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aWellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) and Department of Computer Science, University College London, London, 
UK; bFetal Medicine Unit, University College London Hospital, London, UK; cDepartment of Development and Regeneration, University Hospital 
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ABSTRACT
Fetoscopic laser photocoagulation is used to treat twin-to-twin transfusion syndrome; however, this 
procedure is hindered because of difficulty in visualising the intraoperative surgical environment due to 
limited surgical field-of-view, unusual placenta position, limited manoeuvrability of the fetoscope and 
poor visibility due to fluid turbidity and occlusions. Fetoscopic video mosaicking can create an expanded 
field-of-view image of the fetoscopic intraoperative environment, which could support the surgeons in 
localising the vascular anastomoses during the fetoscopic procedure. However, classical handcrafted 
feature matching methods fail on in vivo fetoscopic videos. An existing state-of-the-art method on 
fetoscopic mosaicking relies on vessel presence and fails when vessels are not present in the view. We 
propose a vessel-guided hybrid fetoscopic mosaicking framework that mutually benefits from a placental 
vessel-based registration and a deep learning-based dense matching method to optimise the overall 
performance. A selection mechanism is implemented based on vessels’ appearance consistency and 
photometric error minimisation for choosing the best pairwise transformation. Using the extended 
fetoscopy placenta dataset, we experimentally show the robustness of the proposed framework, over 
the state-of-the-art methods, even in vessel-free, low-textured, or low illumination non-planar fetoscopic 
views.
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1. Introduction

Twin-to-twin transfusion syndrome (TTTS) is a rare foetal anom-
aly that affects the twins sharing a monochronic placenta. It is 
caused by abnormal placental vascular anastomoses on the 
placenta, leading to uneven flow of blood between the two 
foetuses (Baschat et al. 2011). Fetoscopic Laser 
Photocoagulation (FLP) is used to treat TTTS; however, this 
procedure is hindered because of difficulty in visualising the 
intraoperative surgical environment due to limited surgical 
field-of-view (FoV), unusual placenta position, limited man-
oeuvrability of the fetoscope and poor visibility due to fluid 
turbidity and occlusions (as shown in Figure 1).

This adds to the surgeon’s cognitive load and may result in 
increased procedural time and missed treatment, leading to 
persistent TTTS. Fetoscopic video mosaicking can create 
a virtual expanded FoV image of the fetoscopic intraoperative 
environment, which may provide computer-assisted interven-
tions support in localising the vascular anastomoses during the 
FLP procedures.

Several techniques have been proposed in the literature for 
fetoscopic mosaicking (Reeff et al. (2006); Daga et al. (2016); 
Gaisser et al. (2018); Tella-Amo et al. (2019); Bano et al. (2020b, 
Bano et al. 2021, Bano et al., Bano et al. 2019 Bano et al. 2020a, 
Bano et al. 2022); Alabi et al. (2022); Casella et al. (2022)), each 
having their own strength and weaknesses, however, the 
majority of them were unable to overcome the existing chal-
lenges in fetoscopic videos that hinders robust mosaicking. 

Classical video mosaicking methods (Reeff et al. 2006; Daga 
et al. 2016) that used handcrafted features (e.g. SIFT, SURF) 
perform poorly on in vivo fetoscopic videos due to low resolu-
tion, poor visibility, honeycomb or blur effect due to fibre- 
based fetoscope, floating particles and texture paucity or repe-
titive texture challenges that inherently exists in fetoscopy. 
Hence, classic computer vision methods for video mosaicking 
are not suitable for fetoscopic video mosaicking. Fusion of 
visual tracking with electromagnetic pose sensing has also 
been studied, but only in ex vivo experiments (Tella-Amo 
et al. 2018, 2019). A direct registration method for mosaicking 
has also presented which was only validated on a single in vivo 
fetoscopic video (Peter et al. 2018). Recently, deep learning- 
based methods have also been reported (Bano et al. 2019,  
2020b); Alabi et al. (2022); Casella et al. (2022)) for fetoscopic 
video mosaicking. (Bano et al. 2019, 2020b)) approach 
restricted the model to estimate only euclidean transformation, 
thus bounding the drifting error that led to inaccuracies. 
A recent intensity-based image registration (Bano et al. 2020a) 
method relies on placental vessel segmentation maps for regis-
tration. This method facilitated in overcoming some visibility 
challenges, but it failed when the predicted segmentation map 
was inaccurate or inconsistent across frames, or in views with 
thin or no vessels. Recent computer vision literate has intro-
duced deep learning-based interest point descriptors (Sarlin 
et al. 2020) and detector-free dense feature matching (Sun 
et al. 2021) techniques, showing robustness in multiview 
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feature matching. Such techniques can be explored for feto-
scopic mosaicking to improve the performance of fetoscopic 
mosaicking.

To overcome the existing literature limitations, we propose 
a vessel-guided hybrid framework for creating robust and reli-
able mosaics. The framework optimises the performance by 
fusing the state-of-the-art in fetoscopic mosaicking and com-
puter vision, namely, vessel-based registration (Bano et al.  
2020a) and detector-free local feature matcher (Sun et al.  
2021) for registration methods, respectively. Our framework 
introduces a selection mechanism based on appearance con-
sistency of placental vessels and photometric error minimisa-
tion for choosing the best pair-wise transformations. Through 
both qualitative and quantitative comparison performed using 
the extended fetoscopy placenta dataset (Bano et al. 2020a), we 
show the robustness of the proposed framework over the 
existing methods. Our key contribution lies in proposing 
a mosaicking framework for computer-assisted intervention 
application which is robust even in the absence of vessels and 
presence of heavy floating particles, low illumination, non- 
planar views and spotlight light source. The existing fetoscopic 
mosaicking methods do not show robustness to all these chal-
lenging conditions in a single framework. The proposed hybrid 
framework brings us closer towards translating the fetoscopic 

mosaicking framework into clinical settings, which in turn could 
help in reducing surgeon’s cognitive load during fetoscopic 
procedures.

2. Method

The proposed framework consists of two parallel registration 
methods, namely, placental vessel-based direct registration 
(Bano et al. 2020a) and detector-free dense (LoFTR) matcher 
(Sun et al. 2021) as shown in Figure 2. Each method performs 
matching of two consecutive frames It and Itþ1 followed by 
their registration for estimating pairwise transformations 
Ht;tþ1

V and Ht;tþ1
L from the vessel-based and the dense matcher 

methods, respectively. A vessel-guided transformation selec-
tion strategy is then proposed that also minimises the photo-
metric errors, thus enabling robust mosaicking. The proposed 
framework allows generation of mosaics from long fetoscopic 
video sequences without drift accumulation.

2.1. Placental vessels registration

Placental vessel segmentation allows overcoming visibility- 
related challenges such as moving occlusions (floating amniotic 
fluid particles) and specular view-dependent illumination that 

Figure 1. Illustration of a fetoscopic laser photocoagulation surgery (left) in which a fetoscope is inserted into the amniotic cavity and is used to localize and ablate the 
vascular anastomoses sites. The current fetoscopic field-of-view (right) is limited and contains occlusion due to the presence of fetus and floating amniotic fluid 
particles.

Figure 2. The proposed framework first estimates the affine transformations Ht;tþ1
V and Ht;tþ1

L between RGB frames (It , Itþ1) using vessel-based registration and LoFTR- 
based dense feature matches’ registration, respectively. Photometric errors (EVð_It; ItÞ, EVð _St; StÞ) between RGB It and reprojected _It frames and between vessel map St 

and reprojected vessel map _St are computed, respectively. Likewise, ELð_It; ItÞ, ELð_St; StÞ are computed for the LoFTR-based transformation estimate Ht;tþ1
L . The best 

estimate (Ht;tþ1
F ) is then selected based on vessel segmentation consistency and minimum photometric errors. Finally, pairwise transformations are sequentially 

registered to form an expanded FoV image.
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can result in inaccurate feature matches. We utilise the placen-
tal vessel segmentation and registration method from (Bano 
et al. 2020a) as this is the state-of-the-art method in in vivo 
fetoscopic mosaicking.

Given two consecutive frames It and Itþ1, a UNet 
(Ronneberger et al. 2015) with ResNet50 (He et al. 2016) back-
bone, pretrained on the fetoscopy placenta dataset1, is used 
for obtaining the predicted vessel maps St and Stþ1. Similar to 
(Peter et al. 2018; Bano et al. 2020a), the registration between 
It and Itþ1 is approximated with an affine transformation, as 
the use of projective transformations in fetoscopy data has 
empirically been shown to lead to poor results. This is because 
fetoscopic scene is only piece-wise planar. Intensity-based 
direct registration is applied using a pyramidal Lucas-Kanade 
framework that minimises the photometric error between St 

and Stþ1 through Levenberg-Marquardt optimisation. 
A circular FoV mask of the fetoscopic image is used to perform 
registration while neglecting the black background regions. 
This gives the estimated affine transformation Ht;tþ1

V between 
It and Itþ1.

Since the placental vessel-based registration method is dri-
ven by predicted vessel maps, it tends to fail when the pre-
dicted maps are inaccurate or inconsistent across frames or in 
views with thin or no vessels.

2.2. Detector-free dense feature matching for 
registration

Unlike classical feature matching methods that perform feature 
detection and description followed by their matching, the 
recently proposed LoFTR (Sun et al. 2021) method takes 
a hierarchical approach and first establishes pixel-wise dense 
matches at a coarse level and later refines the good matches at 
a fine level.

Given It and Itþ1, a standard convolutional neural network 
architecture is used to extract dense features at coarse and fine 
levels from both frames. Coarse local features are fed into the 
LoFTR module, which uses a transformer with positional encod-
ing, and self and cross-attention layers to transform coarse 
features into position and context dependent local feature 
descriptors. A confidence matrix is obtained by matching 
these descriptors using a differentiable matching layer. 
Matches in the confidence matrix that are higher than 
a predefined threshold and that satisfy the mutual nearest 
neighbour criteria are selected as coarse-level matches. 
Coarse to fine feature matches Mf are then obtained by taking 
a local window size from fine-level features at each coarse 
match positions and applying the LoFTR module to it. For 
more detail, refer to (Sun et al. 2021), in which it is shown 
that LoFTR produces high-quality matches even in regions 
with low-textures, motion blur or repetitive patterns; making 
it an ideal matching module for fetoscopic mosaicking.

For registration, a circular mask covering only the fetoscopic 
FoV is first used to obtain matches M0

f
only in the visible 

fetoscope region. Registration is then approximated as an 
affine transformation using the RANdom SAmple Consensus 
(RANSAC) method. The obtained transformation is refined by 
using only the inliers with Levenberg-Marquardt optimisation 

that further reduces the transformation error. This gives the 
affine transformation estimate Ht;tþ1

L that defines the alignment 
between It and Itþ1 through the LoFTR-based matching.

We note through empirical experimentation that LoFTR 
matching is affected by the light source intensity and the 
resulting view-dependent reflectance in the surgical scene 
that can result in drift error during sequence registration.

2.3. Vessel-guided transformation selection

Vessel-guided transformation selection aims at finding the best 
affine transformation from Ht;tþ1

V and Ht;tþ1
L based on the ves-

sels’ appearance consistency, percentage of vessels with 
respect to the fetoscopic FoV and minimum reprojection 
error. Let _It ¼ Ht;tþ1Itþ1 be the reprojected frame obtained by 
warping Itþ1 using the estimated transformation Ht;tþ1. The 
photometric error between _It and It is obtained using, 

Eð_It; ItÞ ¼
1
n

Xn

i¼1

j_It
i � It

i j; (1) 

where n is the total number of pixels in a frame. Four photo-
metric errors are computed using the input frames, segmenta-
tion maps and two estimated transformations. EVð_It; ItÞ

measures the photometric error between It and reprojected _It 

obtained using Ht;tþ1
V . Likewise, EVð _St; StÞ, ELð_It; ItÞ and ELð _St; StÞ

are computed (as shown in Figure 2).
A rule-based strategy is defined for transformation selection 

based on the qualitative observations made from the vessel- 
based and LoFTR matcher-based registration methods. Let xtþ1 

denotes the percentage of vessel class pixels with respect to 
the total number of pixels in the FoV mask in Stþ1. And ytþ1 

denotes the percentage difference between vessel class pixels 
in St and Stþ1. We empirically found that vessel consistency can 
be guaranteed by ensuring xtþ1 > 15% and ytþ1 < 25% of xtþ1. 
In pairs of frames where vessels are consistent across frames, 
the affine transformation estimate from the method that gives 
the lowest errors between EVð _St; StÞ and ELð _St; StÞ) is selected as 
the final transformation Ht;tþ1

F . When the vessel consistency 
conditions are not satisfied, error measurements based on 
vessel maps become inaccurate. In this case, we select the 
transformation estimate of the method that reports lower 
among EVð_It; ItÞ and ELð_It; ItÞ errors.

2.4. Sequential registration

Once the pairwise transformations are obtained, next step is to 
compute the relative transformations with respect to 
a reference frame for mosaic generation. The relative transfor-
mation of Il with respect to a reference frame Ik is computed by 
applying left-hand matrix multiplication, 

Hk;kþl
F ¼

Ykþl� 1

i¼k

Hi;iþ1
F : (2) 

where l > k and l is the length of the fetoscopy sequence. This 
gives an expanded FoV image of the placental surface. To 
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Figure 3. Qualitative comparison of the proposed hybrid framework (third row) with the vessel-based (Bano et al. 2020a) (first row) and LoFTR (Sun et al. 2021) (second 
row) matcher-based methods using the extended fetoscopy placenta dataset. We can visually observe that the hybrid framework is robust even in the absence of 
vessels and non-planar views. Refer to the supplementary material for video-based comparison.

Figure 4. Quantitative comparison of the proposed hybrid framework with the vessel-based (Bano et al. 2020a) and LoFTR (Sun et al. 2021) matcher-based methods 
using the N-frame SSIM metric. Note that hybrid selects the best affine transformation from both vessel-based and LoFTR matcher-based methods, and does not 
accumulate drifting error.
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create seamfree mosaics, blending is applied using the 
Enblend2 software.

3. Dataset and experimental setup

For experimental analysis, we use an extended version of the 
publicly available fetoscopy placenta dataset that was intro-
duced in (Bano et al. 2020a). In the extended version, each 
video sequence contains an additional 100 frames. The dataset 
contains six in vivo fetoscopic video sequences from six differ-
ent FLP procedures. The addition of 100 extra frames in each 
sequence resulted in frames having either weak or no vessels. 
The number of frames in each video are reported in Figure 3. 
We note that there are large inter and intra-case variabilities in 
the fetoscopic videos. These videos are of varying visual quality 
having low resolution, poor visibility due to floating amniotic 
fluid particles and artefacts due to spotlight source, texture 
sparsity and non-planar views (Video 3 and 5) due to anterior 
placenta imaging.

Since the ground-truth transformations are not available for 
in vivo fetoscopy, we use the quantitative metric, referred as N- 
frame SSIM, proposed by (Bano et al. 2020a). The N-frame SSIM 
quantifies the accumulated drift error in N frames by comput-
ing the structural similarity index measure (SSIM) between the 
current frame and warped frame at N frame distance. N can take 
values from 2 to 5 frames. For comparison, we report the 1 to 
5-frame distance SSIM for the state-of-the-art vessel-based 
(Bano et al. 2020a), LoFTR (Sun et al. 2021) matcher-based 
and the proposed hybrid methods in Figure 4. Additionally, 
we present the qualitative results in Figure 3. These results 
are discussed in detail in Sec. 4.

The segmentation model is implemented in PyTorch and 
trained on the vessel segmentation dataset using the same 
hyperparameters reported in (Bano et al. 2020a) and on 
a single Tesla V100-DGXS-32GB GPU of an NVIDIA DGX- 
station. For LoFTR matcher, we use the pretrained model 
(trained on the ScanNet dataset (Dai et al. 2017)) for obtaining 
the fine-level matches between two consecutive frames. We 
observe that matches returned through this network on feto-
scopy data are already robust and repeatable. Retraining or 
fine-tuning of this network on fetoscopy data was not possible 
because of the lack of ground-truth data.

4. Results and discussion

Qualitative and quantitative comparisons are presented in 
Figure 3 (refer to the supplementary video) and Figure 4, 
respectively, using the 6 in vivo fetoscopy videos from the 
extended fetoscopy placenta dataset. Note that classical fea-
ture matching based (Reeff et al. 2006; Daga et al. 2016) and 
RGB intensity based (Bano et al. 2020a) techniques do not work 
on fetoscopic videos (as mentioned in Sec. 1). Hence, compar-
ison is mainly performed with the existing state-of-the-art 
method (Bano et al. 2020a) of fetoscopic mosaicking.

From Figure 3, we observe that the vessel-based method 
outperformed in Video 1 and 2 due to strong vessel appearance 
in these videos. LoFTR matcher-based also performed well, but 
introduced some registration errors (marked with red circle in 
Figure 3). Our proposed hybrid method converged towards 

selecting the transformations from the vessel-based method 
because of the consistent appearance and dominant presence 
of vessels throughout these videos. Video 3 to Video 6 show 
more challenging scenarios where the vessels are either very 
thin (video 3 and 6) or thick (close-up view in Video 4) or are not 
present in some frames. Moreover, Video 3 and 5 shows an 
anterior placenta, making these views highly non-planar. This 
negatively influenced the vessel-based method, resulting in 
increase drifting errors and tracking failures in Video 3, 4, 5 
and 6 at frame 110th, 105th, 160th and 145th, respectively. The 
errors are mostly because of insufficient vessels present in the 
scene or false negative in predicted vessel maps where the 
segmentation network failed to properly segment thin vessels. 
On the other hand, LoFTR matcher-based provided stable 
mosaics, but resulted in some inconsistencies in registration 
(marked with red circle in Figure 3). Our hybrid approach 
optimise itself to select the best from the two methods, 
hence the registration error are visibility reduced, giving reli-
able mosaics.

The quantitative results presented in Figure 4 shows the 1- 
to 5-frame SSIM measurements for the three methods under 
comparison on the six in vivo video clips. We make similar 
observations from here as that of Figure 3, where performance 
of all the methods is comparable in Video 1 and Video 2. Vessel- 
based registration failed for some frames in Video 3 to Video 6, 
hence we can observe low SSIM values with increasing frame 
distance. This also shows that the drifting error is large in Video 
3 to Video 6 for the vessel-based methods. In these videos, we 
observe significantly low interquartile range and high median 
5-frame SSIM for LoFTR matcher-based and hybrid methods 
compared to the vessel-based method. Hybrid method perfor-
mance is significantly better in Video 3 than the LoFTR matcher- 
based method, and is comparable to LoFTR matcher-based in 
Video 4 to Video 6. This is because the majority of the pair-wise 
transformations from LoFTR-based are better than the vessel- 
based in these videos.

The experimental results show that the proposed vessel- 
guided hybrid framework is optimised to select the best pair- 
wise transformations from the vessel-based and LoFTR 
matcher-based methods, overcoming the limitations of these 
methods. As a result, the proposed hybrid framework is robust 
even in the absence of vessels and presence of heavy floating 
particles, low illumination, non-planar views and spotlight light 
source. Our method significantly advances the literature of 
fetoscopic mosaicking, and paves the way towards translating 
such a framework into clinical settings for assisting surgeons 
during fetoscopic procedures. Future work involves further 
reducing the registration error through loop closure and bun-
dle adjustment (Li et al. 2021), designing a real-time application 
based on the hybrid approach and testing its usability through 
in-lab and clinical trails.

5. Conclusions

We propose a vessel-guided hybrid fetoscopic video mosaick-
ing framework for generating reliable virtual expanded field-of- 
view image of the intraoperative fetoscopic environment. The 
proposed framework benefited from both placental vessel- 
based registration (Bano et al. 2020a) method and detector- 
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free feature matching with transformers (LoFTR) (Sun et al.  
2021) method used as a robust matcher for registration, result-
ing in overcoming the limitations of individual methods. Using 
an extended version of the publicly available fetoscopy pla-
centa dataset (Bano et al. 2020a), we experimentally showed 
that the proposed hybrid framework optimised itself to select 
the best pair-wise transformations from the two methods, 
hence showing significant performance improvement over 
the existing state-of-the-art (Bano et al. 2020a) on fetoscopic 
mosaicking. The proposed framework is robust even in vessel- 
free, low-textured or low illumination non-planar views, which 
shows its potential towards clinical translation for assisting the 
surgeons during the TTTS procedure.

Notes

1. Fetoscopy Placenta Dataset: https://www.ucl.ac.uk/interventional- 
surgical-sciences/fetoscopy-placenta-data.

2. Enblend: http://enblend.sourceforge.net/.
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