Dynamic MRI Lesion Evolution in paediatric MOG-Ab associated disease (MOGAD)

Dimitrios Champsas1,2 Omar Abdel-Mannan1,2, Kshitij Mankad3, Cheryl Hemingway2, Olga Ciccarelli1,4,5, Yael Hacohen1,2

1. Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom
2. Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom.
3. Department of Neuroradiology, Great Ormond Street Hospital for Children, London, United Kingdom.
4. National Hospital for Neurology and Neurosurgery, London, United Kingdom
5. National Institute for Health Research, University College London Hospitals Biomedical Research Centre, United Kingdom

Introduction: Myelin oligodendrocyte glycoprotein (MOG) antibodies are associated clinically with either a monophasic or relapsing disease course in both children and adults. There are few studies studying lesion evolution in children with myelin oligodendrocyte glycoprotein antibody associated disorder (MOGAD).

Aim: The aim of this study was to examine MRI lesion evolution over time in a large single-centre paediatric MOGAD cohort.

Methods: We retrospectively identified patients with MOGAD from a tertiary paediatric neurosciences centre (Great Ormond Street Hospital) between 2001 to 2022.

Results: A total of 363 MRI scans from 59 included patients were available for analysis. Median age at presentation was 4 yrs (IQR 4-9), 32 (54.2%) were female and 34 (57.6%) were of non-white ethnicities. Twenty-seven children (45.8%) had a monophasic illness and 32 (54.2%) had a relapsing disease course. In the relapsing MOGAD group, median number of relapses was 4 (range 2-30). Initial presentation was ADEM in 27(46%), ON in 18 (31%) ADEM-ON in 4 (7%), ADEM-TM in 6 (10%) TM in 2 (3%) ADEM-TM-ON in 1 (2%) and ON-Brainstem syndrome in 1 (2%). There was no difference in demographics or clinical presentation between monophasic and relapsing groups.
Fifteen patients (25.4%) had gadolinium enhancement on initial attack MRI. Seven out of 32 (21.9%) relapsing patients had persistent enhancement on follow-up MRI scans. One patient with a clinical transverse myelitis at presentation was MRI negative. New asymptomatic lesions following first clinical event were seen in 5/27 (18.5%) monophasic patients and 8/32 (25%) relapsing patients.

During follow-up interval scanning, 38 out of 59 have had follow-up neuroimaging after their first attack whereas 15/32 had relapsed before having a follow-up MRI. Complete lesion resolution was reported in 9/38 (23.6%) (8 monophasic, 1 relapsing) following 1st acute attack, 3/32 (9.3%) after 2nd acute attack, and 1/32 (3.1%) following 3rd acute attack and 0/32 following 4th acute attack. Partial resolution of MRI lesions was seen in 7/20 (35%) monophasic patients and 7/32 (21.8%) relapsing patients at follow-up scans.

Conclusions: Demyelinating lesions in paediatric MOGAD are dynamic and timing of MRI scanning may influence CNS region involvement. Unlike in multiple sclerosis, a significant number of MOGAD patients will have complete lesion resolution at first follow-up, although the ability to repair is reduced following multiple relapses.