Experimental Physiology

https://ep.msubmit.net

EP-RP-2022-090849

Title: Sodium-glucose co-transporter 2 inhibition does not improve the acute pressure natriuresis response in rats with Type 1 diabetes

Authors: Natalie K Jones Hannah M Costello Marie-Louise T Monaghan Kevin Stewart David Binnie Joanne Marks Matthew A Bailey Geoffrey J Culshaw

Author Conflict: No competing interests declared

Running Title: SGLT2 inhibition during acute pressure natriuresis in T1DM

Abstract: Type 1 diabetes mellitus (T1DM) leads to serious complications including premature cardiovascular and kidney disease. Hypertension contributes importantly to these adverse outcomes. The renal pressure natriuresis (PN) response, a key regulator of blood pressure (BP), is impaired in rats with T1DM as tubular sodium reabsorption fails to down-regulate with increasing BP. We hypothesized that sodium-glucose co-

transporter 2 (SGLT2) inhibitors, which reduce cardiovascular risk in kidney disease, would augment the PN response in T1DM rats. Nondiabetic or T1DM (35-50 mg/kg streptozotocin IP) adult male Sprague-Dawley rats were anesthetized (thiopental 50mg/kg IP) and randomized to receive either dapagliflozin (10 mg/kg IV) or vehicle. Baseline sodium excretion was measured and then BP was increased by sequential arterial ligations to induce the PN response. In non-diabetic animals, the natriuretic and diuretic response to increasing BP was not augmented by dapagliflozin. Dapagliflozin induced glycosuria but this was not influenced by BP. In T1DM rats the PN response was impaired. Dapagliflozin again increased urinary glucose excretion but did not enhance PN. Inhibition of SGLT2 does not enhance the PN response in rats, either with or without T1DM. SGLT2 makes only a minor contribution to tubular sodium reabsorption and does not contribute to the impaired PN response in T1DM.

New Findings: Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce cardiovascular risk in patients with both diabetic and non-diabetic kidney disease, the mechanism responsible is currently unknown.

We investigated whether SGLT2 inhibition could improve renal pressure natriuresis (PN), an important mechanism for long-term blood pressure control, which is impaired in type 1 diabetes mellitus (T1DM). SLGT2 inhibitor dapagliflozin did not enhance the acute *in vivo* PN response in either healthy or T1DM Sprague Dawley rats. Our data suggest that the mechanism underpinning the clinical benefits of SGLT2 inhibitors on health are unlikely to be due to an enhanced natriuretic response to increased blood pressure.

Dual Publication: No

Funding: Kidney Research UK: Natalie K Jones, Matthew A Bailey, Geoffrey J Culshaw, RP02/2019; British Heart Foundation (BHF): Hannah M Costello, Matthew A Bailey, FS/16/54/32730; Diabetes UK: Matthew A Bailey, 17/0005685 The work was supported by Kidney Research UK (Project grant RP02/2019), the British Heart foundation (Studentship FS/16/54/32730), and Diabetes UK (Project grant 17/0005685).

1	Sodium-glucose co-transporter 2 inhibition does not improve the acute pressure
2	natriuresis response in rats with Type 1 diabetes
3	
4	Natalie K Jones ¹ *, Hannah M Costello ¹ , Marie-Louise T Monaghan ¹ , Kevin Stewart ¹ ,
5	David Binnie ¹ , Joanne Marks ² , Matthew A Bailey ¹ , Geoffrey J Culshaw ¹
6	
7	¹ British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh,
8	Edinburgh, UK
9	² Department of Neuroscience, Physiology and Pharmacology, Royal Free Campus,
10	University College London, London, UK
11	
12	*Corresponding author
13	British Heart Foundation Centre for Cardiovascular Science
14	Queens Medical Research Institute
15	47 Little France Crescent
16	Edinburgh
17	EH16 4TJ
18	Email: <u>natalie.jones@ed.ac.uk</u>
19	Telephone: 0131 242 9219
20	https://orcid.org/0000-0001-9265-3348
21	
22	Running title: SGLT2 inhibition during acute pressure natriuresis in T1DM
23	
24	Keywords: Pressure natriuresis, blood pressure, sodium balance, SLGT2, diabetes
25	
26	Word count: 3,476
27	References: 49
28	
29	Subject area: Renal
30	

31 New Findings

32

33	٠	Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce cardiovascular risk
34		in patients with both diabetic and non-diabetic kidney disease, the mechanism
35		responsible is currently unknown.

We investigated whether SGLT2 inhibition could improve renal pressure
 natriuresis (PN), an important mechanism for long-term blood pressure control,
 which is impaired in type 1 diabetes mellitus (T1DM). SLGT2 inhibitor
 dapagliflozin did not enhance the acute *in vivo* PN response in either healthy or
 T1DM Sprague Dawley rats. Our data suggest that the mechanism underpinning
 the clinical benefits of SGLT2 inhibitors on health are unlikely to be due to an
 enhanced natriuretic response to increased blood pressure.

43

44 Abstract

45

46 Type 1 diabetes mellitus (T1DM) leads to serious complications including premature 47 cardiovascular and kidney disease. Hypertension contributes importantly to these 48 adverse outcomes. The renal pressure natriuresis (PN) response, a key regulator of 49 blood pressure (BP), is impaired in rats with T1DM as tubular sodium reabsorption fails 50 to down-regulate with increasing BP. We hypothesized that sodium-glucose co-51 transporter 2 (SGLT2) inhibitors, which reduce cardiovascular risk in kidney disease, 52 would augment the PN response in T1DM rats. Non-diabetic or T1DM (35-50 mg/kg 53 streptozotocin IP) adult male Sprague-Dawley rats were anesthetized (thiopental 54 50mg/kg IP) and randomized to receive either dapagliflozin (10 mg/kg IV) or vehicle. 55 Baseline sodium excretion was measured and then BP was increased by sequential 56 arterial ligations to induce the PN response. In non-diabetic animals, the natriuretic and 57 diuretic response to increasing BP was not augmented by dapagliflozin. Dapagliflozin 58 induced glycosuria but this was not influenced by BP. In T1DM rats the PN response 59 was impaired. Dapagliflozin again increased urinary glucose excretion but did not 60 enhance PN. Inhibition of SGLT2 does not enhance the PN response in rats, either with 61 or without T1DM. SGLT2 makes only a minor contribution to tubular sodium 62 reabsorption and does not contribute to the impaired PN response in T1DM.

63 Introduction

64

65 The prevalence of Type 1 diabetes mellitus (T1DM) in children and adolescents is 66 approximately 1 in 300 in the USA [1] and the incidence is increasing worldwide [1,2]. 67 T1DM decreases life-expectancy by ~13 years [3], in part due to macrovascular and 68 microvascular complications causing premature cardiovascular (CV) disease and 69 nephropathy [4]. Increased renal tubular sodium reabsorption [5] and sodium retention 70 [6] are early hallmarks of clinical and experimental T1DM. Since renal regulation of 71 extracellular fluid volume by modifying sodium reabsorption is a major determinant of 72 long-term blood pressure (BP) [7], dysfunction within the kidney impairs its ability to 73 stabilize BP. Both hypertension and hyperglycaemia are major risk factors for CV 74 disease and nephropathy [2,8-10], and so restoration of the normal regulation of 75 sodium balance is a therapeutic goal in order to reduce CV risk and further renal injury. 76 Pressure natriuresis (PN) is the positive relationship between BP, renal perfusion 77 pressure, and sodium excretion. This relationship, often attenuated in experimental 78 hypertension, is hypothesized as a key regulator of long-term BP [7,11], although this 79 remains controversial [12]. Experimentally, PN largely reflects reduced sodium 80 reabsorption in the proximal tubule due to inactivation of major sodium transport 81 proteins [7]. We have recently shown that the PN response is severely impaired in 82 Sprague Dawley rats with streptozotocin (STZ)-induced T1DM [13]. This dysfunction 83 occurs because renal tubular sodium reabsorption does not down-regulate following 84 ramps in BP [13]. The molecular basis of this impairment is not known. 85 The sodium-glucose co-transporter 2 (SGLT2) is the major route for glucose and 86 sodium reabsorption in the proximal tubule, while SGLT1 in the S3 segment is 87 responsible for a much smaller amount of reabsorption [14]. Acute inhibition of SGLT2 88 causes glycosuria, diuresis, and natriuresis [15,16]. Chronically, SGLT2 inhibitors have 89 been shown to reduce hyperglycaemia in patients with T1DM and Type 2 diabetes 90 mellitus (T2DM). They promote weight loss, prevent albuminuria, and reduce BP 91 [17,18], thus leading to fewer CV events and kidney failure in clinical trials [19–21]. 92 The reduction in CV and renal risk appears to be independent of the level of 93 hyperglycaemia in patients [21], and following meta-analysis of clinical trial data, the 94 United States Food and Drug Administration (FDA) have recently approved the use of

- 95 SGLT2 inhibitors in non-diabetic patients with heart failure and reduced ejection
- 96 fraction [22]. The mechanisms underpinning these clinical benefits remain elusive.
- 97 Experimentally, SGLT2 inhibition is renoprotective, reducing markers of tubular and
- 98 glomerular injury in the urine of diabetic rodent models [23,24]. Many anti-
- 99 hypertensive agents are able to stabilize extracellular fluid volume, reduce BP, and
- 100 protect glomeruli from an excessive hemodynamic load, and these effects are associated
- 101 with an enhanced PN response [7,25,26]. This raises the possibility that SGLT2
- 102 inhibitors enhance the acute PN response, and thereby reduce long-term renal injury and
- 103 CV risk.
- 104 We hypothesized that SGLT2 inhibition would restore the normal PN response in a rat
- 105 model of T1DM. In this study, we recorded the natriuretic response after acute ramps in
- 106 BP in anesthetized healthy and T1DM rats and examined the effect of concurrent
- 107 SGLT2 inhibition.
- 108
- 109

110

Experimental materials and methods

111

- 112 <u>Animals and husbandry</u>
- 113 Experiments were performed in accordance with the UK's Animals (Scientific
- 114 Procedures) Act under a UK Home Office Project License. All protocols were reviewed
- 115 by the University of Edinburgh's Animal Welfare and Ethics Review Board prior to
- 116 experimentation.
- 117 For all studies, adult male Sprague Dawley rats (250-300 g) were purchased from
- 118 Charles River UK and were maintained on standard chow (0.25% sodium), water *ad*
- 119 *libitum*, and were housed in rooms with a 12-hour light cycle (lights 07.00–19.00 h) at
- 120 $21\pm1^{\circ}$ C and 50% humidity.
- 121
- 122 Induction of T1DM
- 123 T1DM was induced by intraperitoneal (IP) injection of streptozotocin (STZ; 35 mg/kg
- in 0.1 M citrate buffer, pH 4.5; Sigma-Aldrich, Gillingham, UK). Rats had free access
- to food and drinking water was supplemented with 10% sucrose to prevent initial
- 126 hypoglycaemia. A blood glucose measurement 48 hours later of >12 mmol/L on
- 127 glucometer (Accu-Chek Aviva; Roche Diagnostics Limited, Burgess Hill, UK;
- 128 maximum blood glucose reading of 32 mmol/L) was required to confirm T1DM; rats
- 129 that did not reach this threshold received a second injection of 15 mg/kg. Blood glucose
- 130 was again measured at day 7 and immediately prior to the experimental procedure to
- 131 confirm sustained hyperglycaemia. Non-T1DM control rats received citrate vehicle
- alone by IP injection. All experiments were performed 2–3 weeks after the first STZ
- 133 injection.
- 134

135 *In vivo* pressure natriuresis protocol

- 136 PN experiments were carried out as previously described [13] with all procedures
- 137 beginning at around 10am. Briefly, non-recovery anaesthesia was induced with
- 138 barbiturate anaesthetic agents. In the T1DM rats, sodium thiobutabarbital was used
- 139 (Inactin; 120 mg/kg IP; Sigma Aldrich, UK). Supply issues necessitated a change of
- 140 anaesthetic and for the non-T1DM rats and sodium thiopental was used (50 mg/kg IP;
- 141 Archimedes Pharma, Reading, UK). The right jugular vein was cannulated for

142 intravenous (IV) infusion, a tracheotomy was performed, and the right carotid artery 143 cannulated. The arterial line was used for intermittent blood sampling and otherwise 144 was connected to a calibrated BP transducer and multi-channel data acquisition system 145 (Powerlab; ADInstruments, Oxford, UK) for real-time mean BP (MBP) measurement. 146 Physiological saline (pH 7.4; 1 mL/h/100 g body weight), containing 2% bovine serum 147 albumin and FITC-inulin (both Sigma-Aldrich), was infused through the venous line. 148 General anaesthesia was maintained through this line by $20-30 \ \mu L$ injections of the 149 barbiturate anaesthetic. 150 After a post-surgical equilibration period of 30 minutes, the SGLT2 inhibitor 151 dapagliflozin (1 mg/kg, Selleckchem, Munich, Germany) or vehicle (2% DMSO in 152 0.9% saline, Sigma-Aldrich) was injected through the venous line in a blinded fashion. 153 After a 30 min baseline period, PN was induced by sequential arterial ligation of the 154 celiac and cranial mesenteric arteries (Period 1), followed by a second ligation of the 155 distal aorta (Period 2). During baseline and both periods of increased MBP, urine was 156 collected for 30 min and glomerular filtration rate (GFR) was measured by FITC-inulin 157 clearance. 158 Electrolyte analysis was carried out using a Spotchem EL SE-1520 analyser (Arkray, 159 Kyoto, Japan). Plasma and whole blood glucose were measured using the Accu-Chek 160 Aviva glucose meter (Roche). Glucose concentration in urine was measured by an 161 enzymatic UV test using the hexokinase method (Beckman Coulter, High Wycombe, 162 UK).

163

164 <u>Statistical analysis</u>

165 Statistical comparisons were made with GraphPad Prism 8 (San Diego, CA). Data are 166 presented as individual measurements or mean \pm standard deviation (SD). The study 167 was designed to obtain a power >80% if group sizes were six rats and dapagliflozin 168 reduced the suppression of urinary sodium excretion during PN in T1DM rats by 50% 169 (12±6 µmol/min/g kw) [13]. Additional rats were included in each group to account for 170 anticipated dropouts. Overall, there was an experimental mortality rate of 6.25%, data 171 and samples from these animals were not used in the subsequent analysis, resulting in 172 final cohort sizes of n=7 for T1DM rats and n=8 for non-diabetic rats. Because the 173 anaesthetic agent had to be changed, comparisons were only made within groups

- 174 (T1DM v T1DM, and non-T1DM v non-T1DM) with two-way analysis of variance
- 175 (ANOVA), to avoid potential confounding effects of the anaesthetic. The fixed factors
- 176 of BP ramps and dapagliflozin (dapa), and their interaction, generated three P values per
- 177 comparison. Significance was explored further with Tukey's *post hoc* tests. Regression
- 178 analysis plotted dependent variables from vehicle- and SGLT inhibitor-treated rats
- against MBP (independent variable). An extra sum-of-squares F test was used to
- 180 determine whether one curve fitted both data sets. For all tests, P<0.05 was considered
- 181 significant.
- 182

183 <u>Results</u>

185	Pressure natriuresis and SGLT2 inhibition in non-diabetic Sprague Dawley rats
186	The PN response was measured in 16 male adult Sprague Dawley rats. Eight rats
187	received vehicle (weight, 399.6±14.9 g; blood glucose, 7.5±0.9 mM), and eight received
188	dapagliflozin (weight, 397±31.3 g; blood glucose, 7.4±0.7 mM). MBP (Figure 1A)
189	increased in both groups (P<0.001) by a similar extent (P=0.813), with ramps of ~ 20
190	mmHg (period 1) and ~45 mmHg (period 2) from baseline. GFR values increased after
191	ligation (P<0.001) in a comparable manner (P=0.087), doubling from baseline in period
192	2 but still remaining within a range suggestive of effective autoregulation (Figure 1B).
193	From similar baseline urine flow rates (vehicle, $4.7\pm3.4 \ \mu L/min/g \ kw; \ dapa, 12.1\pm9.6$
194	μ L/min/g kw; P=0.073), increases in BP induced a diuresis (P<0.001) that was
195	comparable between the two groups (P=0.287, Figure 2A). Dapagliflozin increased
196	urinary glucose excretion at all time points (all P<0.001, Figure 2B). Urinary sodium
197	excretion rates were also similar between groups at baseline (vehicle, 0.3 ± 0.3
198	$\mu mol/min/g$ kw; dapa, 0.5±0.7 $\mu mol/min/g$ kw; P=0.879) and both increased by ~40-
199	fold when BP was increased (vehicle, 20.4 \pm 7.5 μ mol/min/g kw; dapa, 20.8 \pm 11.2
200	μmol/min/g kw; effect of BP ramps, P<0.001; effect of dapagliflozin, P=0.799;
201	interaction, P=0.825; Figure 2C).
202	The fractional excretions of sodium and glucose were then calculated to determine
203	whether the natriuretic/glycosuric responses were due to a reduction in tubular
204	reabsorption. As expected, dapagliflozin increased the fractional excretion of glucose
205	(P<0.001) but the magnitude varied according to the clearance period (P<0.001, Figure
206	3A). Fractional excretion of sodium mirrored the increases in urine flow rates and
207	sodium excretion rates with eightfold increases (P<0.01) from baseline that were
208	unaffected by dapagliflozin (effect of dapa, P=0.997; interaction, P=0.636; Figure 3B).
209	Similar results were also seen for potassium and chloride (Figure 3C and D).
210	The relationships of urine flow rate, urinary sodium excretion rate, and GFR with MBP
211	were all curvilinear (Figure 4A, B, and C). For each parameter, data sets from vehicle-
212	and dapagliflozin-treated rats could be fitted with a single curve (urine flow rate,
213	P=0.081; urinary sodium excretion, P=0.521; GFR, P=0.163). A regression line could

- 214 not be fitted to either urinary glucose dataset, but all values from dapagliflozin-treated
- 215 rats were greater than those from vehicle-treated rats (P<0.001, Figure 5D).
- 216 In contrast to the urine, plasma concentrations of glucose and electrolytes were
- 217 relatively stable. When MBP increased, there were small reductions in plasma glucose
- 218 of ~2 mmol/L (P<0.001) and potassium of ~0.2 mmol/L (P=0.040) but these were
- 219 unaffected by dapagliflozin (glucose: effect of dapa, P=0.102; interaction, P=0.946;
- potassium: effect of dapa, P=0.598; interaction, P=0.620; Figure 5A and B). Similarly,
- 221 plasma chloride (P=0.441) and sodium (P=0.740) were unaffected by increases in MBP
- and did not differ between groups (chloride: effect of dapa, P=0.087; interaction,
- 223 P=0.355; sodium: effect of dapa, P=0.231; interaction, P=0.715; Figure 5C and D).
- 224

225 <u>Pressure natriuresis and SGLT2 inhibition in T1DM Sprague Dawley rats</u>

T1DM was induced by STZ injection in 14 Sprague Dawley rats, and, 14 days later,

they were randomly allocated to receive either vehicle (n=7; weight, 376±29 g; blood

228 glucose, 29.6±4.8 mmol/L) or dapagliflozin (n=7; weight, 339±33 g; blood glucose,

- 229 24.0±7.7 mmol/L).
- 230 MBP increased in both groups by a similar extent (effect of BP ramps, P<0.001; effect
- of dapa, P<0.001; interaction, P= 0.949; Figure 6A), with ramps of \sim 18 mmHg (period
- 1) and ~35 mmHg (period 2) from baseline. Overall, MBP was ~13 mmHg lower in
- 233 dapagliflozin-treated rats compared to vehicle (P=0.003) but there were no differences
- between the groups during individual clearance periods. There was no difference in
- baseline GFR between groups (P=0.383) and no measurable effect on GFR of
- 236 increasing MBP (effect of ligations P=0.448; interaction P=0.054; Figure 6B).
- 237 Increases in MBP induced a diuresis (P<0.001) that was comparable between the
- dapagliflozin- and vehicle-treated groups (effect of dapa, P=0.119; interaction, P=0.083;
- Figure 7A) at either time-point. Dapagliflozin treatment induced glycosuria, but vehicle
- did not (effect of dapa, P<0.0001; interaction, P=0.705; Figure 7B) but there was no
- effect on glucose excretion from increasing MBP in either group (P=0.728). Urinary
- sodium excretion rates were very similar between groups at baseline (vehicle, 0.2 ± 0.2
- 243 μmol/min/g kw; dapa, 0.2±0.2 μmol/min/g kw; P=0.383). Natriuresis was also induced
- by the MBP ramps. However, despite increases in sodium excretion of up to ~10-fold
- 245 (period 1) and ~30-fold (period 2) (P<0.001) in both groups, the overall natriuretic

- effect was reduced by dapagliflozin (effect of dapa, P=0.004; interaction, P=0.059;
- **247** Figure 7C).
- 248 Fractional excretion of glucose was higher in the dapagliflozin-treated group than
- 249 vehicle-treated controls throughout the protocol and remained stable (effect of BP
- 250 ramps, P=0.452; effect of dapa, P<0.0001; interaction, P=0.476; Figure 8A). Fractional
- excretion of sodium was $\sim 0.3\%$ at baseline in both vehicle and dapagliflozin-treated rats
- 252 (Figure 8B). Acutely elevated BP increased fractional excretion of sodium in both
- 253 groups (P=0.0001), indicating a reduction in tubular sodium reabsorption, but the effect
- 254 was blunted by dapagliflozin compared with vehicle (effect of dapa, P=0.005;
- interaction P=0.016).
- 256 The relationships of urine flow rate and urinary sodium excretion rate with MBP were
- 257 curvilinear (Figure 9A and B). For both parameters, data sets from vehicle- and
- 258 dapagliflozin-treated rats could be fitted with a single curve (urine flow rate, P=0.225;
- 259 urinary sodium excretion, P=0.531). A regression line could not be fitted to either GFR
- 260 or urinary glucose dataset (Figure 9C and D). There was considerable overlap of both
- GFR datasets.

263 Discussion

264 265

The main finding of our study is that acute inhibition of sodium and glucose transport 266 via SGLT2 with dapagliflozin does not enhance the experimental PN response. Of 267 translational clinical importance, and contrary to our hypothesis, SGLT2 inhibition does 268 not restore normal PN in T1DM rats. We conclude that SGLT2 makes only a minor 269 contribution to overall tubular sodium reabsorption and does not contribute to the 270 abnormal PN response in T1DM. 271 PN describes the renal response to acutely elevated BP; the rapid reduction in tubular 272 sodium transport along the entire nephron can be measured as increased fractional 273 excretion of sodium [7]. In vivo, micropuncture confirms that due to autoregulation, the 274 contribution that GFR makes to natriuresis is minor, whereas the largest contribution 275 can be localized to inhibited sodium transport in the proximal tubule [27,28]. SGLT2 is 276 also located within the proximal tubule, and when SGLT2 is inhibited and MBP 277 maintained, glycosuria is accompanied by a $\sim 20\%$ reduction in proximal tubular sodium 278 reabsorption [29]. Therefore, we anticipated that our first PN experiment, in non-T1DM 279 rats, would demonstrate positive relationships not only between MBP and sodium 280 excretion, but also MBP and glycosuria when SGLT2 was inhibited with dapagliflozin. 281 Since we have previously identified an impaired PN response in pre-nephropathy 282 T1DM rats [13] that model sodium and water retention observed in people with T1DM 283 [6,30,31], we also used dapagliflozin in a separate PN experiment to try to restore these 284 positive relationships in T1DM. 285 In both experiments marked increases in MBP were achieved and increases in fractional 286 excretion of sodium were consistent with induction of PN. However, regardless of 287 diabetic status, there was no positive relationship between MBP and urinary glucose, 288 even during SGLT2 blockade. The absence of glycosuria in the T1DM rats receiving 289 vehicle may have reflected a dip in blood glucose levels below the glycaemic threshold 290 under anaesthesia, or increased SGLT2 activity. However, when SGLT2 was blocked, 291 the impaired PN response we have observed in T1DM rats [13], still did not resolve. 292 Therefore, overall sodium excretion and MBP are tightly linked, and this relationship is 293 independent of sodium and glucose co-transport in the PT. In the context of the renal

response to increased BP, the contribution of SGLT2-mediated transport appears to benegligible.

296 The failure of blocking SGLT2 to enhance natriuresis in this PN model is worthy of 297 further consideration because sodium and water retention contributes to cardiovascular 298 risk in T1DM [32]. All rats treated with dapagliflozin had glycosuria, demonstrating 299 that glucose reabsorption distal to SGLT2 is low. By contrast, overall sodium excretion 300 did not increase, consistent with a compensatory increase in sodium transport within the 301 nephron, downstream of SGLT2. Such a compensatory response is reported with other 302 agents that interfere with sodium transport in the proximal tubule [33,34], but this not 303 been reported previously after acute SGLT2 blockade. Instead, increased rather than 304 decreased urine output and sodium excretion have been described [35]. This 305 discrepancy might be explained by our study design, in that, unlike previous studies, 306 MBP was acutely increased rather than maintained at a baseline level. This should 307 activate an integrated PN response that switches off sodium transporters along the 308 nephron [7]. An additional natriuretic response would not occur if any one of these 309 transporters remained active after SGLT2 blockade. Identifying the transporter 310 responsible was beyond the scope of this study and would require a combination of 311 micropuncture and selective inhibition of sodium transport distal to the site of SGLT2 312 in the proximal tubule. However, compensatory reabsorption was also evident following 313 dapagliflozin administration to T1DM, even when T1DM, itself, had already suppressed 314 PN. Neither MBP nor GFR was reduced during individual clearance periods or on 315 regression analysis, raising the possibility that reabsorption is driven by the sodium or 316 glucose content of the tubular fluid or osmotic forces. This is already known to reduce 317 the tubuloglomerular feedback signal in T1DM rats [36,37], and therefore would be 318 predicted to occur distal to the macula densa where tubuloglomerular feedback is 319 initiated. We do not believe our results reflect RAAS activation because urinary 320 aldosterone excretion is not increased in this pre-nephropathy T1DM model [13], and in 321 T1DM patients, angiotensin II and plasma renin activity are reduced [6,38]. However, 322 we do believe that our study may provide some explanation as to why sustained 323 natriuresis or reductions in plasma volume are not observed in longer term clinical 324 studies in people receiving SGLT2 inhibitors [15,39,40]. Furthermore, since patients

- with T1DM already have difficulty in excreting an acute sodium load, our data do notsupport the use of SGLT2 inhibitors to improve this.
- 327 According to the Guyton hypothesis, sodium and water excretion are key determinants 328 of BP [41], so our data are also consistent with clinical trials that have demonstrated 329 only a modest reduction in BP with SGLT2 inhibitors, despite inducing glycosuria [42], 330 and a failure to promote natriuresis in T2DM patients over two weeks [39]. However, 331 care should be taken when placing our data within a clinical context. SGLT2 inhibitors 332 do show promise in providing nephroprotection to T1DM patients [20] suggesting that 333 even if SGLT2 blockade fails to improve natriuresis, the clinical consequences are not 334 deleterious. We also did not specifically address the effects of chronic administration of 335 an SGLT2 inhibitor on the acute PN response and therefore did not take into account the 336 effect of long-term effects of SGLT2 blockade on the renal transcriptome, which can be 337 profound, even inducing a phenotype that mimics fasting [43]. At a functional level, in 338 rats with congestive heart failure, where there is a drive to sodium and water retention, 339 four-weeks of empagliflozin enhanced excretion of an acute sodium load by 340 downregulating proximal tubule NHE3-activity [44], overwhelming any compensatory 341 response downstream. This might be expected in people, since sustained dapagliflozin 342 treatment enhances lithium clearance [45], a marker of reduced proximal tubular 343 sodium reabsorption, in T2DM. Therefore, to help determine the clinical implications 344 from our work, PN experiments after long-term administration of dapagliflozin are 345 justified. 346 A further limitation of our study is that all the experimental rats used were exclusively 347 male. Differences in the contribution of renal blood flow to PN are known to exist 348 between male and female rats [46,47] and so extrapolation of our data to female rats 349 should be made with caution. This is of clinical relevance since the CV benefits of
- 350 SGLT2 inhibitors may be less in females than in males [48].
- 351

352	References		
353			
354	1	Maahs D.M., West N.A., Lawrence J.M. and Mayer-Davis E.J. (2010)	
355		Epidemiology of type 1 diabetes. Endocrinol. Metab. Clin. North Am., 39, 481-	
356		97. doi:10.1016/j.ecl.2010.05.011	
357	2	Conway B.R., Rennie J., Bailey M.A., Dunbar D.R., Manning J.R., Bellamy	
358		C.O., et al. (2012) Hyperglycemia and renin-dependent hypertension synergize to	
359		model diabetic nephropathy. J. Am. Soc. Nephrol., 23, 405-11.	
360		doi:10.1681/ASN.2011060577	
361	3	Livingstone S.J., Levin D., Looker H.C., Lindsay R.S., Wild S.H., Joss N., et al.	
362		(2015) Estimated life expectancy in a scottish cohort with type 1 diabetes, 2008-	
363		2010. J. Am. Med. Assoc., 313, 37-44. doi:10.1001/jama.2014.16425	
364	4	Rawshani A., Rawshani A., Franzén S., Eliasson B., Svensson A.M., Miftaraj M.,	
365		et al. (2017) Range of Risk Factor Levels: Control, Mortality, and Cardiovascular	
366		Outcomes in Type 1 Diabetes Mellitus. Circulation, 135, 1522-31.	
367		doi:10.1161/CIRCULATIONAHA.116.025961	
368	5	Song J., Knepper M.A., Verbalis J.G. and Ecelbarger C.A. (2003) Increased renal	
369		ENaC subunit and sodium transporter abundances in streptozotocin-induced type	
370		1 diabetes. Am. J. Physiol Ren. Physiol., 285, 1125-37.	
371		doi:10.1152/ajprenal.00143.2003	
372	6	Feldt-Rasmussen B., Mathiesen E.R., Deckert T., Giese J., Christensen N.J.,	
373		Bent-Hansen L., et al. (1987) Central role for sodium in the pathogenesis of	
374		blood pressure changes independent of angiotensin, aldosterone and	
375		catecholamines in Type 1 (insulin-dependent) diabetes mellitus. Diabetologia,	
376		30 , 610–7. doi:10.1007/BF00277316	
377	7	Ivy J.R. and Bailey M.A. (2014) Pressure natriuresis and the renal control of	
378		arterial blood pressure. J. Physiol., 592, 3955-67.	
379		doi:10.1113/jphysiol.2014.271676	
380	8	Stehouwer C.D.A. and Smulders Y.M. (2006) Microalbuminuria and risk for	
381		cardiovascular disease: Analysis of potential mechanisms. J. Am. Soc. Nephrol.,	
382		17, 2106–11. doi:10.1681/ASN.2005121288	
383	9	Lee Y. Bin, Han K., Kim B., Lee S.E., Jun J.E., Ahn J., et al. (2019) Risk of	

384		early mortality and cardiovascular disease in type 1 diabetes: A comparison with
385		type 2 diabetes, a nationwide study. Cardiovasc. Diabetol., 18, 157.
386		doi:10.1186/s12933-019-0953-7
387	10	De Ferranti S.D., De Boer I.H., Fonseca V., Fox C.S., Golden S.H., Lavie C.J., et
388		al. (2014) Type 1 diabetes mellitus and cardiovascular disease: A scientific
389		statement from the American Heart Association and American Diabetes
390		Association. Diabetes Care, 37, 1110-30. doi:10.2337/dc14-1720
391	11	Guyton A.C., Coleman T.G. and Granger H.J. (1972) Circulation: overall
392		regulation. Annu. Rev. Physiol., 34, 13-46.
393		doi:10.1146/annurev.ph.34.030172.000305
394	12	Bie P., Wamberg S. and Kjolby M. (2004) Volume natriuresis vs. pressure
395		natriuresis. Acta Physiol. Scand., 181, 495-50. doi:10.1111/j.1365-
396		201X.2004.01323.x
397	13	Culshaw G.J., Costello H.M., Binnie D., Stewart K.R., Czopek A., Dhaun N., et
398		al. (2019) Impaired pressure natriuresis and non-dipping blood pressure in rats
399		with early type 1 diabetes mellitus. J. Physiol., 597, 767-80.
400		doi:10.1113/JP277332
401	14	Ghezzi C., Loo D.D.F. and Wright E.M. (2018) Physiology of renal glucose
402		handling via SGLT1, SGLT2 and GLUT2. <i>Diabetologia</i> , 61 , 2087–97.
403		doi:10.1007/s00125-018-4656-5
404	15	Zanchi A., Burnier M., Muller M.E., Ghajarzadeh-Wurzner A., Maillard M.,
405		Loncle N., et al. (2020) Acute and Chronic Effects of SGLT2 Inhibitor
406		Empagliflozin on Renal Oxygenation and Blood Pressure Control in Nondiabetic
407		Normotensive Subjects: A Randomized, Placebo-Controlled Trial. J. Am. Heart
408		Assoc., 9, e016173. doi:10.1161/JAHA.119.016173
409	16	Masuda T., Muto S., Fukuda K., Watanabe M., Ohara K., Koepsell H., et al.
410		(2020) Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced
411		water reabsorption to maintain body fluid volume. Physiol. Rep., 8, e14360.
412		doi:10.14814/phy2.14360
413	17	Tat V. and Forest C.P. (2018) The role of SGLT2 inhibitors in managing type 2
414		diabetes. J. Am. Acad. Physician Assist., 31, 35-40.
415		doi:10.1097/01.JAA.0000533660.86287.04

416	18	Fattah H. and Vallon V. (2018) The Potential Role of SGLT2 Inhibitors in the
417		Treatment of Type 1 Diabetes Mellitus. Drugs, 78, 717-26. doi:10.1007/s40265-
418		018-0901-у
419	19	Neal B., Perkovic V., Mahaffey K.W., de Zeeuw D., Fulcher G., Erondu N., et al.
420		(2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes.
421		N. Engl. J. Med., 377, 2097–9. doi:10.1056/nejmoa1611925
422	20	Groop P.H., Dandona P., Phillip M., Gillard P., Edelman S., Jendle J., et al.
423		(2020) Effect of dapagliflozin as an adjunct to insulin over 52 weeks in
424		individuals with type 1 diabetes: post-hoc renal analysis of the DEPICT
425		randomised controlled trials. Lancet Diabetes Endocrinol., 8, 845-54.
426		doi:10.1016/S2213-8587(20)30280-1
427	21	Perkovic V., Jardine M.J., Neal B., Bompoint S., Heerspink H.J.L., Charytan
428		D.M., et al. (2019) Canagliflozin and Renal Outcomes in Type 2 Diabetes and
429		Nephropathy. N. Engl. J. Med., 380, 2295-306. doi:10.1056/nejmoa1811744
430	22	Zannad F., Ferreira J.P., Pocock S.J., Anker S.D., Butler J., Filippatos G., et al.
431		(2020) SGLT2 inhibitors in patients with heart failure with reduced ejection
432		fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials.
433		Lancet, 396,. doi:10.1016/S0140-6736(20)31824-9
434	23	Jaikumkao K., Pongchaidecha A., Chueakula N., Thongnak L. ongdao, Wanchai
435		K., Chatsudthipong V., et al. (2018) Dapagliflozin, a sodium-glucose co-
436		transporter-2 inhibitor, slows the progression of renal complications through the
437		suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in
438		prediabetic rats. Diabetes, Obes. Metab., 20, 2617-26. doi:10.1111/dom.13441
439	24	Oraby M.A., El-Yamany M.F., Safar M.M., Assaf N. and Ghoneim H.A. (2019)
440		Dapagliflozin attenuates early markers of diabetic nephropathy in fructose-
441		streptozotocin-induced diabetes in rats. Biomed. Pharmacother., 109, 910-20.
442		doi:10.1016/j.biopha.2018.10.100
443	25	Van Paassen P., De Zeeuw D., De Jong P.E. and Navis G. (2000) Renin
444		inhibition improves pressure natriuresis in essential hypertension. J. Am. Soc.
445		Nephrol., 11 , 1813–8.
446	26	Saito F. and Kimura G. (1996) Antihypertensive mechanism of diuretics based
447		on pressure-natriuresis relationship. Hypertension, 27, 914-8.

448		doi:10.1161/01.HYP.27.4.914
449	27	Chou C.L. and Marsh D.J. (1988) Time course of proximal tubule response to
450		acute arterial hypertension in the rat. Am. J. Physiol Ren. Fluid Electrolyte
451		Physiol., 254, 601-7. doi:10.1152/ajprenal.1988.254.4.f601
452	28	Chou C.L. and Marsh D.J. (1986) Role of proximal convoluted tubule in pressure
453		diuresis in the rat. Am. J. Physiol Ren. Fluid Electrolyte Physiol., 251, 283-9.
454		doi:10.1152/ajprenal.1986.251.2.f283
455	29	Thomson S.C., Rieg T., Miracle C., Mansoury H., Whaley J., Vallon V., et al.
456		(2012) Acute and chronic effects of SGLT2 blockade on glomerular and tubular
457		function in the early diabetic rat. Am. J. Physiol Regul. Integr. Comp. Physiol.,
458		302 , 75–83. doi:10.1152/ajpregu.00357.2011
459	30	O'HARE J.P., ANDERSON J. V., MILLAR N.D., DALTON N., TYMMS D.J.,
460		BLOOM S.R., et al. (1989) HORMONAL RESPONSE TO BLOOD VOLUME
461		EXPANSION IN DIABETIC SUBJECTS WITH AND WITHOUT
462		AUTONOMIC NEUROPATHY. Clin. Endocrinol. (Oxf)., 30,.
463		doi:10.1111/j.1365-2265.1989.tb01429.x
464	31	Roland J.M., O'Hare J.P., Walters G. and Corrall R.J.M. (1986) Sodium
465		retention in response to saline infusion in uncomplicated diabetes mellitus.
466		Diabetes Res., 3 ,.
467	32	Wenstedt E.F.E., Rorije N.M.G., Olde Engberink R.H.G., Van Der Molen K.M.,
468		Chahid Y., Danser A.H.J., et al. (2020) Effect of high-salt diet on blood pressure
469		and body fluid composition in patients with type 1 diabetes: Randomized
470		controlled intervention trial. BMJ Open Diabetes Res. Care, 8,.
471		doi:10.1136/bmjdrc-2019-001039
472	33	Abdallah J.G., Schrier R.W., Edelstein C., Jennings S.D., Wyse B. and Ellison
473		D.H. (2001) Loop diuretic infusion increases thiazide-sensitive NA+/Cl
474		cotransporter abundance: Role of aldosterone. J. Am. Soc. Nephrol., 12,.
475		doi:10.1681/asn.v1271335
476	34	Kaissling B., Bachmann S. and Kriz W. (1985) Structural adaptation of the distal
477		convoluted tubule to prolonged furosemide treatment. Am. J. Physiol Ren.
478		Fluid Electrolyte Physiol., 17,. doi:10.1152/ajprenal.1985.248.3.f374
479	35	Ansary T.M., Fujisawa Y., Rahman A., Nakano D., Hitomi H., Kobara H., et al.

480		(2017) Responses of renal hemodynamics and tubular functions to acute sodium-
481		glucose cotransporter 2 inhibitor administration in non-diabetic anesthetized rats
482		/631/443/272/1684 /692/4022/272/1684 article. Sci. Rep., 7,.
483		doi:10.1038/s41598-017-09352-5
484	36	Vallon V., Huang D.Y., Deng A., Richter K., Blantz R.C. and Thomson S.
485		(2002) Salt-sensitivity of proximal reabsorption alters macula densa salt and
486		explains the paradoxical effect of dietary salt on glomerular filtration rate in
487		diabetes mellitus. J. Am. Soc. Nephrol., 13,.
488		doi:10.1097/01.ASN.0000016441.41118.57
489	37	Thomson S.C. and Vallon V. (2021) Effects of SGLT2 inhibitor and dietary
490		NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats.
491		Am. J. Physiol Ren. Physiol., 320,. doi:10.1152/ajprenal.00552.2020
492	38	Thomsen K. and Shirley D.G. (1997) The validity of lithium clearance as an
493		index of sodium and water delivery from the proximal tubules. Nephron, 77,
494		125–38. doi:10.1159/000190264
495	39	Scholtes R.A., Muskiet M.H.A., Van Baar M.J.B., Hesp A.C., Greasley P.J.,
496		Karlsson C., et al. (2021) Natriuretic effect of two weeks of dapagliflozin
497		treatment in patients with type 2 diabetes and preserved kidney function during
498		standardized sodium intake: Results of the dapasalt trial. Diabetes Care, 44,.
499		doi:10.2337/dc20-2604
500	40	Gal A., Burton S.E., Weidgraaf K., Singh P., Lopez-Villalobos N., Jacob A., et
501		al. (2020) The effect of the sodium-glucose cotransporter type-2 inhibitor
502		dapagliflozin on glomerular filtration rate in healthy cats. Domest. Anim.
503		Endocrinol., 70,. doi:10.1016/j.domaniend.2019.07.004
504	41	Guyton A.C. (1987) Renal function curve - A key to understanding the
505		pathogenesis of hypertension. Hypertension, 10,. doi:10.1161/01.HYP.10.1.1
506	42	Kinaan M., Yau H., Martinez S.Q. and Kar P. (2017) Concepts in Diabetic
507		Nephropathy: From Pathophysiology to Treatment. J. Ren. Hepatic Disord., 1,.
508		doi:10.15586/jrenhep.2017.17
509	43	Wu H., Gonzalez Villalobos R., Yao X., Reilly D., Chen T., Rankin M., et al.
510		(2022) Mapping the single-cell transcriptomic response of murine diabetic kidney
511		disease to therapies. Cell Metab., 34, 1064–1078.

512		doi:10.1016/j.cmet.2022.05.010
513	44	Borges-Júnior F.A., Silva dos Santos D., Benetti A., Polidoro J.Z., Wisnivesky
514		A.C.T., Crajoinas R.O., et al. (2021) Empagliflozin Inhibits Proximal Tubule
515		NHE3 Activity, Preserves GFR, and Restores Euvolemia in Nondiabetic Rats
516		with Induced Heart Failure. J. Am. Soc. Nephrol., 32, 1616-29.
517		doi:10.1681/asn.2020071029
518	45	Eickhoff M.K., Dekkers C.C.J., Kramers B.J., Laverman G.D., Frimodt-Møller
519		M., Jørgensen N.R., et al. (2019) Effects of Dapagliflozin on Volume Status
520		When Added to Renin–Angiotensin System Inhibitors. J. Clin. Med., 8, 779.
521		doi:10.3390/jcm8060779
522	46	Hilliard L.M., Nematbakhsh M., Kett M.M., Teichman E., Sampson A.K.,
523		Widdop R.E., et al. (2011) Gender differences in pressure-natriuresis and renal
524		autoregulation: Role of the angiotensin type 2 receptor. Hypertension, 57,.
525		doi:10.1161/HYPERTENSIONAHA.110.166827
526	47	Nakano D. and Pollock D.M. (2009) Contribution of endothelin A receptors in
527		endothelin 1-dependent natriuresis in female rats. Hypertension, 53,.
528		doi:10.1161/HYPERTENSIONAHA.108.123687
529	48	Singh A.K. and Singh R. (2020) Gender difference in cardiovascular outcomes
530		with SGLT-2 inhibitors and GLP-1 receptor agonist in type 2 diabetes: A
531		systematic review and meta-analysis of cardio-vascular outcome trials. Diabetes
532		Metab. Syndr. Clin. Res. Rev., 14,. doi:10.1016/j.dsx.2020.02.012
533	49	Culshaw G., Binnie D., Dhaun N., Hadoke P., Bailey M. and Webb D.J. (2021)
534		The acute pressure natriuresis response is suppressed by selective ETA receptor
535		blockade. Clin. Sci., CS20210937. doi:10.1042/CS20210937
536		

537	
538	Acknowledgments
539	
540	Urine glucose measurements were performed by the Easter Bush Clinical Pathology
541	Service.
542	
543	Funding
544	
545	The work was supported by Kidney Research UK (Project grant RP02/2019), the
546	British Heart foundation (Studentship FS/16/54/32730), and Diabetes UK (Project grant
547	17/0005685).
548	
549	Data availability
550	
551	All supporting data are included within the main article or are available upon request by
552	contacting the corresponding author.
553	
554	

555 Figures

557 Figure 1. Changes in mean arterial blood pressure (MABP) and glomerular filtration 558 rate (GFR) during the pressure natriuresis protocol. Sprague Dawley rats were treated 559 with a bolus IV injection of either vehicle (2% dimethyl sulfoxide in 0.9% saline, n=8) 560 or dapagliflozin (dapa, 1 mg/kg, n=8) prior to stepwise arterial ligations of the coeliac 561 and cranial mesenteric arteries (period 1) and the distal aorta (period 2). (A) MABP 562 averaged over the 30-minute periods and (B) GFR measured using FITC-inulin. The 563 shaded area represents the normal autoregulatory range of GFR in Sprague Dawley rats 564 [49]. Data are mean±standard deviation, statistical comparisons were made by 2-way analysis of variance (ANOVA) where the main effects of dapagliflozin treatment are 565 566 shown on each graph. 567

Figure 2. Changes in urine flow rate and urinary excretion of glucose and sodium. (A)
Urine flow rate, as well as (B) glucose and (C) sodium excretion, was measured in
Sprague Dawley rats treated with an IV bolus injection of either vehicle (2% dimethyl
sulfoxide in 0.9% saline, n=8) or dapagliflozin (dapa, 1 mg/kg, n=8) prior to stepwise
arterial ligations of the coeliac and cranial mesenteric arteries (period 1) and the distal

574 aorta (period 2) to increase blood pressure under terminal anaesthesia. Data are

575 mean±standard deviation, statistical comparisons were made by 2-way analysis of

576 variance (ANOVA) where the main effects of dapagliflozin treatment are shown on

- 577 each graph.
- 578

580 Figure 3. Fractional excretion (FE) of glucose, sodium, potassium, and chloride.

581 Urinary and plasma levels of (A) glucose, (B) sodium, (C) potassium, and (D) chloride

582 were measured in Sprague Dawley rats treated with an IV bolus injection of either

 $\label{eq:solution} 583 \qquad \text{vehicle (2\% dimethyl sulfoxide in 0.9\% saline, n=8) or dapagliflozin (dapa, 1 mg/kg, 1 mg/$

- 584 n=8) prior to stepwise arterial ligations of the coeliac and cranial mesenteric arteries
- 585 (period 1) and the distal aorta (period 2) to increase blood pressure under terminal
- anaesthesia. The fraction of these molecules that was excreted rather than reabsorbed
- 587 was calculated. Data are mean±standard deviation, statistical comparisons were made

588 by 2-way analysis of variance (ANOVA) where the main effects of dapagliflozin

treatment are shown on each graph

590

592 Figure 4. Pressure natriuresis response in Sprague Dawley rats. Rats were treated with 593 an IV bolus injection of either vehicle (2% dimethyl sulfoxide in 0.9% saline, n=8) or 594 dapagliflozin (dapa, 1 mg/kg, n=8) prior to stepwise arterial ligations to increase mean 595 arterial blood pressure (MABP) under terminal anaesthesia. MABP plotted against (A) 596 urine flow rate, (B) urinary sodium excretion, (C) urinary glucose excretion, and (D) 597 glomerular filtration rate (GFR). Data analysed by a non-linear fit curve with the null 598 hypothesis of one curve fitting both data sets. Shaded area shows normal autoregulatory 599 values for GFR in Sprague Dawley rats [49]. P values shown on each graph. 600

602 Figure 5. Plasma levels of glucose and electrolytes. Sprague Dawley rats treated with an 603 IV bolus injection of either vehicle (2% DMSO in 0.9% saline, n=8) or dapa (1 mg/kg, 604 n=8) prior to stepwise arterial ligations of the coeliac and cranial mesenteric arteries 605 (period 1) and the distal aorta (period 2) to increase blood pressure under terminal 606 anaesthesia. (A) Glucose, (B) sodium, (C) chloride, and (D) potassium were measured 607 in plasma at baseline and at each period. Data are mean±standard deviation, statistical 608 comparisons were made by 2-way analysis of variance (ANOVA) where the main 609 effects of dapagliflozin treatment are shown on each graph 610

612 Figure 6. Mean arterial blood pressure (MABP) and glomerular filtration rate (GFR) 613 during the pressure natriuresis protocol. Sprague Dawley rats were treated with 614 streptozotocin to induce type 1 diabetes and, two weeks later, were then treated with a 615 bolus IV injection of either vehicle (2% dimethyl sulfoxide in 0.9% saline, n=7) or 616 dapagliflozin (dapa, 1 mg/kg, n=7) prior to stepwise arterial ligations of the coeliac and 617 cranial mesenteric arteries (period 1) and the distal aorta (period 2). (A) MABP 618 averaged over the 30-minute periods and (B) GFR measured using FITC-inulin. The 619 shaded area represents the normal autoregulatory range of GFR in Sprague Dawley rats 620 [49]. Data are mean±standard deviation, statistical comparisons were made by 2-way 621 analysis of variance (ANOVA) where the main effects of dapagliflozin treatment are 622 shown on each graph. 623

625 Figure 7. Urine flow and urinary excretion of glucose and sodium in type 1 diabetic rats.

- 626 (A) Urine flow rate, as well as (B) urinary glucose excretion and (C) sodium excretion,
- 627 was measured in streptozotocin treated Sprague Dawley rats then injected with an IV
- bolus of either vehicle (2% dimethyl sulfoxide in 0.9% saline, n=7) or dapagliflozin

- 629 (dapa, 1 mg/kg, n=7) prior to stepwise arterial ligations of the coeliac and cranial
- 630 mesenteric arteries (period 1) and the distal aorta (period 2) to increase blood pressure

631 under terminal anaesthesia. Data are mean±standard deviation, statistical comparisons

632 were made by 2-way analysis of variance (ANOVA) where the main effects of

- 633 dapagliflozin treatment are shown on each graph.
- 634

636 Figure 8. Fractional excretion (FE) of glucose and sodium. Urinary and plasma levels of

637 (A) glucose and (B) sodium were measured in streptozotocin treated type 1 diabetic

638 Sprague Dawley rats treated with an IV bolus injection of either vehicle (2% dimethyl

639 sulfoxide in 0.9% saline, n=7) or dapa (1 mg/kg, n=7) prior to stepwise arterial ligations

of the coeliac and cranial mesenteric arteries (period 1) and the distal aorta (period 2) to

641 increase blood pressure under terminal anaesthesia to determine fraction of these

642 molecules that was excreted rather than reabsorbed. Data are mean±standard deviation,

643 statistical comparisons were made by 2-way analysis of variance (ANOVA) where the

644 main effects of dapagliflozin treatment are shown on each graph.

646

647 Figure 9. Pressure natriuresis response in type 1 diabetic Sprague Dawley rats. Diabetes 648 was induced by streptozotocin injection 2 weeks prior to an IV bolus injection of either 649 vehicle (2% dimethyl sulfoxide in 0.9% saline, n=7) or dapagliflozin (dapa, 1 mg/kg, 650 n=7). Stepwise arterial ligations were carried out to increase mean arterial blood 651 pressure (MABP) under terminal anaesthesia. MABP plotted against (A) urine flow 652 rate, (B) urinary sodium excretion, (C) urinary glucose excretion, and (D) glomerular 653 filtration rate (GFR). Data analysed by a non-linear fit curve with the null hypothesis of 654 one curve fitting both data sets. Where curves could not be fitted, they were excluded 655 from the graphs. Shaded area shows normal autoregulatory values for GFR in Sprague 656 Dawley rats [49]. P values shown on each graph.