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a b s t r a c t

Flexibility of behavior and the ability to rapidly switch actions is critical for adaptive living

in humans. It is well established that the right-inferior frontal gyrus (R-IFG) is recruited

during outright action-stopping, relating to increased beta (12e30 Hz) power. It has also

been posited that inhibiting incorrect response tendencies and switching is central to

motor flexibility. However, it is not known if the commonly reported R-IFG beta signature

of response inhibition in action-stopping is also recruited during response conflict, which

would suggest overlapping networks for stopping and switching. In the current study, we

analyzed high precision magnetoencephalography (hpMEG) data recorded with multiple

within subject recording sessions (trials n > 10,000) from 8 subjects during different levels

of response conflict. We hypothesized that a R-IFG-triggered network for response inhi-

bition is domain general and therefore also involved in mediating response conflict. We

tested whether R-IFG showed increased beta power dependent on the level of response

conflict. Using event-related spectral perturbations and linear mixed modeling, we found

that R-IFG beta power increased for response conflict trials. The R-IFG beta increase was

specific to trials with strong response conflict, and increased R-IFG beta power related to

less error. This supports a more generalized role for R-IFG beta, beyond simple stopping

behavior towards response switching.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Sometimes we plan or start to execute an action, but then

need to suddenly execute a different action instead. In ex-

periments, this has been called switching, response over-

riding, or overcoming response conflict; here we use the term

response conflict. One notable theory suggests that during

motoric response conflict, inhibition of the incorrect response

tendency is necessary (see Wiecki & Frank, 2013). This inhib-

itory control mechanism may be the same as that of outright

action-stopping (e.g., Wessel&Aron, 2017;Wessel et al., 2019),

although a subsequent response is not required when stop-

ping. However, it remains an open question to what extent

response conflict resolution and stopping rely on shared

mechanisms of inhibition.

Communication from the right-inferior frontal gyrus (R-

IFG) to the STN of the basal ganglia has been implicated in

stopping movement (for review, see Aron et al., 2016; Hannah

& Aron, 2021). Specifically, previous studies have found

increased beta (12e30 Hz) power in R-IFG (Swann et al., 2009;

Wagner et al., 2018; Schaum et al., 2021; Sundby et al., 2021)

and STN (for review, see Zavala et al., 2015) during successful

stopping. The notion that mechanisms of response inhibition

are important for overcoming response conflict by inhibiting

incorrect response tendencies has been supported by

computational models (Wiecki & Frank, 2013) and empirical

work (Brittain et al., 2012; Forstmann et al., 2008a, 2008b;

Neubert et al., 2010; Wessel et al., 2019). However, scant

research has implicated R-IFG in response conflict, despite it

being a key node in the putative inhibitory control network.

Neubert et al. (2010) found using transcranial magnetic stim-

ulation (TMS) that response conflict increased the inhibitory

influence of R-IFG over primary motor (M1) cortical repre-

sentations of incorrect responses. Using fMRI, Forstmann and

colleagues (2008a, 2008b) found that R-IFG activation related to

behavioral indices of response inhibition during response

conflict, although only for some trials. This suggests that R-

IFG may be recruited to inhibit incorrect responses during

response conflict, but the limited evidence has not yet been

supported by high resolution electrophysiology. Brittain et al.

(2012) reported increased STN beta during Stroop conflict,

which might suggest that beta-band communication from R-

IFG to STN is involved in overcoming response conflict.

However, to date there has not been a direct electrophysio-

logical investigation of the role of R-IFG beta during response

conflict, which is the primary focus of the current study.

Other cortical regions are thought to facilitate the control

of action during conflict as well. Communication from pre-

SMA to the STN has been implicated in conflict (for review,

see Aron et al., 2016). Medial prefrontal cortex (mPFC),

including pre-SMA, has been implicated during response

conflict paradigms using neuroimaging (Garavan et al., 2003;

Nachev et al., 2005), brain stimulation (Neubert et al., 2010),

electrophysiology (Wessel et al., 2019; Zavala et al., 2018), and

single-unit recordings (Isoda & Hikosaka, 2007). A common

electrophysiological readout during response conflict is

increased theta (4e8 Hz) power in mPFC (Wessel et al., 2019;
Zavala et al., 2018)e plausibly originating frompre-SMAe and

in STN (Zavala et al., 2018). This theta increase has been

interpreted as a “pause” of motor output while evidence ac-

cumulates to a decision threshold (see Wiecki & Frank, 2013).

It is a secondary focus of the current study to attempt to

replicate previous findings implicating mPFC theta power

during response conflict.

We re-analyzed a head-cast, high precision MEG (hpMEG)

dataset with >10,000 trials from a small cohort of healthy

controls (N ¼ 8) during a random dot kinematogram (RDK)

response conflict paradigm (Bonaiuto et al., 2018; Little et al.,

2019). We reconstructed source activity in R-IFG, left-IFG (L-

IFG; R-IFG control region), and pre-SMA. We then utilized

event-related spectral perturbations and linear mixed

modeling to evaluate power changes associated with

response conflict at the single-trial level, following an

imperative cue which could be congruent or incongruent

with the preparatory cue. We hypothesized that R-IFG beta is

recruited for response inhibition during response conflict,

and tested whether R-IFG beta power increased on response

conflict trials, particularly strong response conflict. We also

evaluated classical mPFC theta activity by testing whether

pre-SMA theta power increased on response conflict trials.

Lastly, we tested whether changes in R-IFG beta and pre-SMA

theta power during response conflict related to motor

behavior.
2. Materials and methods

We report how we determined our sample size, all data ex-

clusions (if any), all data inclusion/exclusion criteria, whether

inclusion/exclusion criteria were established prior to data

analysis, all manipulations, and all measures in the study.

2.1. Data and code availability

The analyses presented in this paper were performed on a

pre-existing hpMEG dataset, collected with subject-specific

head-casts to maximize signal-to-noise ratio (SNR) (see Little

et al., 2018). Raw data are available via the Open Science

Framework (OSF) at https://osf.io/eu6nx, and via the Open

MEG Archive (OMEGA; Niso et al., 2016) at https://doi.org/10.

23686/0015896 (register at https://www.mcgill.ca/bic/

resources/omega; Niso et al., 2018), and processed data are

available via OSF at https://osf.io/hqaw6. The code used to

present experimental stimuli is available via Github at https://

github.com/jbonaiuto/cued_action_selection. The analyses

presented here were performed with custom scripts in MAT-

LAB R2020a and RStudio Version 1.2.5001, which are available

via OSF at https://osf.io/hqaw6.

A full description of the original materials and methods

can be found in the original description (Bonaiuto et al., 2018).

Brief summaries of key features of the initial data collection

and processing are included here, along with more detailed

information about the methods used that differ from the

original techniques. Study procedures and analyses were not

pre-registered.

https://osf.io/eu6nx
https://doi.org/10.23686/0015896
https://doi.org/10.23686/0015896
https://www.mcgill.ca/bic/resources/omega
https://www.mcgill.ca/bic/resources/omega
https://osf.io/hqaw6
https://github.com/jbonaiuto/cued_action_selection
https://github.com/jbonaiuto/cued_action_selection
https://osf.io/hqaw6
https://doi.org/10.1016/j.cortex.2022.10.007
https://doi.org/10.1016/j.cortex.2022.10.007
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2.2. Response conflict paradigm

Subjects were presented with RDKs that predicted upcoming

movement cues and varied in level of coherence (high, me-

dium, low; each 33.3% of trials). The preparatory RDKs were

followed by an imperative cue that indicated a left or right

button press using the middle or index finger of the right

hand, and were either congruent with the preparatory cue (no

response conflict; 70% of trials) or incongruent (response

conflict; 30% of trials) (Figure 1). We operationally defined low

RDK coherence incongruent trials as having a low strength of

response conflict, medium RDK coherence incongruent trials

as having a medium strength of response conflict, and high

RDK coherence incongruent trials as having a high strength of

response conflict. On each trial, subjects responded to an

imperative cue using either the index or middle finger of their

right hand. Between trials, subjects fixated on a central fixa-

tion cross (not depicted in Figure 1).

The sample size was determined by that of the original

study. Eight subjects completed 1e4 sessions each, for a total

of 24 sessions in the dataset. Prior to data visualization and
Figure 1 e Response conflict paradigm and behavioral performa

kinematogram (RDK) that varied in level of coherence (high, med

On a majority of trials (70%), the RDK accurately predicted the d

conflict (top panel). On a minority of trials (30%), the RDK inaccur

in response conflict (bottom panel). Left and right button press

respectively, of the right hand. B and C. Subjects responded sign

response conflict compared to trials with response conflict. Erro

level (N ¼ 24). ***p < .0001.
statistical analysis, we excluded trials with a response time

(RT) of less than 100 ms, resulting in a total of 10,496 trials

included across all subjects (512e2109 trials per subject).

Neural signals were analyzed after the imperative cue, before

the average RT, to index response conflict. We did not analyze

neural signals during the RDK period, as this has been previ-

ously reported (Bonaiuto et al., 2018; Little et al., 2019).

2.3. Source inversion

Sensor-level hpMEG data (recorded during the response con-

flict paradigm) was source inverted using individual subjects’

cortical surface meshes to reconstruct activity in R-IFG, L-IFG,

and pre-SMA.We analyzed source data from L-IFG as a control

region for R-IFG. For source inversion, cortical surface meshes

were extracted using FreeSurfer (Fischl, 2012) from multipa-

rameter maps using the proton density (PD) and longitudinal

relaxation time (T1) sequences from each subject’s structural

MRI, as described by Bonaiuto et al. (2018). 3-Dimensional

surface plots of each subject’s cortical surface mesh were

reviewed and subject-specific regions of interest (ROIs) were
nce. A. On each trial, subjects were shown a random dot

ium, or low), followed by a fixation cross for a delay period.

irection of the imperative cue, resulting in no response

ately predicted the direction of the imperative cue, resulting

responses were made with the index and middle fingers,

ificantly faster (B) and more accurately (C) on trials with no

r bars represent standard error of the mean, at the session

https://doi.org/10.1016/j.cortex.2022.10.007
https://doi.org/10.1016/j.cortex.2022.10.007
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established using previously defined anatomical landmarks:

right and left pars opercularis for R-IFG and L-IFG, respectively

(see Levy & Wagner, 2011; Breshears et al., 2019), and right

dorsomedial PFC for pre-SMA (see Kim et al., 2010; Neubert et

al., 2010; Zhang et al., 2011). Next, we selected a central vertex

within each region, and validated our selection using MNI

coordinates from meta-analyses on NeuroSynth (Yarkoni

et al., 2011). We created localized clusters by selecting all

vertices within a 1 mm radial distance across the cortical

surface (see Figures 2A and 3A for a visualization of one sub-

ject as an example). We then performed source inversion

using SPM 12 (http://www.fil.ion.ucl.ac.uk/spm/) and an

Empirical Bayesian beamformer, as described by Little et al.

(2019), and then selected source activity time series for every

vertex in each ROI cluster for further analysis.

2.4. Time-frequency decomposition

We computed time-frequency transforms of the source-level

time series using Morlet wavelets (3 cycles at low frequencies,

linearly increasing by .5 at higher frequencies), with a range

from 4 to 30 Hz (see Jana et al., 2020). We performed time-

frequency transforms for the time series for every vertex in

each ROI cluster, to obtain a time � frequency � trial � vertex,
Figure 2 e ERSPs for R-IFG, L-IFG, and pre-SMA. Group-average

conflict trials, no response conflict trials, and their difference. D

were performed at the single-trial level; these group-level plots

for R-IFG (top), L-IFG (middle), and pre-SMA (bottom) from one s

prior to the average RT for response conflict trials compared to

significant main effects of response conflict on theta, conventio

shows increased theta power (not beta power) prior to the avera

conflict trials. D. Pre-SMA shows increased theta and low beta

compared to no response conflict trials.
4-dimensional matrix of power for each ROI in each session.

Then, we averaged across the cluster vertex dimension to

create a time � frequency � trial matrix.

2.4.1. Event-related spectral perturbation (ERSP)
For group level visualizations, we computed ERSPs for trials

with and without response conflict for each ROI (i.e., R-IFG, L-

IFG, pre-SMA). We converted spectral power to decibels (dB)

using a 500 ms baseline prior to the RDK presentation (i.e.,

during fixation) (see Cohen, 2014). We averaged across all ses-

sions that each subject completed (total N ¼ 24), and then

computed a grand average across subjects (N ¼ 8). We sub-

tracted the group average ERSP for trials with no response

conflict from the group average ERSP for trials with response

conflict to specifically visualize the difference.Weplotted these

ERSPs with a range from 4 to 30 Hz on the y-axis and 0e500 ms

relative to the imperative cue on the x-axis, with a vertical line

at 300ms denoting average RT (Figure 2).We followed the same

procedure for R-IFG ERSPs split by levels of coherence (Figure 3).

2.5. Statistical analyses

To optimize analysis across all trials (n ¼ 10,496) in this

dataset, andmodel within-subject data aswell as small cohort
event-related spectral perturbations (ERSPs) for response

ashed vertical line at 300 ms denotes average RT. Statistics

are solely for visualization. A. Example source localization

ubject. B. R-IFG shows increased theta and low beta power

no response conflict trials. Single-trial analyses revealed

nal low beta, and subject-specific low beta power. C. L-IFG

ge RT for response conflict trials compared to no response

power prior to the average RT for response conflict trials

http://www.fil.ion.ucl.ac.uk/spm/
https://doi.org/10.1016/j.cortex.2022.10.007
https://doi.org/10.1016/j.cortex.2022.10.007


Figure 3 e ERSPs for R-IFG, split by coherence level. Group-average event-related spectral perturbations (ERSPs) for response

conflict trials, no response conflict trials, and their difference, by coherence level. Dashed vertical line at 300 ms denotes

average RT. Statistics were performed at the single-trial level; these group-level plots are solely for visualization. A. Example

source localization for R-IFG from one subject. B-D. R-IFG shows increased low beta and theta power prior to the average RT

for response conflict trials compared to no response conflict trials for high coherence (B) and medium coherence (C) trials,

and not for low coherence (D) trials. Single-trial analyses revealed a significant interaction between response conflict and

coherence on subject-specific low beta power. Pairwise comparisons revealed a significant difference in subject-specific low

beta power for response conflict trials compared to no response conflict trials for high coherence trials only, not for medium

nor low coherence trials.

c o r t e x 1 5 8 ( 2 0 2 3 ) 1 2 7e1 3 6 131
between-subject data (N ¼ 8), we used a linear mixed

modeling framework using R (v3.6.1, R Core Team, 2019) and

the lme4 package (v1.1-21, Bates et al., 2015). To compute ef-

fect sizes of main effects in our models, we used a formula for

Cohen’s d for mixed effects models (Brysbaert & Stevens,

2018).

2.5.1. Data preparation for linear mixed modeling
To prepare the spectral power data for single-trial level sta-

tistical analyses, we computed a simple linear baseline sub-

traction using a 500 ms window prior to the RDK presentation

on that trial (see Cohen, 2014; Grandchamp & Delorme, 2011).

We a priori (i.e., prior to visualization of the contrast spec-

trograms) defined time and frequency ranges to average

across to obtain single-trial power estimates in our pre-

specified ROIs. We used 0e300 ms relative to the imperative

cue (i.e., time between imperative cue presentation and

average RT) as our temporal ROI. We used 4e8 Hz for theta,

and subject-specific and conventional partitions of 12e30 Hz

for beta (explained in detail in 2.5.1.1). We z-scored each of

these single-trial power estimates within-subject and -ROI.

2.5.1.1. PARTITIONING THE BETA BAND. Previous studies have

defined beta differently (e.g., Engel & Fries, 2010; Newson &
Thiagarajan, 2019; Schmidt et al., 2019). Here we defined

12e20 Hz as ‘low beta’ and 21e30 Hz as ‘high beta’. Previous

work has specifically implicated the lower beta band in

stopping-related activity (Engel & Fries, 2010; Schmidt et al.,

2019; Wagner et al., 2018), so we sought as our primary test

an evaluation of whether R-IFG low beta specifically was

recruited during response conflict. We used an individualized

(peak-centered) frequency band of task-relevant low beta to

test our primary hypothesis about R-IFG low beta in response

conflict.

We computed average baseline-corrected spectral power

(dB) for all trials that the subject completed, and then aver-

aged across our 0e300 ms time window of interest to obtain a

single spectral power estimate for each frequency value in the

12e20 Hz range. Then we extracted the value for which low

beta power was greatest, and used that as the center of a

narrow subject-specific range (peak low beta ±1 Hz). In addi-

tion to defining subject-specific low beta, we also used a

broader band conventional range of low beta (12e20 Hz) and

used the same procedure described here to define subject-

specific (peak high beta ±1 Hz) and conventional (21e30 Hz)

high beta for secondary comparison. Notably, we saw distinct

baseline-corrected low beta peaks separate from the theta

band in 7 out of 8 subjects for R-IFG (1 subject appeared to have

https://doi.org/10.1016/j.cortex.2022.10.007
https://doi.org/10.1016/j.cortex.2022.10.007
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an incomplete beta peak). The mean peak low beta value in R-

IFG was 13.79 Hz (±1.05 Hz), in L-IFG it was 13.71 Hz (±.93 Hz),

and in pre-SMA it was 15.99 Hz (±1.35 Hz).

2.5.2. Linear mixed models
All of our models were structured with session nested within

subject-specific intercepts as random effects.We used Type III

Wald Chi Square tests for our models. We used z-tests, Tukey

corrected for multiple comparisons, for pairwise

comparisons.

To assess the impact of response conflict and RDK coher-

ence on RT, we used a linear mixed model with RT (log10

transformed) as the dependent variable, and response con-

flict, RDK coherence, and their interaction as fixed effects. To

assess the impact of response conflict and RDK coherence on

error, we used a generalized linear mixed model with a

binomial distribution, response (0 ¼ incorrect, 1 ¼ correct) as

the dependent variable, and response conflict, RDK coher-

ence, and their interaction as fixed effects. To assess the

impact of response conflict and RDK coherence on neural

activity, we used linear mixed models with z-scored power as

the dependent variable, and response conflict, RDK coher-

ence, and their interaction as fixed effects. Lastly, to explore

relationships between neural activity and behavior (i.e., RT,

error), we used linear mixed models with RT (log10 trans-

formed) as the dependent variable, and z-scored power,

response conflict, and their interaction as fixed effects, and

generalized linear mixedmodels with a binomial distribution,

response (0¼ incorrect, 1¼ correct) as the dependent variable,

and z-scored power, response conflict, and their interaction as

fixed effects.
3. Results

3.1. Behavioral results

On average, subjects responded faster andmore accurately on

trials with no response conflict compared to trials with

response conflict (Figure 1). Linear mixed models revealed a

significant interaction between response conflict and coher-

ence on log-transformed RT (X2(2) ¼ 35.3, p < .0001) and on

response accuracy (X2(2) ¼ 264.19, p < .0001). Pairwise com-

parisons revealed significant differences in behavioral per-

formance for trials with no response conflict compared to

trials with response conflict. Subjects had significantly longer

RTs on trials with response conflict for high (Z ¼ �17.07,

p < .0001), medium (Z ¼ �14.18, p < .0001) and low (Z ¼ �8.93,

p < .0001) coherence trials, and significantly more errors on

trials with response conflict for high (Z ¼ 26.94, p < .0001),

medium (Z ¼ 20.64, p < .0001), and low (Z ¼ 4.81, p < .0001)

coherence trials.

3.2. Neural results

3.2.1. Increased beta power during response conflict in R-IFG,
not L-IFG or pre-SMA
To test whether there was increased low beta power in R-IFG

during response conflict, we analyzed subject-specific and

conventional low beta power during response conflict trials
compared to no response conflict trials in R-IFG. We also

secondarily analyzed subject-specific and conventional high

beta for comparison. On average, low beta power in R-IFG was

higher during response conflict trials compared to no

response conflict trials (Figure 2B). Our linear mixed models

revealed a significant main effect of response conflict on

subject-specific (X2(1) ¼ 16.17, p < .0001; d ¼ .15) and conven-

tional (X2(1) ¼ 4.25, p ¼ .039; d ¼ .08) low beta power in R-IFG.

Our linear mixed models revealed no significant main effects

of response conflict on conventional nor subject-specific def-

initions of high beta power in R-IFG.

We then tested the relationship between response conflict

and beta power in L-IFG and pre-SMA to test for regional

specificity of any beta increases. Although visually, low beta

power in pre-SMA also appeared to be slightly higher during

response conflict trials compared to no response conflict trials

(Figure 2D), our linear mixed models revealed no significant

main effects of response conflict on subject-specific nor con-

ventional definitions of low nor high beta power in pre-SMA.

Additionally, there was no difference in L-IFG beta power on

response conflict trials compared to no response conflict trials

(Figure 2C), and our linear mixed models revealed no signifi-

cant main effects of response conflict on subject-specific nor

conventional definitions of low nor high beta power in L-IFG.

3.2.2. R-IFG beta power increased for stronger response
conflict trials
To test whether the recruitment of R-IFG low beta power

during response conflict depended on the strength of the

response conflict, we looked at the interaction between

response conflict and RDK coherence (operationalized as

modulating the strength of response conflict on incongruent

trials) on subject-specific and conventional low beta power.

On average, low beta power in R-IFG was higher during

response conflict trials compared to no response conflict trials

for high coherence trials (Figure 3B) and for medium coher-

ence trials (Figure 3C), and not for low coherence trials

(Figure 3D). Our linear mixed models revealed a significant

interaction between response conflict and coherence on

subject-specific low beta power in R-IFG (X2(2)¼ 6.76, p¼ .034),

and not on conventional low beta power. Pairwise compari-

sons revealed a significant difference in subject-specific R-IFG

low beta power for high coherence (i.e., strong) response

conflict trials compared to high coherence no response con-

flict trials (Z¼�4.02, p¼ .0001), and not forwithinmediumnor

low coherence trials.

3.2.3. Increased theta power during response conflict in pre-
SMA, R-IFG, and L-IFG
To test for previously described theta power increases in

mPFC during response conflict, we analyzed pre-SMA theta

power during response conflict trials compared to no response

conflict trials. We also analyzed theta power in R-IFG and L-

IFG to test for regional specificity of any theta increases. Theta

power after the presentation of the imperative cue was higher

during response conflict trials compared to no response con-

flict trials in pre-SMA (Figure 2D), R-IFG (Figure 2B), and L-IFG

(Figure 2C). Our linear mixed models revealed a trend of a

main effect of response conflict on pre-SMA theta power

(X2(1) ¼ 2.82, p ¼ .093; d ¼ .06), a significant main effect of

https://doi.org/10.1016/j.cortex.2022.10.007
https://doi.org/10.1016/j.cortex.2022.10.007
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response conflict on R-IFG theta power (X2(1) ¼ 12.07, p ¼
<.0001; d ¼ .13), and a trend of a main effect of response

conflict on L-IFG theta power (X2(1) ¼ 3.16, p ¼ .075; d ¼ .07).

3.2.4. R-IFG and L-IFG theta power increased for stronger
response conflict trials
To test whether the recruitment of theta during response

conflict depended on the strength of the response conflict, we

also looked at the interaction between response conflict and

RDK coherence on theta power in pre-SMA, R-IFG, and L-IFG.

Our linear mixed models revealed a significant interaction be-

tween response conflict and coherence on theta power in R-IFG

(X2(2) ¼ 13.13, p ¼ .0014) and in L-IFG (X2(2) ¼ 10.44, p ¼ .0054),

and not in pre-SMA. Pairwise comparisons revealed a signifi-

cant difference in R-IFG theta power for high coherence (i.e.,

strong) response conflict trials compared to high coherence no

response conflict trials (Z ¼ �3.47, p ¼ .0005) and within me-

dium coherence trials (Z ¼ �2.47, p ¼ .014), and not for within

low coherence trials. Pairwise comparisons revealed a trend of

a significant difference in L-IFG theta power within high

coherence trials (Z ¼ �1.78, p ¼ .076), a significant difference

within medium coherence trials (Z ¼ �3.92, p ¼ .0001), and no

significant difference within low coherence trials.

3.3. Neural and behavioral results

3.3.1. Increased R-IFG beta power relates to less error in
responding
Following the finding of an increase in R-IFG low beta power

during response conflict (3.2.1 and 3.2.2), we sought to test

whether this increase related to behavior. We found no sig-

nificant relationships between R-IFG beta and RT. Using

generalized linear mixed models with a binomial distribution

and response (0 ¼ incorrect, 1 ¼ correct) as the dependent

variable, we found a significant interaction between R-IFG

beta and response conflict on response accuracy for subject-

specific (X2(1) ¼ 9.09, p ¼ .0026) and conventional

(X2(1) ¼ 9.57, p ¼ .002) low beta power in R-IFG. For trials with

no response conflict, there was a significant relationship be-

tween increased R-IFG beta and less error in responding for

subject-specific (Z ¼ 2.31, p ¼ .021) and conventional (Z ¼ 2.69,

p ¼ .0071) definitions of low beta. For trials with response

conflict, there were no significant relationships between R-IFG

beta and response accuracy. However, there was a trend for a

relationship between increased subject-specific R-IFG low

beta and more error in responding for trials with response

conflict (Z ¼ �1.94, p ¼ .053).

3.3.2. Increased pre-SMA theta power relates to slower
responding
Although we did not find a significant increase in pre-SMA

theta power during response conflict (p ¼ .093; see 3.2.3), we

had a priori predictions about the role of pre-SMA theta power

in response conflict, so we conducted exploratory analyses to

test the relationship between increased pre-SMA theta and

behavior. Using a linear mixed model with log-transformed

RT as the dependent variable, we found a significant interac-

tion between pre-SMA theta power and response conflict on

RT (X2(1) ¼ 4.24, p ¼ .039). For trials with no response conflict,

there was a significant relationship between increased pre-
SMA theta and longer RTs (Z ¼ 3.30, p ¼ .001). For trials with

response conflict, there was no significant relationship be-

tween pre-SMA theta and RT. We found no significant re-

lationships between pre-SMA theta power and response

accuracy.

3.3.3. Increased R-IFG and L-IFG theta power relates to more
error in responding
Lastly, given that we saw increased R-IFG and L-IFG theta

power for trials with stronger response conflict (3.2.4), we

sought to test whether this increase related to behavior. We

found no significant relationships between R-IFG or L-IFG

theta and RT. Using generalized linear mixed models with a

binomial distribution and response (0 ¼ incorrect, 1 ¼ correct)

as the dependent variable, we found a significant interaction

between R-IFG theta and response conflict on response accu-

racy (X2(1) ¼ 6.23, p ¼ .012). For trials with response conflict,

there was a significant relationship between increased R-IFG

theta and more error in responding (Z ¼ �4.51, p < .0001), and

no significant relationship for trials with no response conflict.

We also found a significant main effect of L-IFG theta on

response accuracy (X2(1) ¼ 4.77, p ¼ .029, d ¼ .06), where

increased L-IFG theta related to more error in responding for

trials with response conflict (Z ¼ �2.18, p ¼ .03) and trials

without response conflict (Z ¼ �2.34, p ¼ .019).
4. Discussion

We found support for our theoretically driven, a priori hy-

pothesis about the recruitment of R-IFG beta during response

conflict. We hypothesized that response switching is a

generalized form of stopping and therefore would recruit the

previously defined R-IFG beta-triggered inhibitory control

network during response conflict. A small number of studies

have directly implicated R-IFG activity using response con-

flict paradigms (Forstmann et al., 2008a, 2008b; Neubert et al.,

2010). However, these studies have not used high spatial and

temporal resolution neuroimaging as afforded by head-cast

hpMEG. Increased R-IFG beta activity is usually simply

interpreted as a marker of successful response inhibition in

the stop-signal task (Schaum et al., 2021; Swann et al., 2009;

Wagner et al., 2018). It has been proposed that beta-band

communication from R-IFG to STN to M1 stops motor

output (see Aron et al., 2016; Hannah et al., 2021), which is

supported by increased STN beta power during successful

stopping (Bastin et al., 2014; Ray et al., 2012). One notable

computational framework (Wiecki & Frank, 2013) posits that

mechanisms of response inhibition are important to over-

come response conflict, such that one needs to inhibit an

incorrect prepotent response tendency in order to execute

the correct response in a conflict scenario. This idea has been

supported by various empirical studies (Brittain et al., 2012;

Forstmann et al., 2008a, 2008b; Neubert et al., 2010; Wessel

et al., 2019), but until now, there has been no direct empir-

ical evidence to support R-IFG beta (i.e., a marker of response

inhibition in the action-stopping literature) during response

conflict and action switching.

Importantly, we found here that low beta power in R-IFG

was significantly increased on trials with response conflict
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compared to trials without response conflict. Previous elec-

trophysiological work has shown that the right prefrontal beta

marker of successful response inhibition during stopping oc-

curs in the lower part of the beta band (Engel & Fries, 2010;

Schmidt et al., 2019; Wagner et al., 2018), and our results

regarding the significance of low beta, not high beta, are

consistent with this. Notably, we did not see any significant

increases in beta power in L-IFG. This is a strong control region

for R-IFG because it is an anatomically matched prefrontal

region, but one that is not hypothesized to be a node in the

putative inhibitory control network. Another compelling

component of this result is that this R-IFG low beta increase

during response conflict was specific to trials with stronger

response conflict. R-IFG beta power significantly increased for

high coherence response conflict trials, increased for medium

coherence response conflict trials but was not significant, and

did not increase for low coherence response conflict trials. We

predicted that punctate response inhibition (plausibly via R-

IFG beta power) might be necessary when the incorrect

response tendency is most prepotent (i.e., during strong con-

flict trials), and our results support this idea. Supporting this

further, we found a significant relationship between R-IFG low

beta power and less error in responding. This analysis looks at

endogenous trial-by-trial fluctuations in beta within response

conflict or no response conflict trials. This relationship was

only significant on trials with no response conflict. Taken

together, these results support a potential inhibitory control

role for R-IFG beta in overcoming response conflict, though the

trial-by-trial relationship between R-IFG beta and behavioral

performance should continue to be investigated in future

studies.

Additionally, in line with previous literature we second-

arily predicted that pre-SMA theta power would increase

during response conflict. We hypothesized that pre-SMA is a

central region for overcoming response conflict, supported by

findings in humans and non-human primates (Garavan et al.,

2003; Isoda & Hikosaka, 2007; Nachev et al., 2005; Neubert et

al., 2010). Electrophysiology studies have shown increased

mPFC theta in response conflict paradigms (Wessel et al.,

2019; Zavala et al., 2018), which plausibly originates from

pre-SMA. However, in our current study, we found that after

the imperative cue and prior to the average RT, there was only

a trend of an increase in pre-SMA theta power during trials

with response conflict, but this did not reach significance. In

an exploratory analysis, we found a significant relationship

between pre-SMA theta power and slower RTs, which aligns

with a framework implicating pre-SMA theta in pausing

motor output (see Wiecki & Frank, 2013; Aron et al., 2016).

However, this relationship was only significant for trials with

no response conflict, which may reflect possible differences

between pre-SMA coding of classic sensorimotor conflict

versus response conflict or potentially ceiling effects on high

conflict trials. Additionally, in the current study we found that

theta power in R-IFG and L-IFG significantly increased for

stronger (i.e., medium or high coherence) conflict trials. This

indicates a lack of regional specificity for theta activity which

we did not initially predict. This could reflect the high SNR in

our data, and could suggest a broader recruitment of cortical

theta during response conflict than has previously been re-

ported. In exploring the potential role of this recruitment of
IFG theta in response conflict, we found that increased theta

power in R-IFG and L-IFG significantly related to more error in

responding on trials with response conflict. Overall, it is

interesting to note that the theta effect appeared less localized

to medial PFC than suggested by previous literature and in

comparison to the beta effect. Future work could investigate

this explicitly, as well as interactions between the theta and

beta signals and their behavioral outcomes (notably their

dissociable relationships with RT versus accuracy shown

here) under different types of conflict.

Some limitations of our study merit explicit discussion. We

analyzed hpMEG data collected from a small cohort of 8 sub-

jects. Although this is a relatively low number of human

subjects, the hpMEG data was recorded across multiple ses-

sions per subject affording high numbers of trials per subject

(total trials n ¼ 10,496) and had high SNR. Subject-specific

head-cast hpMEG allows for low within-subject movement,

which supports data analysis that models both within- and

between-subject variance (rather than averaging within-

subject), and allows for inferences regarding within-subject

trial-by-trial neural correlates. This approach was also sup-

ported by strong a priori hypotheses that were directly tested

here. A possible limitation of the paradigm is that subjects

always responded to the imperative cue with their right hand.

Therefore, it is possible (albeit unlikely) that this resulted in a

lateralization of the low beta increase during response con-

flict. However, if lateralization of motor responses caused

lateralization in neural responses, we would expect these to

be contralateral (i.e., L-IFG for right hand); the opposite is

found here. Additionally, the main finding in which we report

a difference across trial types (i.e., response conflict versus no

response conflict, mediated by coherence), cannot be

explained by hand laterality. Consequently, we propose that

the lateralization of our R-IFG findings is unlikely to be

strongly attributable to response execution being restricted to

the right hand.

In exploring relationships between trial-by-trial fluctua-

tions in neural activity and behavioral performance on the

response conflict task, we found a significant relationship

between R-IFG low beta power and less error in responding.

However, this relationship was only significant for trials

without response conflict, and not significant for trials with

response conflict. Notably, the generalized linear mixed

model that we used for this analysis did not include coherence

as a fixed effect. This is because models with coherence as a

fixed effect interaction term included did not converge, plau-

sibly because there were so few errors made in the paradigm.

We saw in our main neural analysis a significant interaction

between response conflict and coherence on neural activity,

so it is possible that not being able to include this in our

behavioral analysis restricted our ability to detect the com-

plete relationship between R-IFG beta and performance for

trials with response conflict. Additionally, a ceiling effect for

R-IFG beta activity on trials with response conflict may have

impacted our analysis. Future work with other response

conflict paradigms, including those that induce higher error

rates, can further probe the relationship between R-IFG beta

and behavior.

Lastly, we estimated the effect size of the main effects in

our mixed models using a formula for Cohen’s d (Brysbaert &
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Stevens, 2018). Notably, few papers report effect sizes in

source-localized time-frequency M/EEG analyses on within-

subject cognitive electrophysiology using trial-by-trial ana-

lyses (e.g., Larson & Carbine, 2017; Tinga et al., 2019). A recent

systematic review of source M/EEG data reported ~55% Hed-

ges’ g values (interpreted similarly to Cohen’s d) less than .3

(i.e., small by convention), with ~76% less than .5 (i.e., small-

medium by convention) (Dharan et al., 2021). This suggests

that our effect size estimates may be comparable to other

studies using time-frequency transforms of source-level

electrophysiology, but awaits further reporting of future ef-

fect size estimates in comparable studies for complete

contextualization.
5. Conclusions

In conclusion, we analyzed hpMEG data with high spatial and

temporal resolution recorded during a response conflict

paradigm, and found support for a theoretically driven hy-

pothesis about the recruitment of R-IFG beta during response

conflict. In a novel result, we showed that R-IFG low beta

power was significantly increased for response conflict trials,

specifically strong response conflict trials which plausibly

require mechanisms of punctate response inhibition for cor-

rect responding. We found a significant trial-by-trial rela-

tionship between R-IFG beta power and less error in

responding, although this was only significant for trials with

no response conflict. Future work using methods such as TMS

or neurofeedback can further establish the causal role of R-IFG

beta power in response conflict resolution. Overall, our results

support R-IFG beta as a neural mechanism of overcoming

response conflict, in addition to action-stopping. This

broadens the role for R-IFG beta as a domain general inhibitory

control signal, which may have clinical implications for pop-

ulations with inhibitory control deficits.
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