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A B S T R A C T   

Significant amounts of information are rapidly increasing in bulk as a consequence of the rapid development of 
unconventional tight reservoirs. The geomechanical and petrophysical characteristics of the wellbore rocks in-
fluence the sweet and non-sweet areas of tight unconventional reservoirs. Using standard approaches, such as 
data from cores and commercial software, it is difficult and costly to locate productive zones. Furthermore, it is 
difficult to apply these techniques to wells that do not have cores. This study presents a less costly way for the 
systematic and objective detection of productive and non-productive zones via well-log data using clustering 
unsupervised and supervised machine learning algorithms. The method of cluster analysis has been used in order 
to classify the productive and non-productive reservoir rock groups in the tight reservoir. This was accomplished 
by assessing the variability of the reservoir characteristics data that are forecasted by looking at the dimensions 
of the well logs. The Support vector machine as a supervised machine learning algorithm is then used to evaluate 
the classification accuracy of the unsupervised algorithms based on the clustering labels. The application made 
use of approximately ten different variables of rock characteristics including zonal depth, effective porosity, 
permeability, shale volume, water saturation, total organic carbon, young’s modulus, Poisson’s ratio, brittleness 
index, and pore size. The findings show that both clustering techniques identified the sweet areas with high 
accuracy and were less time-consuming.   

1. Introduction 

Unconventional tight reservoirs are becoming primary hydrocarbon 
resources owing to the ongoing advancements in exploration theory, the 
steady rise in the world’s demand for oil and gas, the continuous fall in 
conventional oil and gas output, and the effective use of sophisticated 
horizontal well drilling and multi-stage hydraulic fracturing methods 
[1]. Organic quality (OQ), rock quality (RQ), and mechanical quality 
(MQ) are the three determinants that determine the viability of uncon-
ventional resources [2]. The drilling of horizontal wells and the selection 
of perforation clusters both benefit from mapping sweet spots, which 
may lead to the maximum production and recovery of unconventional 
resources if done correctly. In the past, geoscientists have traditionally 
found sweet spots via the examination of well logs [3]. The use of 

artificial intelligence and machine learning is one of the most intriguing 
technologies that has lately entered the area of unconventional reser-
voirs. Unconventional reservoirs are reservoirs that are not normally 
found in their natural state. Within the realm of artificial intelligence lies 
the subfield known as "machine learning," in which intelligence may be 
produced even without the use of exact programming [4]. The proced-
ures that are utilized to evaluate sweet spots or productive zones in 
complicated reservoirs may be greatly improved by the use of machine 
learning algorithms [5]. As can be seen in Fig. 1, machine learning may 
be broken down into one of two primary categories: either supervised or 
unsupervised [6]. 

The process of extracting useful information from data is referred to 
as analytics. This process utilizes a variety of methods, tools, and pro-
cesses. The term "techniques" encompasses a wide range of ideas, 
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including "artificial intelligence," "machine learning," and "deep 
learning" algorithms. Machine learning (ML) is a branch of artificial 
intelligence (AI) that includes a wide range of data processing methods 
such as classification, regression, and clustering. Two major categories 
of machine learning are supervised and unsupervised approaches [7]. 
The most essential components of unsupervised machine learning are 
the input variables and the anticipated values [8]. In the oil and gas 
industry, machine learning systems that make use of wireline logs are 
increasingly being employed to address the geoscientific issues that are 
faced in the exploration, development, and production of oil and gas [9]. 
Data driven modelling tools are a potential and alternative strategy to 
assess the productive zones in unconventional formations. These tech-
niques include statistical data analysis, data clustering and classifica-
tion, and machine learning algorithms [10]. The extensive use of 
machine learning algorithms within the oil and gas industry has resulted 
in an increase in the number of obstacles that must be overcome in order 
to successfully extract petroleum from the subsurface. Machine learning 
techniques have been proposed as the best solution for strong learning 
capability and computational efficiency [11]. Low porosity, significant 
heterogeneity, and diagenesis all have an impact on the tight sandstone 
reservoirs. Determination of reservoir and completion qualities of the 
unconventional reservoirs has emerged as one of the important chal-
lenges to be tackled in oil and gas exploration and production since tight 
reservoirs often exhibit ultra-low petrophysical parameters [12,13]. The 
sweet spot in the reservoir is the most important part of tight oil and gas 
exploration, which is directly connected to the process of selecting 
exploration sites and determining the amount of tight oil and gas re-
sources. In addition, it is necessary in order to ensure the successful 
development of tight oil and gas. Different scales may be used to locate 
sweet spots in hydrocarbon reserves. Seismic interpretation methods, 
such as the discovery of stratigraphic or structural traps, may be used to 
locate sweet spots at the field scale [14]. Sweet spot identification along 
the well involves locating areas with appropriate petrophysical prop-
erties connected to in-place hydrocarbon volume and formation con-
ductivity, such as formation thickness, rock porosity, fluid saturation, 
rock permeability, rock relative permeability, and rock wettability. 
Sweet spot is often influenced by more complicated and unconventional 
elements in complex formations like tight gas reservoirs and 
organic-rich mud rocks. Based on seismic characteristics associated with 
the existence of natural cracks, Glaser et al. (2013) [15] documented the 
detection of reservoir size sweet spots in shale formations. Evaluation of 
the original in-place hydrocarbon volume along the well sweet-spot 
involves assessing formation lithological features and depositional 
characteristics such total organic content (TOC), maturity, hydrocarbon 
saturation, and porosity [16]. 

In complicated reservoirs, factors such as matrix permeability, which 

takes into account the contribution of micro cracks and kerogen, fluid 
viscosity, and overpressure are employed to measure formation con-
ductivity. However, there may be only a minor association between 
hydrocarbons already present and the permeability of virgin formations 
when looking at eventual output [17]. The most trustworthy way for 
linking the physical and operational factors to hydrocarbon output is to 
use field data. The use of field data, on the other hand, is dependent on 
the accurate assessment of reservoir petrophysical parameters, which 
may be both time-consuming and costly. In addition, it may be difficult 
to accurately quantify these petrophysical characteristics in complex 
reservoirs such as shaly sands and organic-rich mud rocks because of the 
intrinsic complexity of the rock samples. This is owing to the fact that 
such reservoirs have a high degree of heterogeneity [18]. The applica-
tion of machine learning algorithms offers a quick practical technique 
that is also reliable for analyzing formation parameters. Developing 
proxy models that can correlate reservoir petrophysical properties and 
operational parameters to the ultimate economic hydrocarbon recovery 
from complex reservoirs is possible with the assistance of such empirical 
models, which can also assist in evaluating the effectiveness of the 
fracture treatment. 

The oil industry has made extensive use of machine learning in a 
variety of contexts and context-specific applications. However, with the 
advent of machine learning, the oil industry transitioned to new and 
improved algorithms and programs that are more likely to solve difficult 
and complex problems in a timely manner while producing results that 
are as optimized. Machine learning enables big oil and gas businesses to 
get timely and reliable data to support their business decisions [19]. 
Machine learning can be used to make categories (clustering) and pre-
dictions (classification or regression) about the future, which enables us 
to use it to anticipate the occurrence of certain events and attempt to 
take steps to mitigate or lessen their impact. Since there are so many 
datasets related to oil and gas exploration and production, machine 
learning plays another crucial function in the petroleum business. Ma-
chine learning can assist in selecting the most crucial information from 
these datasets. This might indicate the next stage of return on invest-
ment (ROI). Taking direct, quick, and accurate judgments and actions is 
one of the key functions played by machine learning in the business 
[20]. The oil industry has been using artificial intelligence for decades in 
a variety of ways and applications. However, with the advent of machine 
learning, the industry transitioned to new and improved algorithms and 
programmes that have the tendency to solve difficult and complex op-
erations in a timely manner while producing results that are as opti-
mized as they can be. The main oil and gas businesses can acquire quick 
and accurate data to support their business operations when they make 
use of machine learning. In this section, we will explore the areas in 
which machine learning has been used by the oil and gas sector 
throughout the course of time [21]. 

In this investigation, we have used both unsupervised machine 
learning techniques as well as supervised machine learning algorithms 
for the purpose of forecasting production and non-production zones. The 
wireline logs of the tight oil reservoir are the training data that are used 
for the learning process. In the unsupervised method, we used machine 
learning techniques called k-means and hierarchical clustering. These 
techniques attempt to divide the dataset into a certain number of unique 
clusters that have been predefined, with each data point only belonging 
to a single one of those groups. For the supervised learning technique, 
the support vector machine algorithm was used, and the intended output 
consisted of cluster labels based on the environment of deposition from 
core data that was added to the training dataset. The findings from each 
methodology are reviewed in relation to the efficacy of each strategy in 
predicting zone distribution with a greater degree of precision. 

The following will serve as the format for the article: 

⁃ In terms of the methodology, the most crucial step is data pre-
processing, which consisted of transforming the raw data into a 
scaled version with a distribution that ranged between 0 and 1, with 

Fig. 1. Machine learning methods [6].  
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0 representing the mean and 1 representing the standard deviation. 
Furthermore, supervised and unsupervised methods are used to 
cluster and evaluate the available dataset.  

⁃ The results section gives two examples of the use of k-means and 
hierarchical algorithms to determine the optimal number of clusters, 
followed by the use of a support vector machine to evaluate the 
classification accuracy that yields the best outcome. In the results 
and discussion section, findings are interpreted.  

⁃ Analyzing dataset  
⁃ In the section devoted to the conclusion, the methodologies and their 

results were compared, and the ones that proved to be the most 
effective were highlighted. Additionally, the benefits and advantages 
of each method on its own were discussed, as well as the algorithms 
and methodologies that are utilized in machine learning. 

2. Methodology 

Python-based numpy, pandas, and sklearn libraries were used in 
order to implement the machine-learning methods that were utilized in 
the research project. These are several tools that have been created 
specifically for the purposes of data analytics and machine learning. 
Both the unsupervised technique, which includes grouping data based 
on similarities and distance and the supervised approach, in which we 
have goal data, were used in our efforts to generate classifications based 
on learning from the data that was made accessible (clusters). At each 
and every point in the project’s development, data cleaning, pre-
processing, and visualization are absolutely necessary for the project to 
be a success in machine learning [22]. 

Clustering is a set of basic unsupervised learning methods that helps 
to group the data into meaningful groups that indicate an underlying 
pattern. These approaches help to organize the data in a way that is more 
easily understood. The data are ordered into classes that have a high 
similarity within each class but a low similarity across classes [22]. Ten 
formation parameters of an unconventional tight oil reservoir for the 
Nene Marine Field were used to demonstrate their influence in deter-
mining which zones were productive and which were not, as well as the 
overall effectiveness of machine learning methods in enhancing the 
workflow of data-driven operations [23]. The range and statistical 
qualities of the features that were chosen to be used for this investigation 
are shown in Table 1. 

2.1. Data preprocessing 

The process of normalizing data is often required by a significant 
number of machine learning algorithms. In order to maximize the 
effectiveness of the supervised and unsupervised machine learning 
models’, the standardization approach is used to normalize both the 
inputs and the target variables. Standard scaling normalizes feature 
values by first subtracting the value of the mean, so that standardized 
values always have a mean of zero and then dividing by the standard 
deviation, hence that the resulting distribution has a standard deviation 
of one. It is possible to write the equation for the standard scaling as 

follows [24]: 

zi=
xi− μ

σ (1)  

μ=
1
n

∑n

i=1
(xi) (2)  

σ=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(xi− μ)2

√

(3)  

Where zi illustrates the standard score of the ith sample, xi denotes the 
ith sample, μ represents the mean value of the samples. In addition, σ 
signifies the standard deviation of the samples, and n indicates the 
number of samples in the dataset. 

2.2. Unsupervised machine learning 

Unsupervised machine learning works with a dataset that has not 
been labeled or a dataset of unknown structure. The using methods of 
unsupervised learning that will be able to investigate the structure of the 
dataset in order to derive relevant information without the direction of a 
known outcome (target) variable. The purpose of clustering is to 
discover a natural grouping in the data in such a way that the items 
included within the same cluster are more comparable to one another 
than they are to those contained within separate clusters [25]. 

2.2.1. Finding similarities using distances 
The methods for clustering data begin with the presumption that the 

information being analyzed contains subsets that are comparable to or 
identical with one another. One method for determining the degree of 
resemblance between two things is to calculate the distance between 
them using a variety of metrics [26]. 

2.2.1.1. Euclidean distance. The euclidean distance is the radial distance 
between two samples or instances in the dataset [26]. Calculating the 
euclidean distance between two observations x1 and x2 can be accom-
plished by the following equation: 

D(x1, x2)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(xi1− xi2)

2
√

(4)  

Where xi1 represents the value of the ith feature for the first observation 
and xi2 shows the value of ith feature for second observation. 

2.2.2. K-means clustering 
K-means is an unsupervised approach for machine learning that is 

used for the division of clusters. It aims to accomplish the objective of 
forming k clusters and allocating data points to them in such a manner 
that there is high similarity within each cluster (internal cohesion), and 
low similarity between clusters (external separation). The K-means 
clustering method uses the following stages to complete its process as 
can be shown in Fig. 2 [26]: 

⁃ Step one: initially, choose a number of clusters (which can be opti-
mized later).  

⁃ Step two: select randomly the cluster centroids (number of centroids 
= number of clusters).  

⁃ Step three: assign each data point to the nearest cluster centroid by 
calculating the distance between each data point and centroid. The 
commonly used distance calculation for k-means clustering is 
euclidean distance, a scale value that measures the distance between 
two data points.  

⁃ Step four: update cluster centroid position. A Centroid is computed as 
the average of data points in a cluster. 

Table 1 
Statistics properties of input variables.  

Parameters Range Mean Standard Deviation 

Depth 2244–2697.6 2463.213 117.036 
Porosity (φ) 0.016–1.0 0.479 0.211 
Shale Volume (Vsh) 0.001–1.0 0.387 0.185 
Water saturation (Sw) 0.014–1.0 0.312 0.198 
Permeability (k) 0.0004–1.0 0.135 0.172 
Total Organic Carbon (TOC) 0.107–1.0 0.522 0.188 
Young’s Modulus 0.099–1.0 0.494 0.203 
Poisson Ratio 0.046–1.0 0.455 0.160 
Brittleness Indicator 0.032–1.0 0.404 0.185 
Pore Size 0.003–1.0 0.212 0.212  
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⁃ Step five: repeat steps three and four until all data points are closest 
to the cluster centroid and no data point will switch cluster once this 
happen, the algorithm will stop working. 

2.2.3. Hierarchical clustering 
The hierarchical clustering technique is known to be one of the most 

frequent and commonly utilized methods for the process of clustering in 
the field of machine learning. When using the agglomerative clustering 
method, one begins at the cluster leaf and works their way upward until 
one reaches the cluster root. The workflow of the hierarchical clustering 
method can be seen in Fig. 3. The following stages are used to build 
clusters via the use of hierarchical clustering [26]:  

⁃ Step one: begin with each data point located in its own individual 
cluster.  

⁃ Step two: find the data points that are the closest to one another 
(using a measurement that is suitable for distance), then combine 
those points into a cluster.  

⁃ Step three: return to step 2 and continue doing so until all of the data 
points are combined into a single cluster. 

It is essential to calculate the degree of similarity between two 
clusters before deciding whether to combine or split them. The degree of 
similarity between two clusters may be calculated using a few different 
methods, including the following [27]:  

• Single-Linkage  
• Complete Linkage  
• Group Average  

• Distance Between Centroids  
• Ward’s Method 

In the course of the current investigation, complete linkage between 
two clusters was used in order to determine the degree of similarity that 
existed between them. Complete linkage may be defined as the distance 
between two clusters C1 and C2 that equal to the longest distance that 
can be found between the points Pi and Pj, in which Pi belongs to cluster 
C1 and Pj belongs to cluster C2 [26]. 

D(C1,C2)=max
Pi∈C1
Pj∈C2

(
d
(
Pi ,Pj

))
(5)  

2.3. Supervised machine learning 

Supervised machine learning techniques are used to accomplish 
aiming to learn the link between parameters and their output. Indeed, It 
accomplishes this by developing a function that relates the inputs to the 
outcome. The model must be fitted/trained using features and a target 
dataset, which are both necessary in supervised learning. Afterward, the 
succeeding classifier is utilized to forecast an unidentified attributes 
dataset that has no matching target data. Regression algorithms and 
classification algorithms are two types of supervised algorithms. The 
most significant distinction between regression and classification is that 
the goal dataset in regression is a collection of continuous variables, 
while in classification the target dataset is a collection of categorical 
variables or set of discrete variables. A typical supervised learning 
method can handle equal regression and classification tasks; however, 
the procedure is normally developed to withstand one instance and then 
changed to tackle the other situation. A support vector algorithm is an 
example of this kind of method [27]. 

2.3.1. Support vector machine 
The support vector machine is often used for solving issues involving 

regression and classification. In order to categories the data points, the 
fundamental idea behind support vector machines is to create a hyper-
plane or a series of hyperplanes in a high-dimensional feature space. In 
order to translate the input vectors into a space with a high dimension, 
kernel functions like linear, polynomial, and radial basis function (RBF) 
are used as mapping tools. The RBF algorithm is the one that is employed 
as the kernel function in Support vector classifier (SVC). In order to 
prevent the issues that arise from overfitting, there are two crucial pa-
rameters namely, the penalty parameter (C) and the kernel parameter 
(γ) that need to be selected with care. The greater the value of the 
penalty parameter that is applied, the greater the amount of mistake that 
is punished [27]. In this study, the penalty parameter and the kernel 
parameter are fine-tuned to enhance the performance of SVC. The values 
of C and γ that provide the best results are 215.44 and 0.001 corre-
spondingly these values are obtained by using Grid Search Cross Vali-
dation technique [27]. The workflow of the support vector machine 
method can be seen in Fig. 4. 

Fig. 2. Flowchart of k-means clustering [20].  

Fig. 3. Workflow for Hierarchical clustering [21].  
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3. Results and discussion 

3.1. K-means results 

It is possible that the k-means algorithm’s widespread use is due to 
the fact that it is not only incredibly simple to develop but also highly 
effective in terms of its use of computer resources when compared to 
other clustering methods. In the field of prototype-based clustering, the 
k-means method is considered to be a representative example. 
Prototype-based clustering implies that each cluster is represented by a 
pattern, which might be the centroid (average) of comparable points 
with continuous characteristics or the medoid (the most typical or often 
occurring point) with categorical features. One of the limitations of the 
k-means clustering method is that it requires us to choose the number of 
clusters, k, in advance, despite the fact that this algorithm is particularly 
effective at locating groups of data that have a spherical form. A poor 
clustering performance might be the consequence of an incorrect deci-
sion for the value of k [24]. 

3.1.1. Finding optimal number of K-means clusters 

3.1.1.1. Elbow curve method. The cluster’s variance will be maximum if 
it is assumed that all of the data points belong to only one cluster. The 
overall variance across all clusters will start to decrease as the number of 
clusters rises. However, if it supposes that each data point is a cluster by 
itself, the total variance will be zero. As a result, the Elbow curve 
approach takes the quantity of clusters into account when calculating 
the variance. The ideal cluster size is determined such that increasing 
the number of clusters does not dramatically alter the variance. The 
approach relies on the idea of reducing the inertia, often known as the 
within clustering sum of squares (WCSS) that occur inside a cluster. 
Inertia can be expressed by Ref. [25]: 

WCSS=
∑n

i=1
min
μj∈C

( ⃦
⃦Xi − μj

⃦
⃦2) (6)  

Where Xi represents each data point in the dataset and μj shows the 
mean of points of each cluster in the dataset (centroid of the cluster) 
while n is the total number of the records in the available dataset. The 
elbow diagram, which may be seen as a plot of WCSS versus the number 
of clusters, is shown in Fig. 5. Based on this graph, it can be deduced that 
the elbow is created with a K value of somewhere near 2. After K = 2, the 
WCSS begins a gradual decline this is due to the samples being nearer 
their designated centroids., and a reduction in variance begins as the 
number of clusters grows. 

3.1.1.2. Silhouette analysis. The silhouette coefficient, which is calcu-
lated using the silhouette analysis, is used to provide an evaluation of the 
cluster splitting process’s overall quality. The following is the formula 
that must be used to calculate the silhouette coefficient: 

S(i)=
b(i)− a(i)

Max
(
a(i), b(i)

) (7) 

The silhouette coefficient for a particular data point is denoted by the 
symbol S(i).The a(i) represents the average distance that separates this 

particular data point from all of the other data points that are included 
within the same cluster. The b(i) is the average distance that separates 
this particular data point from all of the other data points that are 
located in the nearest cluster. S(i) may take on any value between − 1 and 
1 [20].  

• If S(i) is equal to 1: it indicates that the data point in question is 
relatively near to other points that belong to the same cluster while 
being far apart from points that belong to the neighbor cluster.  

• If S(i) equals 0: it shows that the data point in question is located very 
close to the edge of its cluster.  

• If S(i) is equal to − 1: it illustrates this particular data point has been 
placed in the incorrect cluster. 

Fig. 4. Workflow for support vector machine (SVM) [21].  

Fig. 5. Elbow diagram for k means clustering.  

Fig. 6. Silhouette analysis for k means clustering.  
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Fig. 6 displays the final silhouette coefficient, whereas Fig. 7 displays 
the final silhouette diagram. The silhouette score is calculated by 
averaging the silhouette coefficient of all of the data points. The 
silhouette coefficients show how successfully the clustering is done, with 
greater values indicating better clustering. Given that the silhouette 
coefficient is the greatest of the measured quantities, and that k = 2 
corresponds to the hypothesis that there are exactly two clusters, the 
value of the coefficient is about (0.3707). 

3.1.1.3. Davies bouldin index analysis. The davies bouldin index (DBI) is 
a statistic used to evaluate various clustering techniques. Its most 
common use is checking whether or not a certain number of clusters was 
correctly divided using the k-means clustering algorithm. It’s possible to 
figure out the Davies-Bouldin Index by doing the following: 

D(i,j)=
d(i)+d(j)

d(i,j)
(8) 

The davies bouldin index for a certain set of clusters is denoted by the 
notation D(i,j) (e.g., clusters i and j). The d(i) and d(j) represent the average 
distance between each point and its corresponding cluster’s centroid 
with i and j being the clusters in question. The distance between the 
centers of clusters i and j is denoted by the notation d(i,j) [20]. 

Fig. 8 shows the findings of a study into the average maximum 
Davies Bouldin index for each cluster. Cluster 2 is the lowest-valued 
cluster, with a value of (1.0608). This is the lowest total value in the 
graph, and it clearly shows that there are just two clusters in the avail-
able dataset. 

The output variable that is shown in Table 2 includes labels that may 
be consulted in order to ascertain which cluster observations fall into. It 
can be noted that the first three observations are classed as belonging to 
cluster 1 whereas the fourth, seventh, and eighth records are categorized 
as belonging to cluster 0 respectively and the remaining observations 
will be labeled based on two clusters 0 and 1. 

3.1.2. SVM classifier accuracy based on K-means clustering 
The confusion matrix and the classification report based on the 

support vector machine classifier were applied in order to illustrate the 
effective performance of the clustering method. Fig. 9 and Table 3 both 
provide visual representations of this interpretation. By identifying the 
number of observations that correlate to the true positive and false 
negative, the confusion matrix displays a relatively high level of per-
formance of the support vector machine that relies on k means clustering 
results. To be more exact, 19 of the 20 records point to an accurate 
categorization, whereas one of the records provide evidence of incorrect 
classification. On the other hand, the classification report demonstrates 

the excellent performance of the model in identifying the productive 
zone (class 1). More precisely, the recall and the precision of class 1 refer 
to approximately 95% and 100% respectively, and the overall accuracy 
of the model is 98%, with 2% of the error occurring during the course of 
implementation. 

3.2. Hierarchical clustering results 

An alternate method to prototype-based clustering is hierarchical 
clustering. Hierarchical clustering techniques have the benefit of 
allowing us to display dendrogram (visualizations of a binary hierar-
chical clustering), which might also aid in the understanding of the 
findings by generating useful categories. We do not have to define the 
number of clusters up front, which is another helpful benefit of this hi-
erarchical method. Agglomerative and divisive hierarchical clustering 
are the two basic methods used in this process. In divisive hierarchical 
clustering, we begin with a single cluster that includes all of our samples 
and then divide it into successively smaller clusters, reducing the size of 
each cluster until it contains a single sample. The opposing strategy, 
agglomerative clustering, will be the main topic of this paper. Each 
sample is first clustered individually, and then we combine the closest 
pairings of clusters until only one cluster is left [24]. 

3.2.1. Finding optimal number of clusters 

3.2.1.1. Dendrogram graph. Dendrogram graph is used in hierarchical 
clustering to describe the given data as a cluster tree. Each group relates 
to two or more successor groups. The groupings are then structured in 
the form of a tree and layered inside one another, which should ulti-
mately result in a sensible categorization system. A visual representation 
of the data included in the whole set is provided by the process where 
clusters at one level combine with clusters at the level above using a 
degree of similarity [26]. 

Fig. 10 shows the dendrogram graph, which may be seen as a plot of 
the euclidean distance between each data point in the dataset on the y- 
axis versus the number of data points on the x-axis. The dendrogram 
vertical lines indicate how far apart certain groups are from one another. 
Based on this figure, it can be deduced that the threshold distance for the 
vertical line is around 10. The number of clusters will be equal to the 
number of vertical lines that are crossed by the line that was constructed 
using the threshold. The findings indicate since the red line intersects 2 
vertical lines, as a result the number of clusters is 2 clusters. 

Fig. 11 shows how a heat map combined with a hierarchical clus-
tering dendrogram may be used in practice to graphically represent the 
range of values present in a given sample matrix. This heat map shows Fig. 7. Silhouette diagram for k means clustering.  

Fig. 8. Davies bouldin index analysis for k means clustering.  
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how the dendrogram’s clustering of the samples is represented in the 
order of the rows. A simple dendrogram and a heat map with color- 
coded values for each sample and feature provide us a fantastic pic-
ture of the data set. The degree to which rows are similar or dissimilar to 
one another, as well as the node to which each row belongs, may be seen 
in the row dendrogram. 

3.2.1.2. Silhouette coefficient. The silhouette score is used to assess the 
quality of clusters generated using clustering algorithms in terms of how 
well samples are grouped with other samples that are similar to each 
other. The silhouette scores are shown in Fig. 12 in relation to the 
number of clusters with the greatest score being about (0.3652) which 
places it towards the clustered number two (k = 2). This provides a 
stronger signal that the quality of the grouping improves in direct pro-
portion to the silhouette score. 

The predicted output that is displayed in Table 4 has labels that may 
be referred to in order to determine which cluster observations belong to 

which group. It is important to note that the first three observations have 
been labeled as belonging to cluster 1, while the fourth and fifth re-
cordings have been labeled as belonging to cluster 0. The following re-
cords will be grouped based on the two clusters 0 and 1, respectively. 

3.2.2. SVM classifier accuracy based on hierarchical clustering 
In order to demonstrate the efficient operation of the hierarchical 

Table 2 
Independent variables and k-means identified clusters.  

Index Dependent Variables (Features) Independent Variable by 
K-Means Clustering 

Porosity Vsh Sw Permeability TOC Youngs 
Modulus 

Poisson’s 
Ratio 

Brittlenss 
Indicator 

Pore Size Labels 

0 1.513601 − 1.633796 − 0.982498 1.036566 2.245967 − 0.226440 − 0.384903 − 0.518592 0.971988 1 
1 1.019131 − 1.006603 − 1.432071 0.455948 1.508376 − 0.389675 − 0.672526 − 0.781551 0.556391 1 
2 1.305443 − 1.633796 0.042748 0.886517 0.534255 − 1.301511 0.255474 − 0.301786 0.911287 1 
3 − 0.634463 0.565501 1.121402 − 0.724972 − 0.546211 1.347443 0.147021 0.426387 − 0.847184 0 
4 0.274548 − 0.872430 − 0.753724 0.099126 0.655550 − 0.159958 − 0.866005 − 0.879109 0.335116 1 
5 1.468537 − 1.633796 0.057589 2.285428 0.445124 − 1.127410 0.183582 − 0.304410 2.196231 1 
6 − 1.046692 1.838864 0.146301 − 0.730672 − 1.370985 − 0.093718 0.568016 0.398538 − 0.841632 0 
7 − 0.665457 0.724875 − 0.595590 − 0.728558 − 0.586172 0.864283 1.412958 1.855551 − 0.853515 0 
8 1.188035 − 1.430469 3.459615 1.732896 1.663732 − 1.170127 − 0.656656 − 0.937337 1.833714 1 
9 0.088741 1.129033 − 0.630843 0.246650 0.167883 0.166663 − 0.466168 − 0.418599 0.680754 1  

Fig. 9. Support vector machine confusion matrix based on K-means clustering.  

Table 3 
Support vector machine calssification report based on K-means clustering.   

Precision Recall F1-Score Support 

0 0.96 1 0.98 22 
1 1.00 0.95 0.97 20  

Accuracy   0.98 42 
Macro avg 0.98 0.97 0.98 42 
Weighted avg 0.98 0.98 0.98 42  

Fig. 10. Dendrogram illustration graph.  

Fig. 11. Dendrogram heat map illustration.  
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clustering approach, the confusion matrix as well as a classification 
report that was generated using a support vector machine classifier were 
both used. Fig. 13 and Table 5 both provide visual representations of this 
interpretation. A relatively high degree of performance of the support 
vector machine is shown by the confusion matrix, which is dependent on 
the results of hierarchical clustering. This is accomplished by deter-
mining the number of observations that correspond to the true positive 
and the false negative. To be more specific, 15 of the 15 records lead to a 
valid categorization, whilst none of the records give proof of any inac-
curate classification. In contrast, the report on categorization reveals 
that the model performs very well when it comes to locating the yielding 
zone (class 1). The recall and the precision of class 1 correspond to 100% 
and 94% respectively, while the total accuracy of the model is 98%, with 
2% of the mistake happening during the process of implementation. 

4. Conclusions 

In this article, an intelligent method for predicting sweet spots and 
non-sweet spots in tight unconventional reservoirs using unsupervised 
and supervised machine learning algorithms are proposed. The results 
that were produced by using k-means and hierarchical clustering to 
create productive and non-productive zones give a method of con-
structing zonal prediction that is strictly driven by data and has less bias 
when compared to the manual method that is dependent on human 
assessment. The supervised method support vector machine offers a way 
to anticipate the accuracy of the clusters to a very large degree in core 
and wireline logging of the well. Although the technique above pro-
duced a very accurate forecast with the basic data that was available, 
more data will result in a higher accuracy score and a more accurate 

prediction. In addition to this, the advantage of the grid search cross- 
validation tool was centered on hyperparameter tweaking. This is 
done in order to gain better parameters, which ultimately leads to 
improved support vector machine outcomes. The findings obtained from 
both the unsupervised and the supervised approaches help to reduce the 
amount of bias that is present in the zonal identification modeling. We 
came to the conclusion that predicting sweet spots based on available 
core and wireline logging data and distributing for uncored depth in-
tervals is typically more reliable than traditional manual zonal predic-
tion. This is despite the fact that both methods present a more efficient 
way of predicting productive zones in comparison to the traditional 
method of manual zonal prediction. On the other hand, the zonal pre-
diction may be performed using a classification approach that is based 
on clustering even if core data are not available. Because a more accu-
rate predictive model may be developed with increased amounts of data 
to train the machine with, it is essential to keep in mind that huge 
amounts of data that are organized concisely are an essential component 

Fig. 12. Silhouette coefficient for Hierarchical clustering.  

Table 4 
Independent variables and hierarchical predicted clusters.  

Index Dependent Variables (Features) Independent Variable by 
Hierarchical Clustering 

Porosity Vsh Sw Permeability TOC Youngs 
Modulus 

Poisson’s 
Ratio 

Brittlenss 
Indicator 

Pore Size Labels 

0 1.513601 − 1.633796 − 0.982498 1.036566 2.245967 − 0.226440 − 0.384903 − 0.518592 0.971988 1 
1 1.019131 − 1.006603 − 1.432071 0.455948 1.508376 − 0.389675 − 0.672526 − 0.781551 0.556391 1 
2 1.305443 − 1.633796 0.042748 0.886517 0.534255 − 1.301511 0.255474 − 0.301786 0.911287 1 
3 − 0.634463 0.565501 1.121402 − 0.724972 − 0.546211 1.347443 0.147021 0.426387 − 0.847184 0 
4 0.274548 − 0.872430 − 0.753724 0.099126 0.655550 − 0.159958 − 0.866005 − 0.879109 0.335116 0 
5 1.468537 − 1.633796 0.057589 2.285428 0.445124 − 1.127410 0.183582 − 0.304410 2.196231 1 
6 − 1.046692 1.838864 0.146301 − 0.730672 − 1.370985 − 0.093718 0.568016 0.398538 − 0.841632 0 
7 − 0.665457 0.724875 − 0.595590 − 0.728558 − 0.586172 0.864283 1.412958 1.855551 − 0.853515 0 
8 1.188035 − 1.430469 3.459615 1.732896 1.663732 − 1.170127 − 0.656656 − 0.937337 1.833714 1 
9 0.088741 1.129033 − 0.630843 0.246650 0.167883 0.166663 − 0.466168 − 0.418599 0.680754 0  

Fig. 13. Support vector machine confusion matrix based on hierarchi-
cal clustering. 

Table 5 
Support vector machine calssification report based on hierarchical clustering.   

Precision Recall F1-Score Support 

0 1.00 0.96 0.98 27 
1 0.94 1.00 0.97 15  

Accuracy   0.98 42 
Macro avg 0.97 0.98 0.97 42 
Weighted avg 0.98 0.98 0.98 42  
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of any machine learning algorithm. 
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