*p1ˆ(j)*theta1ˆ(j*(n-j))

for(jj in 0:n){

part <- part.choose[jj+1]*(1-p2)ˆ(n-jj)*p2ˆ(jj)*theta2ˆ(jj*(n-jj))

C <- C + C1*part*phiˆ(j*jj)

}

}

# Return:

return(num/C)

}

# ---------------------------------------

# Sample from the bivariate extension of the binomial:

# ---------------------------------------

rbivMM <- function(size,prob,theta,phi,burn.in = 1000){

# burn-in = 1000

X <- numeric(burn.in+1); Y <- numeric(burn.in+1)

X[1] <- 1; Y[1] <- 1

for (i in 2:(burn.in+1)) {

Epsilon1 <- sample(c(1, -1), 1)

Epsilon2 <- sample(c(-1, 1), 1)

Xproposal <- X[i - 1] + Epsilon1

Yproposal <- Y[i - 1] + Epsilon2
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if (Xproposal > size || Xproposal < 0) {

Xproposal <- X[i - 1]

}

if(Yproposal > size || Yproposal < 0){

Yproposal <- Y[i - 1]

}

# Set probability a

# With probability a we accept the proposed value:

# X[i] <- Xproposal; Y[i] <- Yproposal

# Otherwise we reject it and set:

# X[i] <- X[i-1]; Y[i] <- Y[i-1]

a <- min(1,dbin(c(Xproposal, Yproposal), size, prob, theta, phi)/

dbin(c(X[i-1], Y[i-1]), size, prob, theta, phi))

if (runif(1) < a) {

X[i] <- Xproposal; Y[i] <- Yproposal

} else {

X[i] <- X[i-1]; Y[i] <- Y[i-1]

}

}

X <- X[-c(1:burn.in)]; Y <- Y[-c(1:burn.in)]

data <- cbind(X, Y)

return(data)

}

C.2 Code: Data generation for the bivariate joint

model

# =======================================

# Simulate data for bivariate joint model

# =======================================

# Simulate random effects and data:
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# ---------------------------------------

# Matrix used to record the generated random effects

b <- matrix(NA,Npop,2)

for(i in 1:Npop){

# Generate random effects from bivariate normal distribution:

b1.i <- rnorm(n=1,mean=0,sd=sigma.b1)

cond.mn <- 0+rho*(b1.i-0)*sigma.b2/sigma.b1

cond.var <- sigma.b2ˆ2*(1-rhoˆ2)

b2.i <- rnorm(n=1,mean=cond.mn,sd=sqrt(cond.var))

b[i,] <- c(b1.i,b2.i)

# Age grid:

age.i <- ages

# Longitudinal model:

# ---- Y1 ----

nu1.i <- nu1+c(b1.i,0)

# Linear predictor with random intercept for Y1

lp1.i <- cbind(1,age.i)%*%nu1.i

# Corresponding logistic regression for Y1

pie1.i <- exp(lp1.i)/(1+exp(lp1.i))

# ---- Y1 ----

nu2.i <- nu2+c(b2.i,0)

# Linear predictor with random intercept for Y2

lp2.i <- cbind(1,age.i)%*%nu2.i

# Corresponding logistic regression for Y1

pie2.i <- exp(lp2.i)/(1+exp(lp2.i))

# longitudinal responses:

y.ij <- matrix(NA,length(age.i),2)
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for (j in 1:length(age.i)) {

# Generate bivariate longitudinal outcomes

# from the bivariate extension of the binomial distribution

y.ij[j, ] <- rbivMM(

# Range of responses Y1 and Y2

size,

# Logistic regression for two response

prob = c(pie1.i[j], pie2.i[j]),

# theta1 and theta2

theta = theta,

phi = phi,

# warm-up period

burn.in = 1000

)

}

y1.i <- y.ij[, 1]

y2.i <- y.ij[, 2]

# Survival model:

lambda.i <- exp(beta[1]+alpha.2D%*%c(nu1.i[1],nu2.i[1]))

S <- exp(c(-lambda.i*xiˆ(-1))*(exp(xi*dages)-1))

# Death time:

F <- 1-S

u <- runif(n=1,0,1)

# Compute time to events using the inversion method

dage.i <- dages[which(abs(F-u)==min(abs(F-u)))]

# Enforce max age:

status.i <- as.numeric(dage.i <= max.age)

dage.i <- ifelse(dage.i>=max.age,max.age, dage.i)

# Build data:
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data.i <- cbind(No.sim = sim, idn=i,

y1=y1.i,y2=y2.i,

age=age.i,dage=dage.i,bage=age.i[1],

calender=calender.year+age.i,

status = status.i)

}

data <- as.data.frame(data)

# Remove observations after death

data.split <- split(data,data$idn)

for(i in 1: Npop){

data.i <- data.split[[i]]

idn <- data.i$idn

y1 <- data.i$y1

y2 <- data.i$y2

age.i <- data.i$age

dage.i <- data.i$dage[1]

bage.i <- data.i$age[1]

No.sim <- data.i$No.sim

calender.i <- data.i$calender

status.i <- data.i$status

n.i <- length(which(age.i< dage.i))

# Death record:

drecord <- c(No.sim[1],idn[1],NA, NA,

dage.i, dage.i ,bage.i, NA, status.i)

data.spl <- rbind(data.i[1:n.i,],drecord)

if(i==1){dta <- data.spl}else{dta <- rbind(dta, data.spl)}

}
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C.3 Code: Log-likelihood function

# =======================================

# Loglikelihood for bivariate joint model

# =======================================

# Pre-compute binomial coefficients:

C1.choose <- rep(NA,size+1)

part.choose <- rep(NA,size+1)

for(j in 0:size){

C1.choose[j+1] <- choose(size,j)

part.choose[j+1] <- choose(size,j)

}

# Loglikelihood:

loglikelihood <- function(p){

# Parameters:

# longitudinal:

nu1 <- p[1:2]

theta1 <- exp(p[3])

nu2 <- p[4:5]

theta2 <- exp(p[6])

delta <- exp(p[7])

# survival:

xi <- p[8]

# random effects:

sigma.b1 <- exp(p[9])

sigma.b2 <- exp(p[10])

rho <- 2*exp(p[11])/(exp(p[11])+1) - 1

# shared part:
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beta <- p[12]

alpha1 <- p[13]

# Build loglikelihood :

loglik <- 0

for(i in 1:Npop){

time <- tt[i]

death <- dd[i]

y1 <- yy1[ind1[i]:ind2[i]]

y2 <- yy2[ind1[i]:ind2[i]]

x <- xx[ind1[i]:ind2[i]]

L <- length(x)

integrand <- function(b1, b2){

# Longitudinal model:

nu.i1 <- nu1+c(b1,0)

lp.i1 <- cbind(1,x)%*%nu.i1

nu.i2 <- nu2+c(b2,0)

lp.i2 <- cbind(1,x)%*%nu.i2

p1 <- exp(lp.i1)/(1+exp(lp.i1))

p2 <- exp(lp.i2)/(1+exp(lp.i2))

# Data-dependent part of distribution:

f1 <- 1

for(ind in 1:L){

# Bivariate extension of the binomial distribution:

num1 <- (1-p1[ind])ˆ(size-y1[ind])*p1[ind]ˆ(y1[ind])*

theta1ˆ(y1[ind]*(size-y1[ind]))

num2 <- (1-p2[ind])ˆ(size-y2[ind])*p2[ind]ˆ(y2[ind])*

theta2ˆ(y2[ind]*(size-y2[ind]))

num <- num1*num2*deltaˆ(y1[ind]*y2[ind])

# Normalising constant for distribution:

# with pre-computed binomial coefficients:
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C <- 0

for(j in 0:size){

C1 <- C1.choose[j+1]*(1-p1[ind])ˆ(size-j)*p1[ind]ˆ(j)*

theta1ˆ(j*(size-j))

for(jj in 0:size){

part <- part.choose[jj+1]*(1-p2[ind])ˆ(size-jj)*

p2[ind]ˆ(jj)*theta2ˆ(jj*(size-jj))

C <- C + C1*part*deltaˆ(j*jj)

}

}

f1 <- num/C*f1

}

# Survival model:

lambda.i <- exp(beta+alpha1*nu.i1[1])

h <- lambda.i*exp(xi*time)

S <- exp(-lambda.i/xi*(exp(xi*time)-1))

f2 <- death*(h*S)+(1-death)*S

# Integrand:

f1*f2

}

# Integrate for likelihood contribution for i:

marg <- integrateGH.biv(Vectorize(function(b2) {

integrateGH.biv(function(b1) { integrand(b1, b2) },

rho*(sigma.b1/sigma.b2)*b2,

sqrt(sigma.b1ˆ2*(1-rhoˆ2)) ) }), 0,sigma.b2)

loglik <- loglik+log(marg)

}

# Return:
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-loglik

}
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