Computational fluid dynamics simulations of phase separation in dispersed oil-water pipe flows

Jianhua Chena,d, Charitos Anastasioub, Sibo Chengc, Nausheen Mehboob Bashaa, Lyes Kahouadjia, Rossella Arcuccic,e, Panagiota Angelib,⇑ Omar K. Matara,n

aDepartment of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
bThAMeS Multiphase, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
cData Science Institute, Department of Computing, Imperial College London, London SW7 2AZ, United Kingdom
dState Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
eDepartment of Earth Science & Engineering, Imperial College London, London SW7 2AZ, United Kingdom

HIGHLIGHTS

- Investigate separation characteristics by CFD simulations in concert with experiments.
- Find the sensitivity of the blending treatment in the solver.
- Emphasise the impact of the dense packed layer (DPL) and phase inversion on phase separation.
- Reveal the influence of the turbulent dispersion force on the flow pattern.
- Identify the feasibility of modelling the continuous phase diameter to improve the prediction.

GRAPHICAL ABSTRACT

ABSTRACT

The separation of liquid–liquid dispersions in horizontal pipes is common in many industrial sectors. It remains challenging, however, to predict the separation characteristics of the flow evolution due to the complex flow mechanisms. In this work, Computational Fluid Dynamics (CFD) simulations of the silicone oil and water two-phase flow in a horizontal pipe are performed. Several cases are explored with different mixture velocities and oil fractions (15%-60%). OpenFOAM (version 8.0) is used to perform Eulerian-Eulerian simulations coupled with population balance models. The ‘blending factor’ in the multiphaseEulerFoam solver captures the retardation of the droplet rising and coalescing due to the complex flow behaviour in the dense packed layer (DPL). The blending treatment provides a feasible compensation mechanism for the mesoscale uncertainties of droplet flow and coalescence through the DPL and its adjacent layers. In addition, the influence of the turbulent dispersion force is also investigated, which can improve the prediction of the radial distribution of concentrations but worsen the separation characteristics along the flow direction. Although the simulated concentration distribution and layer heights agree with the experiments only qualitatively, this work demonstrates how improvements in drag and coalescence modelling can be made to enhance the prediction accuracy.

⇑Corresponding authors.
E-mail addresses: p.angeli@ucl.ac.uk (P. Angeli), o.matar@imperial.ac.uk (O.K. Matar).
1. Introduction

Liquid–liquid two-phase flows are widely encountered in the chemical and energy industries but it remains challenging to predict the flow patterns and separation characteristics. This is due to multiple controlling factors such as operating conditions, geometrical parameters, and physical properties such as density, viscosity, and interfacial tension (Ahmed and John, 2018; Kamp et al., 2017). Nevertheless, flow patterns in horizontal pipes have received considerable attention, and several regimes have been identified by different researchers (Trallero, 1995; Angeli, 1996; Angeli and Hewitt, 2000; Nädler and Mewes, 1997; Brauner, 2001; Xu, 2007; Ibarra et al., 2015). Although there have been slight differences in their identification nomenclatures, in general, three flow patterns might be observed: separated (or stratified) flow, fully dispersed flow (interchangeable role of the two phases), and semi-dispersed or semi-continuous flow with various sub-modes in terms of mixing layers and intermittent interfaces. In horizontal pipe separators of initially dispersed oil-in-water two-phase flows, four layers might be observed from the top of the pipe: coalesced continuous oil, dense packed layer (DPL), flotation layer, and continuous water. The rate of flotation depends on the droplet size and the holdup of the dispersed phase. If droplet flotation is faster than drop-interface coalescence, the droplets will accumulate in the dense-packed zone, in which the droplet size grows due to coalescence. The interfacial coalescence rate depends on the final droplet size and height of the DPL. In contrast, binary drop or drop-drop coalescence hardly occur in the flotation layer.

There are many experimental studies on coalescence for oil–water systems. Dong et al. (2019) studied the coalescence between a droplet and the liquid interface of its continuous homophase by using a planar laser-induced fluorescence (PLIF) technique and a fluorescent surfactant. Wetheliye et al. (2017) studied the droplet coalescence with a flat interface in the presence of surfactants by using Particle Image Velocimetry (PIV). Ismail et al. (2015) summarized typical experimental systems of oil–water flows in horizontal pipes. Khatri et al. (2011) reported that surfactant can increase the emulsion stability and reduce the coalescence rate. Schumann et al. (2016) utilized a focused beam reflectance measurement probes (FBRM) to measure the droplet size distribution in water-in-oil dispersed flow in a 10 cm-ID horizontal pipe. They found that droplet size profiles in water-in-oil dispersions show a stratification over the cross-section, which is different from oil-in-water dispersions. Yu et al. (2020) developed a method of swept-frequency ultrasound attenuation to measure the oil fraction in pipes. Nguyen et al. (2017) conducted experimental and modeling studies of droplet deposition and coalescence in curved pipes, and employed an empirical correlation for droplet size distribution.

In order to describe and predict the dynamics of the layers that form when dispersed liquid–liquid flows separate, in either batch separators or continuous flow pipes, modeling work can be carried out (e.g., Hartland and Jeelani, 1988; Jeelani and Hartland, 1998; Jeelani et al., 1999; Henschke et al., 2002; Pereyra et al., 2013; Weber, 2021), and population balance equations (PBE) can be used to incorporate the effects of droplet size distribution (Cunha et al., 2008; Grimes, 2012; Grimes et al., 2012). Hu et al. (2006) developed a method to predict phase inversion in liquid–liquid flows by combining an equal surface energy criterion with PBE modelling. Weber (2021) also proposed energy consumption as a criterion for modeling liquid–liquid separation or other gravity-driven multiphase flows. Kopriva et al. (2012) reviewed drop-population balance models for extraction columns, which can be
relevant for horizontal pipes. According to previous works, the separation is influenced by the droplet coalescence rate, especially in the DPL.

The influence of the DPL needs special consideration in the modeling work. For instance, Cunha et al. (2008) assumed the interfacial coalescence rate is proportional to the height of DPL while Grimes (2012) calculated the interfacial coalescence time from appropriate film drainage models which would be specific to the studied systems. Lobo et al. (1993) proposed a film drainage time model which depends on the buoyancy force in the DPL with considerable thickness, and a coalescence model for small droplets (< 100 μm). The DPL behaviour has also attracted research attention in gas–liquid flow systems, such as in the metallurgical slag foaming processes (Wang et al., 2020) and in the CANMET reactors (Guitian and Joseph, 1998), where the foam layer can significantly impact the process safety and efficiency.

Computational fluid dynamics (CFD) has been used to study the flow and separation behaviour of oil–water dispersed flows (Laleh et al., 2012; Oshinowo et al., 2016), and the population balance model (PBM) has been used widely to describe the droplet size distribution (Kharoua et al., 2013; Oshinowo et al., 2016). Oshinowo and Vilagines (2020) simulated water-in-oil emulsions by using an Eulerian multiphase model, where the emulsion viscosity depends on the local droplet size distribution, which permits the prediction of the DPL thickness. Panjwani et al. (2015) investigated the water-in-oil separation process by experiments and simulations and highlighted the DPL coalescence modeling. They adopted different sub-models for the sedimentation layer, the DPL, the binary coalescence, and the interfacial coalescence. They also pointed out that droplet movement in the DPL is dominated by the momentum exchange between the two phases. Therefore, in their work, an ad hoc modification of the drag force based on the Hartland-type model (Jeelani and Hartland, 1985) was used, and the binary coalescence kernels were closed by models (Grimes, 2012; Grimes et al., 2012), while interfacial coalescence was modeled by a water release rate and a phase inversion criterion.

Li and Christian (2017) studied droplet breakage and coalescence of turbulent liquid–liquid flows in stirred tank reactors, and used a multi-fractal model for breakage and coalescence through a variant of the quadrature method of moments, which was coupled to the PBM within a two-fluid model (TFM). Pouraria et al. (2021) simulated dispersed water–in-oil flow in horizontal pipes by using CFD-PBM and predicted the Sauter mean diameter well. In the simulation of emulsion in a rotor–stator device, the droplet breakage rate was corrected by a mesoscale model to improve the prediction of droplet size distribution (Chen et al., 2019). Eulerian simulations of liquid–liquid dispersions in pump facilities have also been reported (Valdés et al., 2021; Zhou et al., 2021), in which the PBM kernels were deliberately selected based on the specific platforms. In certain studies, coalescence is neglected in the CFD-PBM simulation of dilute or high-turbulence dispersions (Eskin and Vikhansky, 2019; Maluta et al., 2021). In addition, Shi et al. (2021) conducted a Volume-of-Fluid multiphase simulation of high viscosity ratio oil–water flows, which predicted the flow patterns well.

From the above literature review, it is clear that predicting the separation characteristics of oil–water dispersed flow, either in batch separators or in pipelines, remains a challenge. Batch mode mechanistic models usually require an input of key parameters that are specific to given systems. On the other hand, the CFD-PBM simulation provides a versatile framework, because of the layer-specific behaviour, e.g., mesoscale structures of packing droplets and draining films; the PBM kernels would also require parameter fittings for specific multiphase flow systems. In the present work, we carry out a study that employs OpenFOAM CFD simulations coupled to PBM. We demonstrate the use of the so-called ‘blending factor’ in multiphaseEulerFoam in modelling the retardation of drop rise and coalescence within the DPL and in capturing the separation characteristics of oil-in-water dispersed flows in horizontal pipes.

The rest of this paper is organised as follows. Section 2 presents the physical setup and the numerical method in detail. The results and discussion are presented in Section 3 focusing on the concentration profiles and layer heights of the separating flow, as well as the influence of the blending treatment and the turbulent dispersion force in the simulation. Finally, Section 4 gives concluding remarks of the present work.

2. Problem formulation and simulation methods

In this section, we provide details of the numerical methodology used to model the two-phase flow dynamics that accompany the separation of oil-and-water dispersed flows in horizontal pipelines. We begin by providing a concise description of the physical setup which is modelled in the present work; this setup is also used to generate the data utilised to inform and validate the numerical predictions.

2.1. Physical setup

The experiments were conducted with the flow rig developed by Voulgaropoulos (2018). The flow rig consisted of two horizontal 7 m long and 37 mm diameter (±0.3 mm) acrylic pipes which are connected by a U-bend. The oil phase was introduced to the pipe through a multi-nozzle inlet in order to create an oil-in-water dispersion. Conductivity measurements with dual-conductance probes were implemented at axial measuring locations (20D, 65D, 80D, 135D and 150D, where D is the pipe diameter) in the front pipe of the flow rig, to study the droplet size and layer evolution. Measurements were taken for every Δt = 0.054D in the vertical direction of the pipe cross-sectional, and the vertical time-averaged oil fraction profiles obtained from the conductance probes for Δt = 10 s were used in this work.

Several cases were explored with different mixture velocities (0.52 and 1.04 m/s) and input oil concentration (15%, 30%, 45% and 60%), and the experimental results of the oil concentration profiles and evolving layer heights were collected to validate the simulations; the parameters can be found in Tables 1 and 2. In Table 2, h₀, h₀₀ and h₀ₙ are the layer heights at the inlet for the continuous water, the continuous oil and the dense packed layer respectively. The last three columns of Table 2 show the measured Sauter mean diameter of the oil droplets at the inlet (x = 0), x = 65D, and x = 135D respectively. Layer boundaries were defined through the oil concentration profiles; following Voulgaropoulos (2018) the boundary for the DPL is set at 0.90 oil fraction.

2.2. Governing equations of the Eulerian framework

The oil and water phases are taken to be incompressible, Newtonian, and immiscible, of constant density and viscosity, and a well-defined interfacial tension. The equations of mass and momentum conservation are respectively expressed by

\[
\frac{\partial}{\partial t} (\epsilon_k \rho_k) + \nabla \cdot (\epsilon_k \rho_k \mathbf{U}_k) = 0, \quad (1)
\]

\[
\frac{\partial}{\partial t} (\epsilon_k \rho_k \mathbf{U}_k) + \nabla \cdot (\epsilon_k \rho_k \mathbf{U}_k \mathbf{U}_k) = -\epsilon_k \nabla p + \nabla \cdot (\epsilon_k \mathbf{t}_k) + \epsilon_k \rho_k \mathbf{g} + \mathbf{M}_k, \quad (2)
\]
where the subscript of $k = o, w$ represents the water and oil phases, respectively, and τ is the stress tensor:

$$
\tau_k = \mu_{eff} \left[\nabla U_k + (\nabla U_k)^T - \frac{2}{3} (\nabla \cdot U_k) I \right].
$$

(3)

The rate of momentum transfer per unit volume between the phases, M_k, consists of several terms that would be caused by drag, lift, virtual mass, turbulent dispersion, and wall lubrication forces:

$$
M_k = -M_o = M^D_o + M^L_o + M^{VM}_o + M^{TD}_o + M^{WL}_o.
$$

(4)

The individual terms can be expressed as below, and more details can be found from references (Deen et al., 2001; Lopez de Bertodano, 1992; Cheng et al., 2018):

$$
M^D_o = \frac{3}{4} \epsilon_o \rho_w \frac{C_D}{D_o} (U_{o} - U_{w})(U_{o} - U_{w}),
$$

(5)

$$
M^L_o = -\epsilon_o \rho_w C_L (U_{o} - U_{w}) \times (\nabla \times U_{w}),
$$

(6)

$$
M^{VM}_o = \epsilon_o \rho_w C_{VM} \frac{D(U_{o} - U_{w})}{D_t} - \frac{D(U_{o} - U_{w})}{D_t},
$$

(7)

$$
M^{TD}_o = -\rho_o k_{w} C_{TD} \nabla \epsilon_o,
$$

(8)

$$
M^{WL}_o = -\epsilon_o \rho_w \max \left(C_{w1} + C_{w2} \frac{R_o}{R_w} \right) \left[\frac{U_{w} - (U_{o} + n_w)}{R_o} \right] n_w, \quad \epsilon_0 > 0,
$$

(9)

where d_o and R_o are the oil droplet diameter and radius, respectively, n_w is the outward facing unit vector on the wall, and y is the distance from the wall. The drag coefficient C_D is calculated by the distorted droplet drag model from (Ishii and Zuber, 1979):

$$
C_D = \frac{2}{3} \left\{ \frac{\rho_w - \rho_o}{\sigma} \right\} \left[1 + \frac{17.67f(\epsilon_o)}{18.67f(\epsilon_o)} \right] ^2,
$$

(10)

$$
f(\epsilon_o) = \sqrt{1 - \epsilon_o}, \quad \frac{\mu_w}{\mu_o} = (1 - \epsilon_o)^{-2.5 (\mu_o + 0.4 \mu_w) / (\mu_o + \mu_w)},
$$

(11)

As discussed in Rusche (2003), the above equations for calculating the momentum exchange are not valid to model phase inversion and separating columns, such as the gas–liquid flow in bubble columns. In those flows, the originally dispersed phase can shift to continuous phase and vice versa, then the flow parameters will swap their roles in the equations, and a diameter must be specified for the original continuous phase. To this end, OpenFOAM provides an optional blending treatment for all the interfacial forces, which enables determining the dispersed and continuous phase locally for each cell. Obviously, this work needs to include the blending treatment in order to simulate the phase separating process. The influence of blending will be discussed in Section 3.1.

The blending treatment was exerted on all the interfacial forces. For simplicity, the treatment is illustrated here by only taking the drag force as an example, and more details can be found in literature (Rusche, 2003; Li and Christian, 2017).

$$
M^D_o = f_o M^D_o + f_w M^D_w
$$

\[= \frac{3}{4} \epsilon_o \epsilon_w \left(\frac{\mu_o}{\rho_o} \frac{C_{D0}}{D_o} + \frac{\mu_w}{\rho_w} \frac{C_{Dw}}{D_w} \right) \left(U_o - U_w \right) \left(U_o - U_w \right), \]

(13)

where f_o and f_w are the blending coefficients for the two phases, d_o is the oil droplet diameter and d_w is the diameter of the original continuous phase which will be automatically invoked by the blending treatment. In the present work, only the oil droplet size d_o was calculated by the PBM method, and when oil is the continuous phase, a constant d_o was used as the dispersed phase diameter in the momentum exchange. It should be noted that the blending treatment considers three possible regimes of oil-in-water, water-in-oil, and water-and-oil. It works through calculating blending coefficients in the first two regimes featuring dispersed flows. While for the third regime (i.e., fully separated flow), a default segregated model (Marschall, 2011) was adopted for the drag, that is,

$$
M_{\text{aggregated}} = \lambda \left(R_{\text{el}}, \pi_{\mu} \right) \frac{\left[\frac{\epsilon_o}{\epsilon_0} \right]}{\delta} \frac{\mu_o}{\rho_o} \frac{\mu_w}{\rho_w} \left(U_o - U_w \right),
$$

(14)

where

$$
\lambda \left(R_{\text{el}}, \pi_{\mu} \right) = m R_{\text{el}} + n \pi_{\mu},
$$

(15)

$$
R_{\text{el}} = \frac{\rho_o \delta U_o - U_w}{\rho_o \delta U_o - U_w} \frac{\rho_w \delta U_o - U_w}{\rho_w \delta U_o - U_w},
$$

(16)

$$
\pi_{\mu} = \frac{\epsilon_o \epsilon_w \mu_o \mu_w}{\mu_o \mu_w + (\epsilon_o \epsilon_w + \epsilon_w \epsilon_o) \mu_o} \frac{(\epsilon_o \epsilon_w + \epsilon_w \epsilon_o) \mu_o}{(\epsilon_o \epsilon_w + \epsilon_w \epsilon_o) \mu_o},
$$

(17)

$$
\delta = \frac{1}{\sqrt{\epsilon_0}}.
$$

(18)

Although the blending source code has considered three terms for the momentum exchange, denoted by

$$
M = f_1 M_{\text{model1}} + f_2 M_{\text{model2}} + (1 - f_1 - f_2) M_{\text{model}},
$$

(19)

the third term lacks available models for most interfacial forces except the drag force, and if the condition of $f_1 + f_2 = 1$ is satisfied

Physical properties of the experimental system.				
Liquid Phase	Phase	ρ (kg m$^{-3}$)	μ (Pa s)	σ (N m$^{-1}$)
Water	Aqueous	998	0.9×10^{-3}	~0.0329
Exxsol D140	Organic	828	5.5×10^{-3}	

Table 2 Operating parameters of the experiments.

<table>
<thead>
<tr>
<th>U_o (ms$^{-1}$)</th>
<th>ϵ_o</th>
<th>$h_{o0} - h_{o0}/D$</th>
<th>$h_{o0} - h_{o0}/D$</th>
<th>d_{120} (mm)</th>
<th>$d_{1/160}$ (mm)</th>
<th>$d_{1/1360}$ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
<td>0.30</td>
<td>0.405</td>
<td>1.0</td>
<td>0.76</td>
<td>3.41</td>
<td>3.50</td>
</tr>
<tr>
<td>0.52</td>
<td>0.45</td>
<td>0.365</td>
<td>0.811</td>
<td>0.65</td>
<td>4.03</td>
<td>4.27</td>
</tr>
<tr>
<td>0.52</td>
<td>0.60</td>
<td>0.27</td>
<td>0.703</td>
<td>0.59</td>
<td>4.25</td>
<td>4.35</td>
</tr>
<tr>
<td>1.04</td>
<td>0.15</td>
<td>0.405</td>
<td>1.0</td>
<td>0.92</td>
<td>1.14</td>
<td>1.31</td>
</tr>
<tr>
<td>1.04</td>
<td>0.30</td>
<td>0.189</td>
<td>1.0</td>
<td>0.92</td>
<td>1.27</td>
<td>1.45</td>
</tr>
<tr>
<td>1.04</td>
<td>0.60</td>
<td>0.122</td>
<td>1.0</td>
<td>0.81</td>
<td>2.43</td>
<td>2.56</td>
</tr>
</tbody>
</table>
(should be recommended for two-phase flows requiring the blending treatment), this term will be zero and hence can be omitted.

There are two methods for calculating the blending coefficients, i.e. linear and hyperbolic in the current solver. In the linear method, four volume fraction parameters of $\epsilon_{o,F}$, $\epsilon_{w,F}$, $\epsilon_{o,P}$, and $\epsilon_{w,P}$ need to be defined to determine the local role of each phase, thereby f_o and f_w are calculated as follows:

$$f_o = \min \left(\frac{\epsilon_{w} - \epsilon_{w,P}}{\epsilon_{w,F} - \epsilon_{w,P}}, 1 \right).$$ \hfill (20)

$$f_w = \min \left(\frac{\epsilon_{o} - \epsilon_{o,P}}{\epsilon_{o,F} - \epsilon_{o,P}}, 1 \right).$$ \hfill (21)

For $\epsilon_{o} \to 1$, water is the dispersed phase in oil, and d_w is used for calculating the drag force. Similarly, using a tanh to smooth the blending function for f_o and f_w, one can write:

$$f_o = \frac{1 + \tanh \left(\frac{4}{B_o} (\epsilon_{o} - \epsilon_{o,F}) \right)}{2},$$ \hfill (22)

$$f_w = \frac{1 + \tanh \left(\frac{4}{B_w} (\epsilon_{o} - \epsilon_{o,F}) \right)}{2},$$ \hfill (23)

where B_o and B_w represent the phase transition parameters, and $\epsilon_{o,F}$ and $\epsilon_{w,F}$ are volume fraction parameters.

The lift coefficient can be modeled by Tomiyama et al. (2002):

$$C_l = \begin{cases} \min \left(0.288 \tanh \left(0.121Re_\theta \right), f(E_o) \right), & \text{if } E_o < 4 \\ f(E_o), & \text{if } 4 \leq E_o \leq 10.7 \end{cases}$$ \hfill (24)

$$f(E_o) = 0.00105E_o^2 - 0.0159E_o^2 - 0.0204E_o + 0.47.$$ \hfill (25)

The virtual mass force is neglected in the present work, considering that the density difference between oil and water is much smaller compared to gas–liquid flows.

There are several models for the turbulent dispersion force, and more details can be found in the literature (Wang and Yao, 2016; Pouaria et al., 2021). At first, the turbulent dispersion force is modeled by Antal et al. (1991) with typical coefficient value

$$\frac{\partial \rho_m \mathbf{u}_m k_m}{\partial t} + \nabla \cdot \left(\rho_m \mathbf{u}_m k_m \right) = \nabla \cdot \left(\frac{\mu_m}{\sigma_k} \nabla k_m \right) + G_m - \rho_m \epsilon_m + S^m_k,$$ \hfill (26)

where the source term S^m_k was calculated by the model proposed in Lahey (2005), that is,

$$S^m_k = C_p \left(1 + \varepsilon_C \varepsilon \right) \left(\frac{U_w - U_h}{d_w} \right)^3,$$ \hfill (28)

with $C_p = 0.25$. The mixture variables were calculated based on the volume-averaged method for each phase (Cheng et al., 2018). This model was recommended by Behzadi et al. (2004) for modelling dispersed bubble and droplet flows at high phase fractions. The model can be applied to all phase fraction values and it can also reduce to the single phase model. When the phase fraction is higher than the limit value (e.g., $\geq 6\%$), the response function, which means the ratio of velocity fluctuations between the dispersed and continuous phase, approaches a constant value, indicating that both phases fluctuate as one entity and hence the mixture assumption becomes reasonable. Since the studied flow system undergoes phase inversion with high concentration ($\geq 15\%$), it should be suitable to use the mixture $k - \epsilon$ turbulence model in this work.

2.3. Population balance model

The class method developed by Kumar and Ramkrishna (1996) is used to solve the population balance model of the droplet. A series of droplet classes are specified and the population balance equations are expressed as below. The so-called binaryBreakupModels algorithm developed by Liao et al. (2018) is used for calculating the breakup.

$$\frac{\partial (\epsilon_{o}\mathbf{u}_i)}{\partial t} + \nabla \cdot (\epsilon_{o}\mathbf{u}_i \mathbf{u}_i) = S_i,$$ \hfill (29)

where S_i is the source term for droplet coalescence and breakup,

$$S_i = \sum_{j=1}^{N_d} \left(1 - \frac{1}{x_{i,j}} \right) \eta \left(\epsilon_{o}, x_{i,j} \right) \frac{d\epsilon_{o}}{dx} \frac{d\epsilon_{w}}{dx} \frac{d\epsilon_{F}}{dx} \cdot \epsilon_{o} \Delta \epsilon_{F,j} + \frac{\epsilon_{o} \epsilon_{w} \epsilon_{F}}{\epsilon_{w} \Delta \epsilon_{F,j}} - \epsilon_{o} \epsilon_{w} \epsilon_{F} \Delta \epsilon_{F,j}.$$

$$\eta = \begin{cases} \frac{x_{i,j} - x_{i,j-1}}{x_{i,j} - x_{i,j-1}}, & \text{if } x_{i,j-1} \leq x_i < x_{i,j} \leq x_{i,j+1} \\ x_{i,j-1}, & \text{if } x_{i,j-1} \leq x_i < x_{i,j} < x_{i,j+1} \\ 0, & \text{if } x_i \geq x_{i,j+1} \text{ or } x_i < x_{i,j-2} \leq x_i < x_{i,j-1}. \end{cases}$$ \hfill (30)

$$\Delta \epsilon_{F,j} = \begin{cases} \frac{\epsilon_{o,i} - \epsilon_{o,i+1}}{x_{i,j} - x_{i,j+1}}, & \text{if } x_{i,j} - x_{i,j+1} \\ 0, & \text{if } x_i \geq x_{i,j+1} \text{ or } x_i < x_{i,j} - x_{i,j+1} \leq x_i < x_{i,j}. \end{cases}$$ \hfill (31)

where $c(x_i, x_k)$ is the coalescence rate, and $\Omega_d(x_i, x_k)$ is the partial breakup rate. In the present work, the Prince and Blanch (1990) model is used as the coalescence kernel and the Luo and Svendsen (1996) as the breakup kernel. A concise description of the model equations is given hereafter and more details can be found in the reference (Liao and Lucas, 2010; Liao et al., 2018) and “C++ Source Code Guide” of OpenFOAM (version 8).

The partial breakup rate is calculated by the following expression

$$\Omega_d(x_i, x_k) = 0.923 (1 - \varepsilon) \left(\frac{\epsilon_{o,i} - \epsilon_{o,i+1}}{x_{i,j} - x_{i,j+1}} \right) \times \int_{\xi_{i,j}}^{1} \left(1 + \frac{\xi}{\xi_{i,j}} \right)^{1/3} \times \exp \left(-\frac{12\xi\varepsilon}{2\varepsilon_{w}^{2/3}d_{i,j}^{1/3}11/3} \right) d\xi,$$ \hfill (34)

and the total breakup rate of droplet class i can be obtained by

$$\Omega_i(x) = \sum_{j=1}^{N_d} \Omega_d(x_i, x_k) \Delta \epsilon_{F,j},$$ \hfill (35)

and $\xi_{i,j}$ and ξ_i are respectively expressed by
The coalescence rate is calculated by multiplying with the collision frequency \(\omega(d, d_j) \) and coalescence efficiency \(P(d, d_j) \), and the former accounts for turbulence, buoyancy, and laminar shear, denoted by \(\omega^T, \omega^B \), and \(\omega^L \), respectively:

\[
\begin{align*}
\omega^T(d, d_j) &= \frac{\pi}{16} \epsilon \gamma_w^{1/3} (d_i + d_j)^2 (d_i^{2/3} + d_j^{2/3})^{1/2}, \\
\omega^B(d, d_j) &= \frac{\pi}{4} (d_i + d_j)^2 |u_i^r - u_j^r|, \\
\omega^L(d, d_j) &= \frac{1}{6} (d_i + d_j)^3 \dot{\gamma}_w.
\end{align*}
\]

where \(\epsilon \) is the turbulent energy dissipation rate, \(\dot{\gamma}_w \) is the shear strain rate of the continuous phase, and \(u_i^r \) is the rise velocity of bubble \(i \):

\[
u_i^r = \sqrt{\frac{2.14 \sigma}{\rho_o d_i} + 0.505 gd_i}.
\]

The coalescence efficiency is expressed as

\[
P(d, d_j) = \exp \left\{ - \frac{\pi^2 \rho_o}{16 \sigma} \ln \left(\frac{h_0}{r_j} \right) \epsilon^{1/2} \gamma_w^{1/3} \right\},
\]

in which \(r_j \) is given by

\[
r_j = \left(\frac{d_i}{d_j} + 1 \right)^{-1},
\]

with the coefficients of \(h_0 = 10^{-4} \) and \(h_1 = 10^{-8} \).

2.4. Simulation implementation

The multiphase EulerFoam solver in OpenFOAM (version 8.0) was used for the coupled Eulerian-Eulerian simulations and the PBM equations. Physical properties can be found in Table 1. Structured meshes were generated by the utility of blockMesh. Since the experimental measurements were performed on the first 7 m length pipe, only this part was selected as the simulations domain. According to Table 2, the flow parameters at the inlet for the simulation can be defined. That is, the inlet was split into three patches corresponding to the values of \(h_{0q}, h_{0o} \) and \(h_{0r} \). In which the mixture velocity \(U_m \) was set for both phases, and the volume fractions of \(\epsilon_o \) and \(\epsilon_r \) for each patch were calculated based on the average oil concentration and the area ratios. By this way, the flow parameters in simulations approximate the experimental setup well. At the inlet, the fixedFluxPressure condition was adopted for pressure, which set the pressure gradient such that the flux was consistent with the velocity boundary condition. In all cases, the mixture \(k-\epsilon \) model was used for the turbulent equations. The turbulent intensity was estimated by an empirical correlation (Pouraria et al., 2021),

\[
I = 0.16 \epsilon_w^{1/3}.
\]

As to the size distribution in PBM, it consisted of 22 size bins ranged in 1–5 mm. Two kinds of setup were tested for the initial size fractions: one is a uniform size class fraction of 0.05 for all the 20 classes except the two endpoints; the other is a dominating fraction of 0.9 for the size class most close to the initial diameter \(d_{32o} \), along with smaller fractions of 0.05 for the two adjacent sizes. Preliminary simulations demonstrated that the results were insensitive to the initial distribution, so the non-uniform distribution was used for all cases. The transient PIMPLE algorithm was used to solve pressure–velocity coupling. The generalised geometric-algebraic multi-grid (GAMG) solver along with the DIC smoother was used to solve the pressure equation, while the smoothSolver combined with symGaussSeidel smoother were used for solving the other equations. More details about the boundary conditions and discretization schemes can be found in Tables 3 and 4.

Table 3

Boundary conditions.

<table>
<thead>
<tr>
<th>Boundary fields</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Walls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase fraction</td>
<td>fixedValue</td>
<td>fixedValue</td>
<td>zeroGradient</td>
</tr>
<tr>
<td>Velocities</td>
<td>fixedValue</td>
<td>fixedValue</td>
<td>fixedValue</td>
</tr>
<tr>
<td>Pressure</td>
<td>fixedFluxPressure</td>
<td>pressureInletOutletVelocity</td>
<td>fixedFluxPressure</td>
</tr>
</tbody>
</table>

Table 4

The discretization schemes.

<table>
<thead>
<tr>
<th>Modeling terms</th>
<th>Keywords of Schemes</th>
<th>Schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convection terms</td>
<td>divSchemes</td>
<td>Gauss vanLeer</td>
</tr>
<tr>
<td>Gradient terms</td>
<td>gradSchemes</td>
<td>Gauss linear</td>
</tr>
<tr>
<td>Diffusive terms</td>
<td>laplacianSchemes</td>
<td>Gauss linear uncorrected</td>
</tr>
<tr>
<td>Time derivative</td>
<td>ddSchemes</td>
<td>Euler linear</td>
</tr>
<tr>
<td>Others</td>
<td>interpolationSchemes</td>
<td>Euler linear</td>
</tr>
<tr>
<td></td>
<td>snGradSchemes</td>
<td>uncorrected</td>
</tr>
</tbody>
</table>

Fig. 1 shows the flow rig reported in Voulgaropoulos (2018) and a snapshot of a typical flow development along the pipe for the case of \(U_m = 1.04 \) m/s and \(\epsilon_o = 0.3 \). The separation behaviour in the flow pipe can be observed through the oil concentration, where red colour indicates oil and blue indicates water. The flow velocity vectors and streamlines provide insight into the structure of the velocity field. Fig. 2 depicts the variation of the oil volume fraction with the normalised vertical direction for three axial stations along the pipe, \(x/D = 20, 80, 150 \), for the same parameters as in Fig. 1.
Here, it is seen clearly that convergence of the numerical results has been achieved upon mesh refinement, and the mesh corresponding to 345,600 points ("Mesh2") is adopted for the remaining computations discussed in the present work. The deviation between the simulation results and the experimental data will be discussed in the next section.

For the simulated results, the layer heights are read from the concentration profiles at $x/D = 65$ and $x/D = 135$, while three other concentration profiles are read at $x/D = 20$, 80 and 150, respectively. Fig. 3 shows an example for determining the layer height, where h_C, h_P and h_O are layer heights of the continuous water, dense packed layer and coalesced oil, respectively. From the perspective of layer thickness, the continuous oil layer is assumed for $\epsilon_0 < 0.99$, the packed layer for $0.90 < \epsilon_0 < 0.99$, and the continuous water layer as $\epsilon_0 \geq 0$.

3. Results and discussion

3.1. Influence of blending treatment and d_w

We begin the discussion of our results by assessing their sensitivity to the choice of d_w. When blending is invoked, the solver switches the dispersed phase diameter between d_o and d_w for calculating momentum exchange. Fig. 4 demonstrates the influence of different d_w values on the simulated oil concentration profiles in the normalised vertical direction, y/D, presented in the pipe mid-plane. Smaller d_w values lead to a marked difference in the ϵ_0 distribution across the pipe particularly for locations downstream from the inlet. As shown in Fig. 4, the transition from the water layer to finite oil fractions occurs at lower elevations than for larger d_w values; in contrast, the transitions to the dense packed and continuous oil layers occur at higher elevations indicating retarded droplet rising in the upper region of the pipe. The sensitivity on blending is also shown in Fig. 5 for $U_m = 0.52$ m/s and $\epsilon_0 = 0.3$. Comparison of Figs. 5a and 5b demonstrates that the oil–water-separation takes place further upstream than the case in which blending is employed. This may be attributed to the difference of the continuous phase viscosity, recalling the phase inversion in the blending treatment. When a larger constant d_o value of 3.41 mm (i.e., in accordance with the experimental measurement) is used in the no-blending case, the separation is completed significantly closer to the inlet (see Fig. 5c) than the cases depicted in Figs. 5a and 5b. Based on these results, it is proposed that the blending treatment may compensate for the overestimated rise
velocity and coalescence rate of the oil droplets, and will help to reduce the rate of separation.

The mechanistic model proposed by Pereyra et al. (2013) (see appendix for details) was further used for this flow system to compare with the simulations to gain insight into the factors that affect the separation, such as the order of magnitude of the coalescence time and the separation length. Fig. 6 illustrates the layer height comparison between the model calculations and the experimental results for the case of $U_m = 0.52$ m/s and $\varepsilon_o = 0.45$. With decreasing initial droplet diameter of d_{320}, the cross point between h_P and h_C moves towards the outlet, indicating a decreasing separation rate. When using $d_{320} = 0.2$ mm, the dense packed layer height of h_P are well captured by the model calculation, which verifies the feasibility of adopting a much smaller diameter than the measurement to calculate the drag force. However, the calculated h_O is not sensitive to d_{320} even though its slope changes slightly.

The results presented thus far reveal that the blending treatment can be used to improve the CFD simulation of separation characteristics. The logic of the blending treatment is consistent with the correction of emulsion viscosity (Oshinowo and Vilagines, 2020). That is, the conventional drag force should be enhanced by modifying either the viscosity of the surrounding phase or the droplet diameter, noticing that the drag is proportional to C_Dd_o. Drag can be corrected by either decreasing droplet diameter or increasing the viscosity.

A comparison between the linear and hyperbolic blending functions was also carried out. The variation of the blending coefficients is shown in Fig. 7. For the hyperbolic blending, all model parameters were set at a constant value of 0.5, while for linear blending, when one phase reached a volume fraction of 0.7, it was considered continuous. This shifting is consistent with that of the phase inversion reported in (Hu et al., 2006). Fig. 7a shows the concentration profiles along the pipe, where only marginal changes are observed for different cases between the two blending methods. This is not surprising since the blending coefficients display small differences as shown in Fig. 7(b,c). Therefore, the linear blending will be used. This section will discuss the simulation
results using linear blending with $d_w = 0.25$ mm. Fig. 8 shows the contour plots of the oil concentration. The dispersed regions in Fig. 8(b) take up larger proportion of the whole pipe compared to Fig. 7(a), indicating that the separation has slowed down. This result agrees with the fact that decreasing d_w augments the drag force between the two phases.

For the cases of $U_m = 0.52$ m/s shown in Fig. 9, the concentration profiles show better agreement between the experimental data and the numerical predictions than those of $d_w = 0.5$ mm. In Fig. 9(a,c,e), all the simulated curves are within the range of the measurements except for the position of $x/D=20$, $e_o = 0.3$. In Fig. 9(b,d,f), three height values of the coalesced oil layer h_o, the dense packed layer h_p, and the flotation layer h_c are shown against the mechanistic model, while only the first two heights are available from the experiments. Although the simulations overestimate slightly the h_o values, they show good agreement with the mechanistic model calculations with the model lines located between the experiments and the simulations in each case. For the h_p values, the simulations are higher than the experiments, but the differences decrease with increasing oil concentration. Interestingly, the model lines agree well with the experimental h_p results at a given d_{20}. Coincidentally, the range of $0.1 \sim 0.2$ mm for d_{20} is also one order of magnitude smaller than the measured droplet diameter, which corroborates the use of the modified d_w. For the h_c values, the simulated results under-predict the model lines. Since the droplets move with mild interactions in the flotation layer, the present blending treatment might lead to enlarged hindering in this region, and affect the rate of h_c increase.

For the cases of $U_m = 1.04$ m/s shown in Fig. 10, the predicted concentration profiles are improved in comparison to the cases using $d_w = 0.5$ mm (e.g., as seen in Fig. 2 for $e_o = 0.3$), especially in the top region of the pipe. Meanwhile, the prediction of layer heights has significantly improved, though the concentration profiles are not satisfactory. h_o and h_p values show good agreement between the simulations and the experimental data.
between the experiments, simulations, and the mechanistic model. However, the simulated h_C values differ from the model lines at the lower input oil concentration cases. This inconsistency between the concentration profiles and layer heights necessitates further investigation with the simulations.

3.2. Influence of the turbulent dispersion force

Regarding the deviation in the previous results, the turbulent dispersion force is added in the force models. Turbulent dispersion force considers the process that the particles were caught up in continuous phase turbulent eddies, and then carried from high concentration to low concentration regions. Lopez de Bertodano (1992) proposed a volume fraction based gradient model (Eq. 8), where C_{TD} is an empirical constant and $C_{TD} = 0.1$ to 0.5 might be suitable for medium sized fluid particles. Nevertheless, there is another framework for modelling the turbulent dispersion force in various multiphase flows (Gosman et al., 1992; Burns et al., 2004; Fox, 2014), which was based on the Favre averaging of the equations and finally correlated with the drag force. Both the tur-

Fig. 9. Concentration profiles and layer heights for the cases of $U_m = 0.52$ m/s, $d_w = 0.25$ mm. The mechanistic model adopts parameters of $d_{320} = 0.1$ mm for $\epsilon_o = 0.3$ and $d_{320} = 0.2$ mm for $\epsilon_o = 0.45, 0.6$.
Bulbent dispersion force models of Lopez de Bertodano (1992) and Burns et al. (2004) are available in the OpenFOAM solver. At first, the Lopez de Bertodano model with $C_{TD} = 1$ was used as recommended in the literature (Wang and Yao, 2016; Pouraria et al., 2021), however, the predicted concentration profiles indicated that the dispersion effect was overestimated for this flow system. So a modified version of Eq. (8) was adopted by multiplying it with the local volume fraction of the dispersed phase, which is also a built-in model. This correction leads to a reduced turbulent dispersion force in comparison to the original Lopez de Bertodano model depending on the local volume fractions. As shown in Fig. 11, adding the turbulence dispersion force blurs the interface separating the two phases in the middle and downstream positions but has little effect on the concentration profiles near the pipe inlet.

For the lower velocity cases shown in Fig. 12, the predicted concentration profiles agree with the measurements well, especially for the middle and downstream positions. The predicted layer heights of h_{O} and h_{P} are higher than the measurements, leading to a much slower separation rate than the same cases without the dispersion force. However, the predicted layer heights of h_{C}

\[\text{Fig. 10. Concentration profiles and layer heights for the cases of } U_m = 1.04 \text{ m/s, } d_w = 0.25 \text{ mm. The mechanistic model adopts parameters of } d_{320} = 0.1 \text{ mm for } \varepsilon_o = 0.15, 0.3 \text{ and } d_{320} = 0.2 \text{ mm for } \varepsilon_o = 0.6. \]
deviate from the anticipated rising trend along the flow direction, and the values for $x/D = 80$ and $x/D = 150$ are almost identical, which might be caused by the overestimated dispersion effect.

For the higher velocity cases shown in Fig. 13, it is interesting that the concentration profiles change significantly. Although there are still visible discrepancies, the predicted profiles are within the range of the experimental results, especially in the lower concentration cases of $\epsilon_o = 0.15$ and 0.3. In addition, the correction is strong for the case of $\epsilon_o = 0.6$, showing non-zero oil concentrations at the bottom region, as seen in Fig. 13(e), in agreement with the experiments. The predicted layer heights of h_o and h_p agree well with the experiments as well as the mechanistic model, while the trend of h_c cannot be well captured in these cases. In other words, although adding the turbulent dispersion force improves the prediction of concentration profiles, it is still unsatisfactory for the layer height predictions.

These results reveal that the turbulent dispersion force can also impact the flow pattern and the separation characteristics, and its effect is more obvious at higher velocities, which is reasonable because stronger turbulence should exist in those cases. Special attention should be paid to the two downstream positions, where identical values of the predicted h_c are observed in all the cases, while predictions of h_o and h_p are also very close for these two positions except in Fig. 13(f). It was expected that the model of Burns et al. (2004) can provide better predictions, however, very similar results were obtained by using that model, as shown in Fig. 14. Although there are some differences between Fig. 14 and Fig. 13, the predicted trends are qualitatively consistent. Hence, this study demonstrates that apart from the blending treatment, the turbulent dispersion force is another influential factor in the simulations, and no general rules are available to achieve excellent predictions in all aspects of the experimental data.

3.3. Discussion

The aforementioned results demonstrate that predicting the separation process requires an in-depth understanding of the complex flow behaviour. Droplet coalescence during the phase inversion and the existence of the DPL are crucial in this problem. The DPL is located between the flotation layer and the continuous oil layer, containing many accumulated oil droplets. It can be regarded as a mesoscale structure in the flow system, in which the separation depends on the complex coalescence process and the interaction with its adjacent layers due to their distinct moving conditions. To complete the coalescence at the interface close to the oil bulk phase, the water inside the DPL needs to be drained. The coalescence behaviour of these droplets is very different from that in a dilute system. Therefore, the traditional coalescence kernels are not sufficiently reliable to describe this behaviour, which is corroborated by the various drag corrections in the simulating work (Panjwani et al., 2015; Oshinowo et al., 2016). In other words, the significant viscosity increase in the continuous phase means that the apparent rising velocity of the droplets is reduced drastically.

Although the PBM model is adopted to describe the polydisperse droplet size distribution, it may face some deficiency when correcting the drag only by adjusting the mean diameter. For instance, there is a paradox of doing this in the present flow system. On the one hand, the experimental observation shows that hardly any breakage happens in this low turbulent flow and the Sauter mean diameter increases along the flow direction. On the other hand, since the droplet size in the present system is larger than general studied cases with $\Omega(\sim 10^2 \mu m)$, even if constant values of the initial diameter in Table 2 are used in the simulation, the predicted separation will still be too fast in comparison to the physical process.

On the contrary, a blending-type treatment can reflect the phase-inversion induced delay of separation well. First, the impact of phase inversion on the continuous phase viscosity is delineated by the solver automatically in the local cells, which avoids a priori parameter fitting before the simulation. Second, the hindering effect of the DPL upon the coalescence rate can be determined by d_w which is about one order of magnitude smaller than the oil droplet. Although d_w is artificial in the present simulations, it reveals the necessity of correcting the momentum exchange when modelling and simulating the separation process. Factors of droplet settling (Evripidou et al., 2022), possible water drainage during the oil droplet coalescence (Cohen et al., 2015), and especially the complex droplet interactions in the DPL, would all contribute to the complex behaviour and provide various strategies to cope with this issue. Inspired by the blending treatment, if we can correlate the water holdup and some structural parameters in the DPL with the local flow fields, the local d_w values can be also determined automatically by the solver, then it is expected to improve the predicting accuracy in various cases.

Apart from the blending treatment, introducing a suitable turbulent dispersion force can also reduce the discrepancy between the predictions and the experiments, especially for higher velocity cases. The present model of turbulent dispersion force improves the prediction of concentration profiles but worsen that of phase separation. A mechanistic model must be developed to determine
Fig. 12. Concentration profiles and layer heights for the cases of $U_m = 0.52 \text{ m/s, } \varepsilon_o = 0.3$, $d_w = 0.5 \text{ mm}$ with the turbulent dispersion force. The mechanistic model adopts parameters of $d_{320} = 0.1 \text{ mm}$ for $\varepsilon_o = 0.3$ and $d_{320} = 0.2 \text{ mm}$ for $\varepsilon_o = 0.45, 0.6$.
Fig. 13. Concentration profiles and layer heights for the cases of $U_m = 1.04 \text{ m/s}$, $d_w = 0.5 \text{ mm}$ with the turbulent dispersion force (Lopez De Bertodano model). The mechanistic model adopts parameters of $d_{320} = 0.1 \text{ mm}$ for $\varepsilon_o = 0.15, 0.3$ and $d_{320} = 0.2 \text{ mm}$ for $\varepsilon_o = 0.6$.
Fig. 14. Concentration profiles and layer heights for the cases of $U_m = 1.04$ m/s, $d_w = 0.5$ mm with the turbulent dispersion force (Burns model). The mechanistic model adopts parameters of $d_{320} = 0.1$ mm for $\varepsilon_o = 0.15, 0.3$ and $d_{320} = 0.2$ mm for $\varepsilon_o = 0.6$.
the continuous phase diameter of \(d_w \) so that the CFD framework developed here can enable satisfactory predictions of the oil–water separation characteristics in the pipe flow, with the least effort by reducing the trial-and-error cost. Furthermore, the CFD work can be combined with the data-driven models to obtain a quick prediction of the flow pattern and regime transitions in these flow systems, as demonstrated by our preliminary work (Cheng et al., 2022).

4. Conclusions

In this work, Eulerian-Eulerian simulations of an oil-in-water dispersed flow have been carried out. The distribution of the four layers that form was explored, and the simulation results of concentration profiles and layer heights were compared with experimental data. The blending treatment in the OpenFOAM solver has been shown to impact the simulated separation characteristics significantly. The sensitivity of results to the diameter of the original continuous phase was also studied thoroughly. Given that the droplet Sauter mean diameter in the present flow system, traditional breakup and coalescence kernels cannot reflect the real separation characteristics. Therefore, the blending treatment provides a feasible mechanism to correct the momentum exchange. Including the turbulent dispersion force in the modelling improved the prediction of concentration profiles, especially for the cases with higher velocity and lower concentration but the prediction of phase separation along the flow direction deteriorated, showing almost identical distributions for the downstream positions. It is still an open issue how to model the turbulent dispersion force in the simulation for different flow systems. In addition, the results were also compared against a mechanistic model, demonstrating that a correction of the initial Sauter mean diameter is needed to obtain reasonable predictions; this also supports the rationale of the blending treatment. The factors of phase inversion and the water release rate in the densely packed layer need further study so that improved drag and coalescence models can be proposed and embedded within the CFD simulations. Also, both interface-resolved simulations of the DPL and experimental work focusing on drop-interface coalescence deserve further exploration in future work.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by the Engineering and Physical Sciences Research Council, United Kingdom, the EPSRC PREMIERE (EP/T000414/1) Programme Grant, CAS and UCL scholarships, and the National Natural Science Foundation of China (NSFC) under Grant No. 22078327. The authors appreciate the helpful discussions with Profs. Benoit Chachuat, Mark Simmons, Federico Galvanin, and Nina Kovalchuk in the PREMIERE Team. JC also thanks Prof. Jinghai Li for his insightful instruction of the mesoscale vanin, and Nina Kovalchuk in the PREMIERE Team. JC also thanks Prof. Jinghai Li for his insightful instruction of the mesoscale vanin, and Nina Kovalchuk in the PREMIERE Team.

Appendix A. Equations of Pereyra’s model

Note: Equations of (Pereyra et al., 2013; Pereyra, 2011) are given as below with two slight modifications in the present work, that is, the coefficient in Eq. (A15) is changed from 0.3025 to 0.2, and Eq. (A20) is replaced by \(\epsilon_{P0} = 0.9 \). These changes are arbitrary to obtain better predictions of the data.

In the following equations, \(D-h_o \), \(D-h_p \) and \(h_c \) correspond to the layer heights of \(h_o \), \(h_p \) and \(h_c \) respectively in the present work.

1. Sedimentation/flotation analysis:

\[
h_c = \frac{\rho_l X}{\mu_m} \tag{A1}
\]

\[
\rho_s = \frac{3\pi \epsilon \mu_c}{C_w \xi (1 - \epsilon) \rho_c d_{320}^5} \left[\left(1 + Ar \frac{C_w \xi (1 - \epsilon)^3}{54 \epsilon^2} \right)^{0.5} - 1 \right] \tag{A2}
\]

\[
Ar = \frac{\rho_l \Delta p g d_{320}^5}{\mu_c} \tag{A3}
\]

\[
\xi = 5K_{3/2}^{\text{HR}} \left(\frac{\epsilon}{1 - \epsilon} \right)^{0.45} \tag{A4}
\]

\[
K_{HR} = \frac{3(M_A + \mu_d)}{2 \mu_c + 3 \mu_d} \tag{A5}
\]

\[
\lambda = \frac{1 - \epsilon}{2\epsilon} \exp \left(\frac{2.5\epsilon}{1 - 0.61\epsilon} \right) \tag{A6}
\]

\[
C_w = \frac{Ar}{6 Re_c} - \frac{3}{K_{HR} Re_c} \tag{A7}
\]

\[
Re_c = \frac{\rho_c \nu_s d_{320}}{\mu_c} = 9.72 \left[(1 + 0.01 Ar)^{6/7} - 1 \right] \tag{A8}
\]

2. Coalescence analysis:

\[
u_m \frac{d h_o}{dx} = 2 \epsilon d_{12}^2 \tag{A9}
\]

\[
u_m \frac{d (d_{32})}{dx} = d_{12} \tag{A10}
\]

\[
\tau_c = \frac{(6\pi)^{7/6} \mu_c r_{12}^{2/3}}{4r_c H^{7/6} r_2 r_v} \tag{A11}
\]

\[
\tau_i = \frac{(6\pi)^{7/6} \mu_i r_{12}^{2/3}}{4r_i H^{7/6} r_2 r_v} \tag{A12}
\]

\[
H = 1.0 \times 10^{-20} \tag{A13}
\]

\[
r_i = 0.007 \tag{A14}
\]

\[
r_{FC} = 0.3025 d_{32} \sqrt{1 - \frac{4.7}{La + 4.7}} \tag{A15}
\]

\[
r_{F1} = \sqrt{3} r_{FC} (A16) \tag{A17}
\]

\[
rr_o = 0.5 d_{32} \left(1 - \frac{1}{1 - \frac{4.7}{La + 4.7}} \right) \tag{A17}
\]

\[
La = \left(\frac{\mu_c - \rho_d g \sigma}{\sigma} \right)^{0.6} h_o^{0.2} d_{12} \tag{A18}
\]

3. Mass balance:

\[
A_p = \begin{cases} \frac{A_{F+1} - A_{F}}{\eta_{P} \epsilon_{P}} & 0 < \epsilon_{P} \leq \epsilon_{P0} \\ \frac{A_{F}}{\eta_{P} \epsilon_{P}} & \epsilon_{P} > \epsilon_{P0} \end{cases} \tag{A19}
\]

\[
\epsilon_{P0} = \frac{\epsilon_1 + \epsilon}{2} \tag{A20}
\]

\[
\epsilon_1 = 1.0 \tag{A21}
\]

\[
\tau_P = \epsilon_1 - \exp \left(-C_1 \frac{X}{u_m} - C_2 \right) \tag{A22}
\]

\[
C_1 = \frac{\tau_P^2 \Psi}{(A_P \epsilon - \lambda_{PB})(\epsilon_1 - \epsilon)} \tag{A23}
\]

\[
C_2 = -C_1 \frac{X_{PB}}{u_m} \ln (\epsilon_1 - \epsilon) \tag{A24}
\]

\[
\Psi = \left[\frac{\partial A_P}{\partial \epsilon} \left(\epsilon_s + u_0 h_h \frac{d h_h}{d x} \right) - u_m \frac{\partial A_D}{\partial h_D} \frac{d h_D}{d x} \frac{\partial h_D}{d x} \right]_{\epsilon = \epsilon_{PB}} \tag{A25}
\]
Geometrical correlations:

\[A_c = \frac{D^4}{4} \left[\pi - \cos^{-1} \left(\frac{\alpha_1}{\alpha_2} \right) + \left(\frac{\alpha_1}{\alpha_2} \right)^2 \sqrt{1 - \left(\frac{\alpha_1}{\alpha_2} \right)^2} \right] \]
\[\omega_c = \frac{2h_c}{D} - 1 \]
\[A_d = \frac{D^4}{4} \left[\pi - \cos^{-1} \left(\frac{\alpha_2}{\alpha_3} \right) + \left(\frac{\alpha_2}{\alpha_3} \right)^2 \sqrt{1 - \left(\frac{\alpha_2}{\alpha_3} \right)^2} \right] - A_0 \]
\[\omega_d = \sqrt{h_0(D - h_0)} \]
\[\partial h_0 / \partial h_0 = 2 \left[h_0 + h_1 \right] - 1 \]
\[\partial A_p / \partial h_0 = 2 \left[h_0 + h_1 \right] - 2 \sqrt{h_0(D - h_0)} \]
\[\omega_p = 2 \left(h_0 + h_1 \right) - \frac{D}{1 - \frac{D}{1}} \]

References

