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ABSTRACT

Whole-genome sequencing has facilitated genome-
wide analyses of association, prediction and heri-
tability in many organisms. However, such analyses
in bacteria are still in their infancy, being limited by
difficulties including genome plasticity and strong
population structure. Here we propose a suite of
methods including linear mixed models, elastic net
and LD-score regression, adapted to bacterial traits
using innovations such as frequency-based allele
coding, both insertion/deletion and nucleotide test-
ing and heritability partitioning. We compare and val-
idate our methods against the current state-of-art us-
ing simulations, and analyse three phenotypes of the
major human pathogen Streptococcus pneumoniae,
including the first analyses of minimum inhibitory
concentrations (MIC) for penicillin and ceftriaxone.
We show that the MIC traits are highly heritable with
high prediction accuracy, explained by many genetic
associations under good population structure con-
trol. In ceftriaxone MIC, this is surprising because
none of the isolates are resistant as per the inhibition
zone criteria. We estimate that half of the heritabil-
ity of penicillin MIC is explained by a known drug-
resistance region, which also contributes a quarter
of the ceftriaxone MIC heritability. For the within-host

carriage duration phenotype, no associations were
observed, but the moderate heritability and predic-
tion accuracy indicate a moderately polygenic trait.

INTRODUCTION

The ability to perform genome-wide analyses of DNA vari-
ations has enabled detailed investigations of the genetic ar-
chitecture of traits in many organisms. In human genet-
ics, the study of association, prediction and heritability
across the genome has received considerable attention and
the main statistical challenges related to problems such as
the robust estimation of SNP (single-nucleotide polymor-
phism) heritability are being overcome (1,2). Similar stud-
ies in bacteria are emerging (3,4); however, the field is still in
its infancy, and the pros and cons of many proposed meth-
ods have not yet been extensively evaluated using bacterial
datasets.

To address this shortcoming, we present a suite of analy-
ses that take into account the challenges of bacterial genet-
ics such as genome-wide linkage disequilibrium (LD) and
genome plasticity. Our methods are based on popular meth-
ods in human and bacterial genetics, but these are coupled
with innovations to better adapt them to bacterial datasets.
Our suite of methods uses linear mixed models (LMMs) and
linkage disequilibrium score regression (LDSC) to inves-
tigate genome-wide association, heritability and heritabil-
ity partitioning, along with elastic-net regression for trait
prediction. We use simulation studies to validate our suite
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of methods and demonstrate its capabilities in comparison
with current state-of-art methods. We use the methods to
analyse three traits, two of them previously unstudied, in
Streptococcus pneumoniae.

Streptococcus pneumoniae, or the pneumococcus, is a
Gram-positive human pathogen that can cause several in-
vasive diseases such as pneumonia, meningitis and sepsis, as
well as milder diseases such as acute otitis media and ton-
sillitis. Typically, pneumococci colonize the nasopharynx of
a host asymptomatically and transmit effectively between
young children, who frequently carry the bacterium until
they develop broad natural immunity. This may be supple-
mented by vaccination with any of the polysaccharide con-
jugate vaccines (PCVs), which induce effective protection
against some common virulent serotypes.

Several population genomic studies have characterized
epidemiological traits of the pneumococcus. In a pioneer-
ing study, Lees et al. (3), found high heritability of the dura-
tion of carriage of S. pneumoniae in human hosts. Addition-
ally, the strong genetic control of the binary trait antimicro-
bial resistance (AMR) is also well established from genome-
wide association studies (GWAS) (5–8). However, the quan-
titative trait minimum inhibitory concentration (MIC) has
previously been studied in Mycobacterium tuberculosis (9)
but not in S. pneumoniae. For the two MIC traits, we find
high heritability and predictive accuracy, explained by many
associations. We also confirm that carriage duration (CD)
is a polygenic trait with moderate heritability and predictive
accuracy.

Given the increasing availability of large-scale bacterial
genetic datasets, the developments presented here will pro-
vide a valuable guide to future studies.

MATERIALS AND METHODS

Source of data

The present study is based on nasopharyngeal swab data
collected monthly from infants and their mothers in the
Maela refugee camp in Thailand between 2007 and 2010
(10). Overall, 23 910 swabs were collected during the orig-
inal cohort study, from which 19 359 swabs from 737 in-
fants and 952 mothers were processed according to World
Health Organization (WHO) pneumococcal carriage detec-
tion protocols (11) and/or the latex sweep method (12).

Penicillin and ceftriaxone susceptibilities were assessed
using 1 �g oxacillin disks in accordance with the 2007 CLSI
guidelines (13). Only isolates with an oxacillin zone diame-
ter of <20 mm were subject to benzyl penicillin and ceftri-
axone MIC measurements; other isolates were classified as
susceptible.

Preparation of phenotypes

A carriage episode corresponds to one or more consecu-
tive swabs in which a host carries the same S. pneumo-
niae strain. To allow for occasional false negatives in strain
identification, we followed (3) and implemented a hidden
Markov model, using the R package msm (14), to obtain
maximum-likelihood estimates of CD values. Due to differ-
ences in immune response to bacterial infections between
adults and infants (15), only data from infants were used for

CD analyses, but we analysed all MIC values regardless of
the host. To obtain approximate normal distributions, we
log -transformed all three phenotypes (see Supplementary
Figure S1 for histograms).

Preparation of genetic data

We used a published dataset (5) of high quality genome se-
quences from 2663 isolates, manually selected and aligned
to the ATCC700669 reference genome using the snippy
pipeline version 4.4.0 (16), with minimum coverage set at
the default 10 reads. Of these, 1612 isolates were sampled
during 1047 S. pneumoniae carriage episodes (mean 1.5, SD
1.0 isolates per episode) in 370 host infants (mean 2.8, SD
1.9 episodes per host). The median CD was 64 days (mean
110, SD 102).

By definition, the sequences from different isolates within
the same carriage episode are of the same strain, but there
can be sequence variation. For the 337 episodes represented
by >1 genome sequence, we used the sequence from the
last isolate sampled, which we expect to be the most rep-
resentative sequence as it may incorporate some effects of
host–pathogen interaction that increased CD. However, as
within-strain sequence variation is low this choice has little
impact, which we checked by repeating analyses using the
sequence from a randomly chosen isolate from each of the
337 episodes, finding only negligible variation from the re-
sults reported here.

A gene was considered a part of the core genome if it was
observed in ≥ 95% of isolates, otherwise it was labelled as
accessory. Pangenome data were extracted by assembling
and annotating the read sequences using Prokka version
1.14.6 (17). Orthologous and paralogous gene clusters were
then inferred using the Panaroo pangenome pipeline ver-
sion 1.2.4, generating a gene presence/absence matrix (18).
While the core genome was analysed at each variant site, the
accessory genome was analysed at the level of genes, using
standardized gene counts. The numbers of accessory genes
showing variation in the CD and MIC datasets, respectively,
were 2 310 and 2 242.

Association analyses

Testing gap and SNP effects. Five alleles are possible at
each variant site, the four nucleotides and gap. Gaps are
observed at approximately 71% of variant sites (see Fig-
ure 1 for the gap frequency distribution), while two, three
and four nucleotide alleles are observed at 71%, 7% and
0.4% of variant sites, respectively. In human genetics, multi-
allelic SNPs and gaps are both rare and SNP alleles are
usually coded as binary, leading to three diploid genotypes
that can be coded using two degrees of freedom (df) or 1
df under an additive model. For haploid bacteria, a gen-
eral coding would require up to 4 df per SNP. The usual
approach in previous analyses is a 1 df binary coding in-
dicating presence/absence of the major allele. This coding
loses information if the minor alleles have different effects.
In particular, gap and SNP effects can differ, due in part
to different local-dependence effects of insertion/deletion
lengths and recombination.

In previous bacterial GWAS analyses, variant sites with
many gaps have often been removed. Reasons include that
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Figure 1. Mapping of association hits to the ATCC700669 reference genome. Working inwards from the outer circle showing basepair positions along the
genome, the subsequent circles show the distributions of gap and minor allele frequencies in the MIC dataset, annotated core genes (in black), and SNPs
associated with ceftriaxone MIC and penicillin MIC according to the gap test (blue) and SNP test (red). Figure prepared using circos (19).

a gap coding can reflect data quality issues other than a
true insertion/deletion sequence state, and that the effects
of large insertions or deletions cannot be localized to spe-
cific sites. However, insertions and deletions that generate
gaps can affect phenotypes, and it is of interest to identify
them, while recognizing that the ultimate cause of the as-
sociation signal may be difficult to decipher. For the core
genome variants, we first used a binary gap/non-gap cod-
ing to compute a gap test statistic at sites with ≥10 of both
gap and non-gap sequences. The statistic at the jth variant
was the squared standardized effect size: b2

j/Var(b j ). Next
we computed a ‘SNP test’ statistic, omitting gap sequences,
at sites with ≥10 copies of at least two nucleotides. We used a
1 df allele coding equal to the sample frequency of the allele,
which assumes that effect sizes vary linearly with allele fre-
quency. For sites with both gap and SNP statistics available,
the larger one was used (‘max’ statistic). In the simulation
study we also combined the two statistics using Stouffer’s
method (divide their sum by

√
2), which we refer to as the

‘combi’ statistic.

To ensure a family-wise error rate (FWER) of 0.05, we
performed 500 permutations of the ceftriaxone MIC pheno-
type, each time re-running the association analysis pipeline
and recording the largest test statistic. From the resulting
500 values, we set the significance threshold for the real-data
analyses to be the 25th largest (= 24.8). In comparison, the
corresponding Bonferroni threshold based on 133K tests
and a χ2

1 null distribution is 25.8. Therefore, while taking the
max of gap and SNP test statistics tends to inflate the null
distribution, Bonferroni correction would still be conser-
vative because it ignores the correlations among the statis-
tics. Because of the similarity of the phenotype distributions
(Supplementary Figure S1), for penicillin MIC we used the
permutation threshold derived for ceftriaxone MIC.

For comparison, we also employed a 1 df association
test based on presence/absence of the major allele at each
variant, whether gap or a nucleotide, using the Bonferroni
threshold. While this test allows some gap effects to be de-
tected, if gap is not the major allele it assumes that the gap
and minor nucleotide effects are the same. If gap is the ma-
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jor allele then all nucleotide effects are assumed to be the
same.

Population structure, phylogeny and clustering. Levels of
recombination vary over bacterial species, but in general
asexual reproduction leads to strong population struc-
ture, which is challenging for association analyses (20,21).
Population structure refers to groups of individuals (sub-
populations) with greater genetic similarity among them
than with other individuals, which causes genome-wide ge-
netic correlations that can confound association signals.
Sub-populations may also differ in environmental expo-
sures, which can compound the problem.

There is no complete solution to the problems caused by
population structure, and attempts to address them risk dis-
carding true as well as spurious signal. Most approaches in-
troduce either covariates or a genetic random effect into as-
sociation models to absorb signals that can be explained by
population structure, which then do not contribute to as-
sociation statistics. The variance-covariance matrix G of a
genetic random effect is assumed known a priori based on
measures of similarity between pairs of sequences.

Sequence clusters can be used to define either G, via clus-
ter distances, or population structure covariates via indica-
tors of cluster membership. Clustering can proceed by con-
structing a phylogenetic tree that models the evolutionary
history of the sequences (22), with nodes of the tree used
as cluster identifiers and branch lengths used to define clus-
ter distances. We inferred maximum-likelihood phylogenies
of both CD and MIC datasets using IQTree version 2.0.6
(23) under the general time reversible model, with discrete
Gamma (+G option) base substitution rates across sites
(Figure 2). The model assumes no recombination, which is
false for S. pneumoniae, and consequently the usefulness of
the resulting phylogeny has been questioned (24).

FastBAPS, which extends hierBAPS, (28–30) was also
used to cluster the isolates, without reference to a phylogeny.
This approach generates an initial clustering using between-
variant pairwise distances based on Ward’s method (31),
then an optimal set of clusters is identified using Bayesian
hierarchical clustering (32).

In human studies, G was in the past computed from
known pedigrees (33) and now usually as a genome-wide
average allelic correlation (34). For bacteria, G can be de-
fined using allelic correlations under any 1 df allele coding.
Despite the success of this approach in human studies, our
preliminary analyses could not identify an allele coding that
led to good control of population structure effects, although
using the gap presence/absence binary indicator gave the
best results among those we tried. Conversely, despite the
questionable validity of the phylogeny due to it ignoring re-
combination, defining G in terms of lengths of shared phy-
logenetic branches (35) led to good control of population
structure, as evidenced by QQ plots.

Linear mixed model (LMM) analyses. We wish to test bj
= 0 within the LMM (36):

y = b j x j + u + ε, u ∼ N (0, σ 2
g G), ε ∼ N (0, σ 2

e I), (1)

where y is a length-n phenotype vector, x j is the vector en-
coding alleles at the jth variant, and u and ε are random

vectors of genetic and environmental effects, with I the n ×
n identity matrix.

Pyseer (37) has recently been widely used in bacterial
GWAS, and an extensive summary of its models with per-
formance benchmarking is available (38). The Pyseer im-
plementation of (1) is based on FaST-LMM (39) and in-
cludes likelihood ratio testing of bj = 0. It requires bi-
nary coding of genetic variants, and so can be used for the
gap and major-allele tests, but it cannot accommodate the
frequency-coding or omission of the gap sequences at each
SNP test. To overcome this problem, we used a two-stage
LMM/GLS pipeline for the SNP test, similar to EMMAX
(40), in which the phenotype for association testing was the
residual from fitting (1) with bj = 0. This LMM stage was
performed using lme4qtl (33). The bj were then estimated
in a second stage using generalized least squares regression
(GLS). In the CD analyses for the SNP test, we were able to
incorporate an extra random effect to model shared host in
the LMM/GLS pipeline, but for the gap and major-allele
tests performed using Pyseer-LMM, this was replaced by a
binary covariate indicating previous carriage.

Accessory genome genes were tested using the
LMM/GLS pipeline, with a single test based on stan-
dardized gene counts.

Phylogenetic method treeWAS. For comparison, we also
implemented the phylogeny-based treeWAS (41) using the
major-allele coding. Use of a single phylogeny in treeWAS
corresponds to an assumption of negligible recombination.
As recommended for recombinant species such as S. pneu-
moniae (41), we first implemented the ClonalFrameML
pipeline (Supplementary Figure S2) (42). Then treeWAS in-
fers the ancestral phenotype and genotype states at each in-
ternal node of the phylogeny, before computing three asso-
ciation test statistics:

(1) Terminal Score: It measures sample-wide phenotype-
genotype associations between leaves of the phylogeny.

(2) Simultaneous Score: It measures parallel changes in
both phenotype and genotype on phylogeny branches.

(3) Subsequent Score: It measures the proportion of the tree
within which genotype and phenotype ‘co-exist’. It is
equivalent to integrating association scores over all tree
nodes.

For each sore, a significance threshold was estimated
from null simulations of genetic data at 10 times as many
sites as the observed dataset.

Phenotype prediction: whole genome elastic net (wg-enet)

We set up the Pyseer wg-enet model in glmnet (43) in or-
der to use a frequency-based allele coding as in the SNP
test except that gaps were counted as an allele. Following
Pyseer guidelines (44), we omitted 25% of variants with the
largest association P-values, and then removed highly cor-
related variants at a 0.75 threshold. We verified the finding
of (44) that prediction accuracy is improved using weight wi
for the ith isolate, where wi is proportional to the inverse of
the size of the cluster that includes the isolate, and

∑
iwi =

n. After centering the phenotype values to have mean zero,
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Figure 2. Phylogenies inferred using IQtree2 (A) 1047 isolates with a carriage duration (CD) phenotype, indicated by tip colour (in days). (B) 1332 isolates
with MIC phenotypes, with the penicillin phenotype indicated by tip colour (in �g ml−1). Plots generated after midpoint rooting using R packages ape
(25), phytools (26) and ggtree (27).

the ith phenotype value is predicted by b̂Txi , where xi is the
vector of allele indicators for the ith sequence, and

b̂ = argmin
b

λ

[
1−α

2
‖b‖2

2 + α ‖b‖1

]

+1
n

n∑
i=1

wi (yi − bTxi )2. (2)

We use cross-validation (CV) to optimise the penalty pa-
rameter �. When � = 0 we have weighted least-squares re-
gression, while increasing � reduces overfitting but intro-
duces bias. By default, both Pyseer and our pipeline set �
= 0.01. Although this value is close to that for ridge re-
gression (� = 0), which retains all predictors in the model,
it is large enough that only about 10% of b̂ entries are
non-zero.

Ten-fold (10F) and leave-one-strain-out (LOSO) (44) CV
were used to assess prediction accuracy. Whereas 10F se-
lects the training sets randomly, which can lead to instances
of high similarity between test and training sequences,
LOSO is a more challenging prediction task where an en-
tire strain (= FastBAPS cluster) is predicted after training
on the other strains.

Estimation of heritability

Genetic effects at different genome sites can interact (epis-
tasis), but we restrict attention to the narrow-sense heri-
tability h2, with σ 2

g assumed to be a sum of contributions
from individual sites. The LMM estimates h2 = σ 2

g /(σ 2
g +

σ 2
e ) (37). For the wg-enet heritability estimation, we used

ĥ2 = R2, the proportion of phenotype variance explained
by the model with � = 0 (ridge regression) (44).

We also estimate h2 using a modification of LDSC (45):

E[Sj ] ≈ A+ n−1
m

h2
gl j where l j =

m∑
k=1

(n−1)r 2
jk − 1

n − 2
. (3)

Here, Sj is the association test statistic at variant j, and rjk
is the sample correlation of frequency-based allele codes at
variants j and k (or gene counts for the accessory genome).
Following (46), prior to computing pairwise Pearson cor-
relation coefficients we further transformed the allele codes
using Gaussian quantile normalization.

The score lj involves a sum over the whole genome. In hu-
man genetics applications only a neighbourhood of j is in-
cluded, but the presence of genome-wide LD in S. pneumo-
niae makes it difficult to define a suitable neighbourhood.
The definition of lj also incorporates a bias adjustment (45)
that can lead to lj < 0, but typically lj � 1. To account
for heteroskedasticity and correlations among the Sj, the
least-squares estimation of A and h2

g in (3) used weights
1/max(1, lj).

When choosing the testing method to generate the Sj for
LDSC, we found that the very strong population structure
effects distort the LDSC regression relationship in the ab-
sence of any adjustment, yet a fully effective adjustment
for population structure was also unsatisfactory because it
removed informative signal. The best compromise that we
could identify between inadequate control for population
structure effects and loss of association signal with effective
control, was to compute the major-allele test statistic Sj in
the fixed effect model (FEM):

y = va + xjb j + ε, (4)

where v is the first principal component (PC) of the se-
quence distances (explaining a large proportion of genetic
variation) and a is the corresponding effect size. For the CD
analyses, we also included the previous carriage covariate



6 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1

in (4). We note again that v does not remove all population
structure effects and the Sj tend to be inflated, but this is not
important for LDSC estimation of h2

g which uses the slope
of the relationship of lj with Sj. Because of inadequate con-
trol of population structure using all approaches that we at-
tempted, which included FastBAPS cluster membership in-
dicators and additional principal components (PC), we do
not report association results based on this FEM and only
use the Sj obtained under this model within LDSC.

As well as estimating genome-wide h2
g, LDSC is useful for

estimating the contributions to h2
g from specified genome re-

gions. This is challenging because simply omitting variants
from a heritability analysis may not exclude their effects due
to strong and long-range LD. For the MIC phenotypes, we
computed ĥ2 in (3) omitting effects from a known drug resis-
tance genome region that includes the important penicillin-
binding genes pbp1a and pbp2x. We first identified a set of
large effect-size variants with basepair positions between
285 000 and 340 000 by clumping the frequency-coded vari-
ants using correlation threshold 0.85. These variants were
used as fixed covariates when re-calculating the Sj for this
analysis, which prevents tagging of effects from the omitted
region.

Simulation-based validation of analyses

Association testing. Based on the CD dataset (1047 iso-
lates, 134 383 variants), continuous traits were simulated
under an additive model with h2 ∈ {0.1, 0.2, ..., 0.5}. In
each simulation, 5, 10, 15, 20 or 25 causal variants were
randomly selected such that MAF > 0.05 and r2 < 0.2 for
all pairs of causal variants. Four replicates were performed
for each of the 25 combinations of causal loci and h2, and
the resulting 100 simulated datasets included a total of 1500
causal loci (≈ 0.011% positives). Association testing was
performed using gap/SNP (with both max and combi statis-
tics), major-allele and treeWAS tests.

Heritability estimation. We used BacGWASim (38) to sim-
ulate 1000 bacterial genomes of length 250 kb under each
of two LD scenarios: lateral gene transfer rate (lgtRate) =
0.2 (Low-LD) and = 0.1 (High-LD). For each scenario and
each h2 ∈ {0.1, 0.2, ..., 0.9}, we simulated 100 continuous
traits using 10 randomly selected causal variants with MAF
> 0.05 and r2 < 0.2. We then computed ĥ2 for each of the
1800 traits using LMM, wg-enet and LDSC.

RESULTS

Simulation analyses

The gap/SNP test with max statistic (used in the real-data
analyses below) performed better than the alternatives we
considered (Figure 3, see AUC values in legend box). At a
Bonferroni corrected threshold of 0.05, the sensitivity and
specificity were 0.433 and 0.986 for gap/SNP-max, 0.374
and 0.989 for gap/SNP-combi, 0.334 and 0.988 for major
allele and 0.238 and 0.996 for treeWAS.

In heritability estimation, LDSC is the best-performing
method, although it tends to slightly under-estimate, partic-
ularly in the high-LD scenario and for higher h2 (Figure 4).
LMM greatly over-estimates, particularly in the range 0.2

Figure 3. ROC curves for association tests. Based on traits simulated from
CD dataset sequences. In the legend box, ‘max’ and ‘combi’ are alterna-
tive methods for combining gap and SNP test statistics in the gap/SNP
test. Only max is used elsewhere in this paper. ‘MA’ is the major-allele test.
For treeWAS, curves were obtained for each of the three scores and the
pointwise maximum is shown.

Figure 4. Estimating the heritability of simulated bacterial phenotypes.
In the (A) Low-LD genome simulation, average relative errors for LMM
(green), wg-enet (blue) and LDSC (red) are 28.3 ± 0.6%, 7.7 ± 0.2% and
−2.1 ± 0.4%. In the (B) High-LD genome simulation, average errors for
LMM (green), wg-enet (blue) and LDSC (red) 32.4 ± 0.6%, 6.0 ± 0.2%
and −5.6 ± 0.4%. The error bars show estimated standard error of the
mean.
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Figure 5. Carriage duration (CD) Manhattan plot for core genome variants. Accessory genes are not shown. See legend for shading that indicates gap
frequency and symbol shape indicating gap or SNP test. Basepair positions are obtained from the ATCC700669 reference genome alignment.

< h2 < 0.6. Wg-enet also tends to over-estimate, but it per-
forms slightly better than LDSC when h2 > 0.8. Both LMM
and wg-enet estimates are more precise than LDSC but less
accurate.

Carriage duration (CD)

None of the 2 310 tested accessory genes were associated
with CD. Similarly there were no genome-wide significant
results among the 44 097 gap and 91 822 SNP tests at core
genome variants (Figure 5). The shared-host random effect
explained 1.4% of variance for CD, and R2 = 0.0022 for
the previous carriage fixed effect (β = −0.097, SE =0.026).
The QQ-plot (Supplementary Figure S3) indicates some in-
flation of test statistics suggestive of population structure
effects (genome inflation factor, GIF = 1.44). The major-
allele test also identified no associations (GIF = 1.22, Sup-
plementary Figure S4) and treeWAS identified 3 hits in 2
genes: purF and polA (Supplementary Figure S5).

Despite the lack of associations for CD, prediction ac-
curacy (Table 1) and heritability estimates (Table 2) are
significantly above zero, suggesting a polygenic trait. As
expected, LOSO prediction is less accurate than 10F CV.
Pangenome estimates from wg-enet, LMM and LDSC are
similar (0.32 ≤ ĥ2 ≤ 0.34) with all methods also agreeing on
a negligible contribution to h2 from the accessory genome.
LDSC analyses also confirmed only a small contribution to
h2 from the known drug-resistance region (see Supplemen-
tary Figure S6 for LDSC plots). Furthermore, phenotype
prediction with allele frequency-based coding of variants
slightly outperformed major-allele coding (Supplementary
Appendix S2 and Supplementary Figure S7).

We also performed association testing on all 1612 iso-
lates linked to a carriage episode. This analysis identified
four sites at basepair positions 1 522 542–1 522 896, near the
previously-reported phage hit based on k-mer analysis (44).
However, our 4 hits are due to the same 15 isolates, of which
6 are from the same long (517 day) episode (see detailed re-
sults in Supplementary Appendix S1). Furthermore, when
the all-isolates dataset was analysed using treeWAS, 9 as-

Table 1. Phenotype prediction. Mean squared error (MSE) and the corre-
lation between observed and predicted test values using 10-fold (10F) and
leave-one-strain-out (LOSO) cross validation (CV). Predictions were per-
formed using a wg-enet model (α = 0.01) in glmnet, with frequency-based
allele coding (all five alleles coded according to their frequency). Approx-
imately 2% of available predictors were used for CD and 1% were used
for the two MIC phenotypes. For corresponding results from major-allele
coded variants, see Supplementary Appendix S2

Phenotype 10F CV LOSO CV

(log scale) MSE (SE) Cor (SE) MSE (SE) Cor (SE)

CD 0.10 (0.004) 0.55 (0.022) 0.12 (0.005) 0.44 (0.025)
Ceftriaxone
MIC

0.03 (0.002) 0.91 (0.005) 0.08 (0.003) 0.77 (0.005)

Penicillin MIC 0.04 (0.003) 0.91 (0.005) 0.13 (0.051) 0.69 (0.014)

Table 2. Heritability estimates (ĥ2). The upper and lower values in each
cell are for core genome and pangenome (= core genome plus accessory
genes). Under ‘w/o DR’ are results from analyses that omit effects from a
genome region that is known to be associated with drug resistance.

Phenotype LDSC

wg w/o DR enet LMM
CD 0.34 0.30 0.34 0.32
with accessory genes 0.34 0.31 0.34 0.32
Ceftriaxone MIC 0.86 0.22 0.92 0.98
with accessory genes 0.87 0.22 0.93 0.98
Penicillin MIC 0.72 0.40 0.94 0.98
with accessory genes 0.72 0.41 0.94 0.98

sociations were identified (Supplementary Appendix S3),
but these did not include purF and polA (reported above)
nor the region identified in our LMM analyses. We con-
clude that we are unable to reliably identify individual as-
sociations for CD, but there is good evidence for it being a
moderately-heritable polygenic trait.

Minimum inhibitory concentration (MIC) phenotypes

For both MIC phenotypes, from the 2242 accessory genes
tested, one (with Panaroo label group 102) showed genome-
wide significant association. Gap and SNP tests were per-
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Figure 6. Manhattan plots for (A) Ceftriaxone MIC and (B) Penicillin MIC. The shading and symbol shapes (see legend) are the same as for Figure 5.

Table 3. Genes showing significant association with MIC phenotypes.

Phenotype (log) Core genes Acc. gene
Ceftriaxone only mraW, clpL, csrR, rplK, aliB, plr,

valS
Both pbp1a, aliA, pbp2x, mraY, recU,

gnd, dexB, luxS, wzg, pbp2b
group 102

Penicillin only aliB, clpL, wzd, wzh, blpY, galK,
hasC, leuB, leuS, murF, recO

formed at 36 020 and 97 224 core genome sites, respectively.
For ceftriaxone MIC and penicillin MIC, respectively, 998
and 833 variants showed genome-wide significance (Fig-
ure 6), and 688 and 504 of these were within annotated
gene regions of the ATCC700669 reference genome (47)
(Table 3). Approximately 35% of hits were from the gap
test, associations that have largely been ignored in previous
analyses. For ceftriaxone MIC and penicillin MIC, GIF =
1.14 and 1.28 respectively, but the QQ plots (Supplemen-
tary Figure S9) suggest that, rather than genome-wide in-
flation caused by population structure, GIF >1 is due to
a large fraction of the genome showing causal association
with these highly heritable, polygenic traits.

For ceftriaxone MIC, the largest statistics are of similar
magnitude for gap and SNP tests (Figure 7), but for low al-
lele frequencies there are few large gap statistics and many
large SNP statistics, suggesting that there are few rare dele-

tions, but many rare nucleotides of large effect. There are
also few large gap statistics with frequency >0.6, suggest-
ing few sequence insertions of large effect. Many large SNP
statistics with frequency above 0.4 were not recorded as sig-
nificant under the major-allele test, which may reflect a ben-
efit of frequency-based allele coding. Here, the 7th order re-
gression fit for the 90th percentile was generated using the
R package quantreg (48).

Consistent with the simulation results, the gap/SNP
test identified more associations than the major-allele and
treeWAS tests (combined over the two MIC phenotypes:
1 831 versus 1 419 versus 206), and had lower GIF than the
major-allele test (1.14 versus 1.20 and 1.28 versus 1.56; GIF
not available for treeWAS). Further results for the major-
allele test are in Supplementary Figures S10 and S11, and
for treeWAS in Supplementary Figures S12 and S13. The
lists of genes identified are in Supplementary Appendix S3.

As expected from the large number of associations, pre-
diction accuracy for both MIC phenotypes is very high un-
der 10F CV (Table 1), but less so for LOSO CV, with high SE
for penicillin MIC indicating hard-to-predict clusters (Sup-
plementary Figure S14).

The values of ĥ2 also reflect the simulation studies, with
LMM > wg-enet > LDSC for both MIC phenotypes (Ta-
ble 2). Whereas LMM and wg-enet agreed closely across the
two MIC phenotypes, the LDSC ĥ2 differ consistent with
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Figure 7. Association test statistics against variant frequency for ceftriax-
one MIC. Each point shows the z2 statistic from (A) gap and (B) SNP test
at a core genome variant. The x-axis shows frequencies of (A) gap and
(B) minor nucleotide as a fraction of all nucleotides. Points are shaded ac-
cording to the major-allele test statistic and the red curve shows 7th order
regression fit for the 90th percentile. See Supplementary Figure S8 for this
analysis on the other two phenotypes.

the higher LOSO prediction accuracy and higher numbers
and significance of associations for ceftriaxone MIC com-
pared with penicillin MIC (see Supplementary Figure S6 for
LDSC plots). Using LDSC we also estimate that around a
quarter of h2 for ceftriaxone MIC can be attributed to the
known drug resistance region, which represents only 2.5%
of the core genome. This fraction rises to over half of h2 for
penicillin MIC.

DISCUSSION

We present new and improved approaches for association,
prediction and heritability analyses for quantitative bacte-
rial traits. The superior performance of our proposed meth-
ods is verified through simulation studies and real-data
analyses.

The innovations in our association analysis pipeline in-
clude separate testing of gap and SNP effects, with a per-
mutation approach to control FWER and frequency-based
allele coding. This approach performed better than the al-
ternatives of major-allele and treeWAS tests, detecting more
associations under good control of population structure ef-
fects.

Our phenotype prediction analysis used frequency-coded
variants within a glmnet-based whole genome elastic net
model. For heritability estimation, we have introduced
modifications to allow LDSC to be used for bacterial traits,
including for genome partitioning of heritability, and veri-
fied its advantages over existing approaches.

Using these innovations, we present the first genomic
analyses of S. pneumoniae minimum inhibitory concentra-
tion (MIC) for the beta-lactam antibiotics ceftriaxone and

penicillin, finding many associations and high heritability.
Prediction of MIC traits was correspondingly accurate un-
der 10F CV.

The genome regions identified as associated with the
MIC phenotypes overlap those previousy reported for the
binary AMR phenotypes, even in the case of ceftriaxone
for which none of the tested isolates was resistant. Many
of the associated genes are in the peptidoglycan biosysthe-
sis pathway, including penicillin binding proteins (PBPs:
pbp1a, pbp2b, pbp2x) and transferases required for cell wall
biogenesis (mraY and mraW for ceftriaxone MIC). A single
heat shock protein (clpL) and a gene from the recombina-
tion pathway (recU) were also identified as associated (6).
When present, the group 102 accessory gene is located ad-
jacent to pbp1a, which generates an enzyme involved in cell
wall remodelling, which may contribute to the association
signal for the MIC phenotypes. However, most of the genes
identified for the MIC phenotypes are in tight linkage with
the three PBPs and may not represent independent effects.

We found no reliable associations for S. pneumoniae car-
riage duration (CD), but strong evidence that it is a poly-
genic trait of moderate heritability that is predictable from
the genome sequence (0.55 and 0.44 correlation between
predicted and true phenotype under 10F and LOSO CV, re-
spectively).

A previous analysis of CD using data from the same
study (3), provided a lower-bound h2 estimate of 0.45 using
warped-lmm (49), concluding that CD is a highly heritable
trait. Our estimates are lower (ĥ2 ≈ 0.33), which may be due
to our decision to use only one isolate per carriage episode
(Supplementary Appendix S1).

Penicillin AMR ĥ2 in the Maela data set was recently re-
ported in the range 0.67–0.83 (4). Our most reliable (LDSC)
estimate for the quantitative penicillin MIC phenotype is
within this range (0.72). For ceftriaxone MIC, ĥ2 is even
higher (0.87).

The attribution of over half of h2 for penicillin MIC
to known drug resistance genome regions in S. pneumo-
niae contrasts with results from M. tuberculosis, where the
largest reduction in h2 (measured using GEMMA (50)) was
only 27% (9), which is close to our result for ceftriaxone
MIC.

In summary, our results support the use of separate test-
ing of gap and SNP effects, and wg-enet for prediction of
quantitative traits. We find that LDSC performs best for
heritability analyses. Further work is required to assess op-
timal strategies in a wider range of settings for population
structure in bacterial genomes.
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