
International Journal of Forecasting xxx (xxxx) xxx

a

b

c

c
t
t
f
d

h
0
t

Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

Amachine learning-based framework for forecasting sales of
new products with short life cycles using deep neural
networks
Yara Kayyali Elalem a,∗, Sebastian Maier b,a, Ralf W. Seifert a,c

College of Management of Technology, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Department of Statistical Science, University College London (UCL), United Kingdom
International Institute for Management Development (IMD), Lausanne, Switzerland

a r t i c l e i n f o

Keywords:
Forecasting
Machine learning
Product life cycle
Analytics
Deep learning

a b s t r a c t

Demand forecasting is becoming increasingly important as firms launch new products
with short life cycles more frequently. This paper provides a framework based on state-
of-the-art techniques that enables firms to use quantitative methods to forecast sales
of newly launched, short-lived products that are similar to previous products when
there is limited availability of historical sales data for the new product. In addition to
exploiting historical data using time-series clustering, we perform data augmentation to
generate sufficient sales data and consider two quantitative cluster assignment methods.
We apply one traditional statistical (ARIMAX) and three machine learning methods based
on deep neural networks (DNNs) – long short-term memory, gated recurrent units, and
convolutional neural networks. Using two large data sets, we investigate the forecasting
methods’ comparative performance and, for the larger data set, show that clustering
generally results in substantially lower forecast errors. Our key empirical finding is
that simple ARIMAX considerably outperforms the more advanced DNNs, with mean
absolute errors up to 21%–24% lower. However, when adding Gaussian white noise in
our robustness analysis, we find that ARIMAX’s performance deteriorates dramatically,
whereas the considered DNNs display robust performance. Our results provide insights
for practitioners on when to use advanced deep learning methods and when to use
traditional methods.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Demand forecasting is a crucial element of supply
hain management and is becoming increasingly impor-
ant as firms bring new products with short life cycles to
he market more frequently. While forecasting demand
or existing products has improved steadily over the past
ecades, forecasting sales of newly launched, short-lived
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products remains challenging, due to the lack of abun-
dant historical sales data (van Steenbergen & Mes, 2020).
Furthermore, with shorter product life cycles (PLCs), the
importance of accurate forecasting early on after a prod-
uct is launched increases substantially (Basallo-Triana,
Rodríguez-Sarasty, & Benitez-Restrepo, 2017). According
to a cross-industry survey (Cooper & Edgett, 2012), new
products contribute to an average of 27% of firms’
revenues, yet profits from these products lag behind rev-
enues. This is due to the high costs associated with prod-
uct introduction, partly caused by the difficulty in
forecasting sales of new products compared with more
ng-based framework for forecasting sales of new products with short life
https://doi.org/10.1016/j.ijforecast.2022.09.005.
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Fig. 1. Main steps of proposed framework for forecasting sales of new products with short life cycles.
stable ones that have been selling regularly in the mar-
ket (Cecere, 2013). To increase profits from new prod-
ucts, it is crucial to generate more accurate post-launch
forecasts.

Several studies show that sales of existing products are
forecasted using statistical methods (Fildes & Goodwin,
2007). The key challenge for new products is the limited
availability of historical data, thus preventing the use of
more traditional statistical forecasting methods (Burruss
& Kuettner, 2002). The dominant forecasting methods for
new products are therefore market research, managerial
opinions, and sales force input (Kahn, 2002). Although
these techniques may be viable for forecasting sales of
a new product, quantitative methods have the poten-
tial to substantially outperform these methods based on
judgment (Sanders & Manrodt, 2003). Here, we seek to
exploit the untapped potential of quantitative methods
by deploying a range of state-of-the-art techniques in a
novel way to forecast new product demand in data-scarce
situations.

We develop a framework based on existing techniques
that enables practitioners to apply quantitative methods
to forecast sales of new products with short life cycles
that are similar to previous products. An overview of our
proposed framework is shown in Fig. 1. The framework
builds on an approach widely used in research and indus-
try: identify older, similar products to the new product,
average their historical sales, and finally use the aver-
age sales as a base forecast (Baardman, Levin, Perakis,
& Singhvi, 2018). The three main steps involved are: (1)
prepare the sales data for existing products by smoothing
the sales over their life cycle to obtain representative PLC
sales, and then group similar products by means of clus-
tering; (2) assign the new product to one of the clusters
of existing products based on the first few weeks of new
product sales using one of the two considered quanti-
tative methods – integration and dynamic time warping
(DTW); (3) perform data augmentation on all smoothed
existing product sales in the cluster chosen and on the
smoothed first few weeks of sales of the new product,
then use the data to forecast sales over the rest of the
new product’s life cycle, applying both statistical and ma-
chine learning (ML) methods, as well as PLC shape-based
methods, and, finally, compare the results under different
conditions, including an analysis of the robustness of the
quantitative methods to both white noise and an incorrect

cluster assignment.

2

At this point it should be noted that while one sales
data point of a new product would already be enough
to apply the proposed forecasting framework, the more
sales data available, the higher in general the forecasting
accuracy. At the same time, it is also important to have
older, similar products for the algorithms to train on. It
should also be noted that our framework probably works
best on products that sell for at least a couple of months
or years before they are replaced by newer technology,
such as those found in the electronics industry, including,
but not limited to, phones, laptops, cameras, headphones,
and speakers. Both data sets used in our study are those
of personal computers. Other examples of suitable prod-
uct categories include fashion products (not fast fashion),
books, and movies. Although it could in principle be ap-
plied to new products with no similar old products or
to fast fashion products that have only a few weeks of
sales in the market, our developed forecasting framework
should be expected to be less accurate in these situations.

This paper makes several contributions to the litera-
ture and practice. We propose a fully quantitative frame-
work for forecasting sales of newly launched, short-lived
products that are similar to previous products. More
specifically, we describe two quantitative methods – in-
tegration and DTW – to position new products with
short life cycles in clusters of similar products, rather
than relying only on managerial opinions widely used
in practice. Furthermore, we demonstrate how data aug-
mentation, a common approach in ML, can be used to
generate more data for quantitative forecasting meth-
ods. In particular, we use simple interpolation for data
augmentation to properly define the statistical and ML
models when used with limited data. We apply four dif-
ferent quantitative forecasting methods: one traditional
statistical method – autoregressive integrated moving
average with exogenous variables (ARIMAX) – and three
advanced deep neural networks (DNNs) – long short-term
memory (LSTM), gated recurrent units (GRUs), and con-
volutional neural networks (CNNs). In addition, we apply
four PLC shape-based methods, including the well-known
Bass model.

To operationalize the proposed framework and to eval-
uate the comparative performance of the forecasting
methods considered, we use two distinct data sets: a
publicly available Dell data set that comprises customer
orders for 170 complete PLCs, and a second, much larger
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Fig. 2. Comparison between ARIMAX with and without noise (SD of 0.01) and GRUs with noise after 20 input weeks (Dell data).
data set – from Retailer X 1 – that includes the complete
LC order history for 843 products. The inputs of the
uantitative forecasting methods are the first few weeks
f sales of the product being forecasted and, depending on
he type of analysis, the weekly time series that consist
f chronological sales data (i.e. weekly customer orders)
f all products in either a cluster or the entire data
et. Lastly, we introduce additive white Gaussian noise
s our basic noise model to test the robustness of the
uantitative methods to noise in the data (see Fig. 2), and
e intentionally assign new products to incorrect clusters
o analyze the resulting impact on forecasting results.

This paper is organized as follows: Section 2 covers
he relevant literature related to forecasting sales of new
roducts. In Section 3 we describe the two data sets
sed in this work and the necessary data preparation.
ection 4 presents our overall approach to time-series
lustering, the two cluster assignment methods, and a
omparison between them. In Section 5 we describe the
ata augmentation step, the different forecasting tech-
iques used, and the computational implementation. Sec-
ion 6 presents and discusses the forecasting results for
he different methods. Section 7 analyzes the robust-
ess of the quantitative methods under additive Gaussian
hite noise and under incorrect cluster assignments of
roducts. Finally, in Section 8 we provide some conclud-
ng remarks.

. Literature review

.1. Product life cycle

The notion of a product life cycle (PLC) was introduced
n 1950 in a Harvard Business Review article, ‘‘Pricing Poli-
ies for New Products’’, by Joel Dean. The main idea be-
ind the PLC is that the invention of a new marketable
roduct is first followed by a period where markets are
till hesitant to try it, but the product is adopted over time

1 Retailer X is the disguised name of a real international elec-
tronics retailer. We use ‘‘X" instead of the retailer’s actual name for
confidentiality purposes.
3

and accepted in the market. Competitor encroachment
then arises, and innovations narrow the gap of unique-
ness between the product and its substitutes, turning the
product into a commodity (Dean, 1976).

In the 1960s, the economist Raymond Vernon devel-
oped a more formal model known as Product Life Cycle
Stages, or International Product Life Cycle (Vernon, 1966).
According to Vernon, each product has a distinctive life
cycle that starts with the product’s development and ends
with its decline. In general, PLC refers to primarily non-
durable consumer goods and represents the sales curve
from the time a product is introduced until it is removed
from the market (Rink & Swan, 1979). It is usually pic-
tured as a bell-shaped curve (similar to Fig. 2), and divided
into several stages – introduction, growth, maturity, and
decline – with each stage’s lifetime ranging from a few
weeks to several decades (Vernon, 1966).

Subsequently, many studies on different aspects of
the PLC have been published. For example, Kurawarwala
and Matsuo (1996) focused on forecasting and inventory
management for short life-cycled products. Qi-zhi (2007)
demonstrated the application of a diffusion model to in-
crease forecasting accuracy for new products with short
life cycles. Interestingly, as in the works cited, most of the
research on products with short life cycles is illustrated
by consumer electronics data, as they are representative
of this class of products.

2.2. Quantitative models for forecasting sales of new prod-
ucts

Several growth models have been suggested for fore-
casting sales during the life cycle of a new product. The
most commonly used product growth models are dif-
fusion models. They are a set of stochastic modeling
techniques that capture the life-cycle dynamics, estimate
demand for new product categories, and direct important
strategic choices in the pre-launch, launch, and post-
launch phases (Kahn, 2014). One of the best-known dif-
fusion models was developed by Bass (1969) to estimate

how long it will take customers to start purchasing a new
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product, considering that sales of the product grow to a
peak after introduction, before decreasing and leveling off.

Since this early work, several reviews of extensions of
iffusion models have been published. Meade and Islam
2006) discussed the importance of modifications of dif-
usion models to include exogenous variables related to
oth consumers and the market, and reviewed the works
lready done in the field. One of the future research di-
ections they identified was forecasting new product dif-
usion with little or no data. Subsequently, Peres, Muller,
nd Mahajan (2010) reviewed works that focus on het-
rogeneity in customers’ willingness to pay and differ-
nt customer interactions that act as drivers to growth
odels.
One disadvantage of diffusion models is that, in gen-

ral, they depend on historical data, which limits their
sefulness for forecasting new technology sales (Lee &
ee, 2017). This is the case with the Bass model, where
he parameters are usually estimated, which becomes
ifficult in situations where little is known about how
he product will perform in the market. This limitation
as resulted in many researchers attempting to improve
he Bass diffusion model by making it more adaptive over
ime as more information becomes available (Lee & Lee,
017).
In particular, Bayesian updating, which revises the pa-

ameters estimated by the Bass model once sufficient
ales have been recorded in order to provide better fore-
asting results, has been integrated in several studies. For
xample, Zhu and Thonemann (2004) developed an adap-
ive forecasting algorithm of the Bass model. Their algo-
ithm uses structural information about the PLC to model
emand for products with short life cycles by combining
he knowledge available before launch with the actual de-
and that becomes known when the product is released

o the market. This enabled them to improve demand
orecasts by continually updating the shape parameters of
he Bass model.

.3. Machine learning for forecasting sales of new products

Mišić and Perakis (2019) reflected on how research
n operations management has shifted from model-based
pproaches to data-driven analytical approaches that use
ata to create models, rather than applying knownmodels
o the data available. For example, Yildiz, Bilbao, and
proul (2017) showed that artificial neural networks with
ayesian regulation backpropagation provide the highest
orecasting accuracy when compared with other methods
sed for electricity load forecasting, which is an example
f a field with sufficient data to apply such algorithms. Lu
nd Kao (2016) used K-means clustering to obtain differ-
nt clusters of similar products. The authors related the
ales data of the product they were forecasting to one
f the clusters using different types of linkage methods,
nd then constructed an extreme learning machine model
or that cluster. Their approach was applied to prod-
cts with sufficient historical data and showed superior
erformance to forecasting without clustering. More re-
ently, Petropoulos, Apiletti, Assimakopoulos, et al. (2022)
rovided a state-of-the-art overview of a wide range of
4

forecasting methods and discussed advancements in new
product forecasting.

The use of ML models in new product forecasting
comes either through unsupervised learning by clustering
or through supervised learning, which is applied after
clustering. Techniques such as analogous forecasting may
be used to overcome the lack of sufficient historical de-
mand data (Meade & Islam, 2006), but often past similar
products are grouped together by means of clustering
and then the products in a cluster are used as a base
for forecasting sales of a new product. For example, Hu,
Acimovic, Erize, Thomas, and Van Mieghem (2018) used
different types of clustering – feature-based, category-
based, and data-driven – to group similar past products.
Then, using managerial opinions, they placed a ready-to-
launch new product in a particular cluster and applied
traditional curve fitting to the average sales data in a
cluster to forecast an entire PLC before product launch.
By contrast, Thomassey and Happiette (2007) employed
neural networks for clustering and classification. The au-
thors obtained prototypes for each cluster, which is the
mean life curve of all products in a cluster, and classified
a new product using its descriptive characteristics. Then
they used the prototype of that cluster as its sales forecast.

Other relevant works focused on clustering and then
using ML methods for time-series forecasting. This al-
lows the ML methods to be applied in a cross-learning
manner, which means that they learn from multiple time
series in a cluster to forecast one individual series (Makri-
dakis, Spiliotis, & Assimakopoulos, 2020). For example,
Fallah Tehrani and Ahrens (2016) used a probabilistic
approach to classify fashion products depending on their
sales, and then used a kernel machine approach to predict
the units of sales of the new product. Basallo-Triana et al.
(2017) proposed an analogue-based demand forecasting
model for one-step forecasting by integrating multiple re-
gression with fuzzy clustering. More recently, van Steen-
bergen and Mes (2020) developed a hybrid method com-
bining K-means clustering, random forests, and quantile
regression forests to forecast demand for new products
(within 18 weeks of introduction) prior to product launch.

The research most closely related to ours is the recent
work of Hu et al. (2018), who used different types of clus-
tering and managerial opinions for cluster assignment. In
this paper, we perform a similar clustering step to prepare
the sales data for quantitative forecasting methods. How-
ever, instead of relying on managerial opinions, which
are widely used in practice, we apply two quantitative
methods – integration and DTW – and assess their per-
formance in positioning a new product in its respective
cluster. We then perform data augmentation, a common
approach used in ML to generate artificial data points to
reinforce the training of ML algorithms (DeVries & Taylor,
2017). To the best of our knowledge, we are the first to
apply data augmentation to enhance the limited historical
data of newly launched products in order to enable the
use of quantitative forecasting methods.

Although Hu et al. (2018)’s study used clustering, which
is an ML algorithm, they did not proceed to forecast
sales of the new products using ML methods. They ap-
plied traditional curve fitting to forecast an entire PLC
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Fig. 3. Time series of the two data sets used in this study, with the red, blue, and green lines representing weekly normalized sales (before smoothing)
for three randomly selected SKUs of each data set. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
before the product launch. In this work, we use four
different quantitative methods – one traditional statistical
and three DNN methods – to forecast sales after the
new product’s launch date (i.e. after the first demand is
realized). Complementing their approach, we evaluate the
comparative performance of the different methods under
different conditions. Unlike (Hu et al., 2018), we report
actual errors here, rather than relative errors based on
proprietary forecasts, making our work directly replicable
and, as such, comparable with future studies.

Our work is also somewhat related to Szozda (2010),
ho proposed a forecasting method for newly launched
roducts with initial post-launch sales data, similar to the
ituation in our study. They compared the newly launched
roduct sales to the time series of older products. How-
ver, the authors did not apply ML methods for sales
orecasting, but used the time series of the closest older
roduct by adjusting its demand patterns in both scale
nd length.

. Data

.1. Data sets

We use two distinct data sets for this study: the first is
rom Dell, and the second is from Retailer X (anonymized
ame). Dell is the third-largest producer of personal com-
uters globally (Hamilton & Webster, 2012). The Dell
ata set is publicly available and consists of make-to-
tock (MTS) products spanning multiple product cate-
ories such as fixed workstations, laptops, and desktops.
mportantly, this data set was also used by Hu et al.
2018), and Acimovic, Erize, Hu, Thomas, and Van Mieghem
2018) provide further detail by describing the pre-
rocessing steps taken to clean the data and render it
eady to use.

The data consist of weekly customer orders for 170
tock-keeping units (SKUs) of personal computers that
ompleted their life cycle from 2013 to 2016 (Acimovic
5

et al., 2018). All the data are normalized and associ-
ated with the North American market. For our analy-
sis, we use the data after filtering out the cancellations
and configure-to-orders (CTOs). However, we consider all
sales without truncating the end of the life cycle, as we
are interested in how the product life cycles evolve even
with external forces arising from managerial decisions
such as promotions (refer to Acimovic et al., 2018 for
more details). This allows us to forecast the life cycle of
a product when it is in a market environment, where the
PLC shape is generally affected by such factors.

Furthermore, all sales are normalized to a lifetime
cumulative value of 1 by dividing the weekly customer
orders per product by its total lifetime sales volume. This
means that, for example, a value of 0.1 indicates that 10%
of the total sales of a product occurred during that week,
and a value of 0.5 indicates that 50% of the total sales of a
product occurred in that week. Normalizing sales is cru-
cial, since it defines the pattern of sales regardless of the
actual quantities, thus making the models used less sensi-
tive to different sales magnitudes. The volumes can then
be adjusted depending on how the sales evolve. Several
ML models train more efficiently in the presence of nor-
malized data when the data have different ranges (Singh
& Singh, 2020). Fig. 3(a) displays the full time series of all
the 170 Dell products , i.e. the normalized weekly sales for
each Dell product, along the selling horizon available and
highlights three different PLCs selling in the beginning (in
red), middle (in blue), and towards the end of the horizon
(in green).

The second data set is from Retailer X, an international
electronics retailer with both physical stores and online
sales. The data set consists of normalized weekly sales
data of 843 SKUs of personal computers that completed
their life cycle from 2017 to mid-2020 in one market. The
life cycle of a product in the data set starts when the first
purchase of the product occurs and ends when no more
purchases are made. The computers comprise different
brands, such as Acer, Asus, Apple, HP, and Dell, with
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Fig. 4. PLC curve fit by third-degree polynomial (SKU150, Dell data).
ifferent models of the same brand differing by features
uch as processors and storage capacity. The data are pre-
rocessed in a similar way to the Dell data set and are
lso normalized to 1 unit of life-cycle sales per SKU. The
ange of products in the Retailer X data set includes fixed
orkstations, laptops, and gaming computers, making the
roduct portfolio similar to that of Dell.
The main differences between the two data sets is that

etailer X has almost five times as many SKUs as Dell and
t comprises different brands of computers, including Dell.
he PLC lengths in the Retailer X data set differ greatly
ompared to the Dell data set, and the PLCs of Retailer X
o not necessarily follow the classical PLC shape, as some
f the products have two maturity stages instead of just
ne, as exemplarily highlighted by the blue PLC curve in
ig. 3(b), which shows the full time series of all the 843
etailer X products. Although most of the methodology
nd results shown in our work are for the Dell data, clus-
ering and forecasting are also carried out on Retailer X’s
ata to further demonstrate the consistency of the results
btained by our proposed framework and to strengthen
he comparative performance evaluation.

.2. Data preparation

Before clustering the products, it is necessary to have
hem all aligned at the same start date and to smooth
he sales in order to remove displacement effects and
oise from the data, respectively. All products are first
hifted to a start date of ‘‘0,’’ and then the normalized
eekly sales for each product are smoothed to obtain the
nderlying representative PLC, thereby achieving better
esults for clustering and forecasting. Using normalized
ales is important, since it groups products with similar
LCs together according to PLC shape, rather than sales
olumes. Although it can be argued that shifting all PLCs
o the same start date ignores the effect of seasonality,
e are dealing with short product life cycles lasting for
few months to a few years in the market, so the effect
f seasonality may not necessarily be apparent. It should
e noted that seasonality effects and trends in the mar-
et can be accounted for by adjusting sales projections
ccording to the launch data of the new product.
6

In order to smooth the PLCs, we applied a smoothing
filter that fits polynomials throughout the data points for
each time series. Note that negative values returned by
the smoothing filter are set equal to zero because using
negative values for smoothed sales would indicate that
we account for phenomena such as customer returns and
it would lead to negative training data (for the forecasting
models), which is outside the scope of this paper. We
chose a polynomial of the third degree, as it results in each
PLC shape being close to a normal curve (see Fig. 4). This
is being supported by a large body of research on the rate
of sales of new products with short life cycles which has
found that PLC shapes tend to follow normal distributions,
with a peak at 50% penetration (for example, see Rogers,
1962; Mahajan, Muller, & Bass, 1990; Golder & Tellis,
2004).

4. Clustering

In this section, we cluster the PLCs of all existing
products into different groups depending on similarities
in sales patterns and life-cycle lengths. We then assign
the newly launched product to a group of similar existing
products that have already been sold in the market and
use the sales data of that group’s products as input for
the quantitative forecasting techniques. In contrast to the
approach of Hu et al. (2018), we do not normalize the PLC
selling times. This is important as it allows us to forecast
more accurately the expected time a product sells in the
market, which is critical in order to decide, for example,
when to release new products.

In our study, we apply data-driven time-series cluster-
ing. This type of clustering is capable of identifying hidden
product attributes possibly unknown to demand planners
and not represented in the raw data (Hu et al., 2018).
More specifically, we deploy agglomerative hierarchical
clustering. The main reason for this choice of clustering
algorithm is that hierarchical clustering not only forms
groups of similar products but also provides a graphical
representation of the data, thereby making the choice
of the number of clusters easier and more intuitive for

practitioners (Özkoç, 2020) (see online Appendix A for a
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Fig. 5. Clustering results with individual curves both normalized and smoothed (Dell data).
graphical representation of results). Moreover, Javed, Lee,
and Rizzo (2020) recently presented a time-series cluster-
ing benchmark based on 112 data sets using eight popular
clustering methods, including agglomerative hierarchical
clustering, and found that no method outperformed the
others for all data sets. We have also tested several link-
age methods: single, complete, average, and ward. Since
the latter gave the best clustering results, we chose the
ward linkage method for clustering. The results of the
different linkage methods are presented in Appendix A in
the supplementary material.

4.1. Overall approach

Our overall approach for clustering is as follows:

1. Shift all time series to the same starting date ‘‘0’’;
otherwise, the clustering step groups the products
according to their start dates.

2. Smooth all individual PLCs so that the clustering
step groups the products according to the under-
lying PLC shape and is not affected by weekly sales
fluctuations.

3. Apply hierarchical clustering, a data-driven time-
series clustering technique.

4. Choose the number of clusters by referring to the
dendrogram generated from the clustering step (or
from the scree plot).

The result of the clustering step is a dendrogram (see
online Appendix A) that separates the products into dif-
ferent clusters using the Euclidean distance between each
pair of PLCs. The variables used to calculate the Euclidean
7

distance are the smoothed sales points of each time series.
For each pair of products, i and j, the Euclidean distance
between their smoothed PLCs, ED(D̃a,i, D̃a,j), is calculated
as follows:

ED(D̃a,i, D̃a,j) =

√ n∑
t=0

(
D̃a,i
t − D̃a,j

t
)2

, (1)

where (D̃a,i
t , D̃a,j

t ) is the pair of smoothed sales at time t ,
and n is the entire length of the time series.

Note that the Euclidean distance biases the clustering
results when PLCs are not aligned to the same starting
date. This is because products are clustered predomi-
nantly based on their launch dates rather than similarities
in sales patterns. So shifting products to the same starting
date allows similarities in sales patterns to be the dom-
inant clustering feature. This is important for analogous
forecasting, which uses sales information about similar
past products to forecast sales of a new product. However,
when the time series are all shifted to the same starting
date, the forecaster must pay attention to any seasonality
and trend effects of the old time series and then consider
adding similar effects to the newly generated forecasts
depending on the selling season.

As the threshold distance between the clusters in-
creases, the number of clusters needed to separate the
SKUs decreases, until all products are eventually grouped
into one big cluster. The number of clusters can be de-
termined either visually from the dendrogram by deter-
mining a horizontal line that cuts through the number
of clusters needed, or by producing a scree plot. These
curves illustrate the percentage variance in each cluster
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and how this variance decreases as the number of clusters
increases. We chose four clusters, since this results in a
meaningful separation in the dendrogram and explains
almost 80% of the variance within each cluster of the Dell
data set. Fig. 5 shows the result of time-series clustering
for the Dell data set; the four clusters are distinguished
by different PLC behavior, peak sales amounts (note the
difference in the y-axis scale), and life-cycle lengths. We
lso chose four clusters for the Retailer X data set and
eport all the clustering steps in online Appendix A, which
eveals not only the larger number of SKUs but also the
igher variance in the time-series curves of our second
ata set. In Appendix B of the supplementary material,
e illustrate the results of correlation heat maps be-
ween SKUs in each cluster for both data sets to show the
imilarity between the different PLC curves.
It is important to note that clustering was first tested

ithout the smoothing step. However, the results of the
endrogram were poor, as the products were not sepa-
ated according to their underlying sales patterns. There-
ore, the smoothing step is deemed necessary, since it
emoves noise in the data, which may adversely affect
lustering.

.2. Assigning products to clusters

After establishing the clusters, we present two quanti-
ative methods – integration and dynamic time warping
DTW) – to assign a new product to one of the four
lusters within a few weeks of its launch. In industry,
anagers typically relate new products to old ones using

heir judgment (Hu et al., 2018). By contrast, we apply two
uantitative methods that do not rely on managers’ judg-
ents but, in practice, can be used to support managers’
pinions and verify their choice.
To test the effectiveness of the two methods at assign-

ng a new product to the correct cluster, we first remove
he product we want to test completely from the data
et. With the remaining curves already assigned to one of
he four clusters, and knowing which cluster the ‘‘new’’
roduct belonged to before removing it, we can proceed
o evaluate the two methods. Specifically, we apply the
ollowing five-step approach:

1. Generate an average representative curve for each
cluster by calculating the average weekly sales of
all products in a cluster at each time step. This sub-
stantially decreases the computational time
needed, since the newly launched product is com-
pared with four representative curves, rather than
with all the remaining curves in the data set.

2. Wait for the first few weeks of sales of the new
product.

3. Use integration or DTW to position the new product
in one of the clusters, giving the mean absolute
error (MAE) between the new product and each
cluster.

4. Assign the new product to the cluster with the
lowest MAE.
8

5. Repeat steps 1–4 for three different groups of 15%
of the data set (a percentage commonly used for
validation) for each assignment method, and report
the average percentage of correct assignments per
method for different weeks of sales after product
launch. Starting from one week, we test up to 20
weeks, since some products, especially those in
clusters 1 and 2, have entire life cycles of just 30
weeks.

For steps 3 and 4, we repeated the measurements using
the mean squared error (MSE) and compared the error
measures obtained to those found using the MAE mea-
sure but did not find notable differences. The reader is
referred to online Appendices C and D for a description
of the integration and DTW methods, respectively, and a
comparison of them using the MSE can be found in online
Appendix E. In the following section we compare their
performance at correctly assigning new products to their
respective clusters.

4.3. Comparison between integration and DTW

To compare the effectiveness of using integration ver-
sus DTW in assigning a new product to its correct clus-
ter, we measure the percentage of correct assignments
per method for different weeks after a new product is
launched. Fig. 6 illustrates the percentage of correct as-
signments for both methods. The results show that in-
tegration follows a more gradual increase in correct as-
signments than DTW as more weeks of sales data of the
new products are available. Because all the data have
been shifted to the same start date, and because the PLCs
follow a very similar pattern, albeit with different shape
parameters, the power of DTW is somewhat limited for
these data. As the number of weeks after product launch
increases to five, DTW can find some differences between
the clusters, but after that, the similarities become too
high. As a result, DTW assigns the products randomly, giv-
ing the same average percentage of correct assignments
even if more weeks are available. Interestingly, the small
peak at seven weeks after product launch suggests that
at this point in time, the difference in shape between
the different clusters is detected; however, beyond this
point the clusters continue behaving in a similar way,
decreasing the assignment accuracy.

It is important to recall that for DTW, even if there
are transformations in the amplitude or period of the
curves, the algorithm considers them to be similar, unlike
the integration method, which uses these transformations
to detect differences in the rate of sales. We use the
Euclidean distance as a similarity measure for clustering.
Since the Euclidean distance measures the similarity be-
tween each pair of points at the same time step between
two curves, curves will be grouped together if they have
similar slopes. Integration in this case gives better results
in assigning products to the correct clusters, as it gives a
measurement of the rate of sales of the products, which is
represented through the slope measures. As more weeks
pass, the rate of sales of the new product (i.e. the cri-
terion that integration relies on) becomes more similar
to the representative cluster, and that is why integration
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Fig. 6. Percentage of correct cluster assignment achieved by DTW and
integration for various weeks after product launch (Dell data).

generally produces better results. For example, 15 weeks
after the new product’s launch, it is apparent from Fig. 5
that if the product is in the decline phase at that point,
it belongs to cluster 1; if it is in the maturity phase, it
belongs to cluster 2; and if it is in the growth phase, it
belongs to either cluster 3 or 4. This also explains why
there is a bump in the percentage of correct integration
assignments at 15 weeks after product launch (Fig. 6), as
the clusters are easily distinguished at that point in time.

When repeating the clustering using DTW as the dis-
ance measure instead of the Euclidean distance, and then
ssigning new products to clusters, we find that DTW
utperforms integration in cluster assignment (see on-
ine Appendix F in the supplementary material). By
sing DTW as a distance measure, products are clus-
ered based on similarities despite temporal shifts, rather
han based on slopes and evolution of sales. Therefore,
f two time series are similar in shape but have dif-
erent slopes and sales evolution, DTW-based clustering
roups them together, while integration-based clustering
o longer provides good performance. As a result, cluster
ssignment using DTW will start to assign products more
orrectly. However, due to the nature of DTW, it may
e argued that using it for only parts of curves (that is,
ew weeks of sales after introduction) may be unsuit-
ble. Moreover, the dendrogram results from using the
uclidean distance as a measure show greater separa-
ion between the clusters than using DTW as a distance
easure, as shown and discussed in online Appendix F.

. Forecasting

In this section, we first describe how we enhance
he data to make them suitable for the use of quantita-
ive methods, before testing and comparing a traditional
tatistical forecasting method with three types of deep
earning ML methods for sales forecasting. See online
ppendix G for details on the implementation and param-
ter estimation of the quantitative methods. We apply
he methods using smoothed sales, with and without the
lustering step. Doing so allows us to verify the need for
he clustering step by evaluating its importance in the
orecasting results. As a benchmark for the shape-free
9

quantitative methods in our comparative performance
analysis, we apply three forecasting methods that are
based on fitting families of curves to historical PLC shapes.
Importantly, for all the methods applied here, we assume
at this point that we know to which cluster the new
product belongs. The input of the quantitative forecast-
ing methods is in the form of weekly time series (of
chronological sales history) and consists of both the first
few weeks of sales of the new product and the historical
sales either of all products in the relevant cluster or, if
clustering is not used, of all products in the entire data
set.

5.1. Data augmentation

To ensure that the quantitative methods have suffi-
cient training data, we generate more data using data
augmentation (DeVries & Taylor, 2017). This step is nec-
essary when the algorithms require abundant data points
to perform well but the training data available are very
limited, as in our case with newly introduced products
with short life cycles. The PLCs in our data sets have
between 30 and 100 data points, meaning that products
in our data sets experience at most 100 weeks of sales. We
generate nine additional points between each pair of sales
by interpolation, before using the quantitative forecasting
methods. We chose nine additional points because this
increases the forecasting accuracy while resulting in an
acceptable running time, as described in the following
paragraph. These additional points fall on the curve of
each product’s sales, reinforcing the shape of the sales
curve yet not affecting the weekly sales volumes. We
perform data augmentation for all the curves input into
the forecasting algorithms. However, after using these
augmented points to support the training of the algo-
rithms, we disregard them and consider only the actual
points of sales when calculating the forecast errors.

By augmenting nine additional data points, the per-
centage of original data points to all data points on the
augmented new time series – which consists of origi-
nal plus augmented ones – is 10%. The choice behind
the percentage of actual to augmented data points in-
volves an important tradeoff: while data augmentation
may be necessary to properly train ML algorithms and
avoid over-fitting with limited data, too much use of data
augmentation may lead to under-fitting, which is also
undesirable (Park et al., 2019). To avoid under-fitting, the
models would have to be more complex, which, however,
increases computational costs. A ratio of 10% represents
an appropriate tradeoff between forecasting accuracy and
computational time.

Many of the data augmentation techniques for time
series increase the number of time series for classification
purposes. These include jittering, where white noise is
added to some of the time series to generate new time
series; scaling, where for a given time series the values
are scaled by a given factor to generate new time se-
ries; permutations, where segments of the time series are
rearranged to produce new time series; and averaging
and interpolation, where a new time series is created
from the combination of two time series and located be-

tween the original time series (see Iwana & Uchida, 2021
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Fig. 7. Example of data augmentation results on Dell data set (first weeks of SKU 105).
for more data augmentation techniques for time series).
However, since our data sets have sufficient time series
for classification, but limited data points per time series
for forecasting, we use a data augmentation technique
that increases the amount of data points per time series,
rather than the total number of time series available.

We note that the data augmentation step is done only
for the quantitative methods and not for the PLC shape-
based methods. The reason for this is that the latter rely
on curve-fitting, meaning that they optimize fitting as
many data points through curves of different parameters,
until the optimal parameters are found. So if we used
curve-fitting with data augmentation, we would be forc-
ing the curves to fit through the augmented data points,
giving fewer degrees of freedom to fit through the actual
data points. Fig. 7 illustrates the results of data augmenta-
tion considering the first few weeks of sales of an SKU in
the Dell data set, showing the actual smoothed sales data
in red (left) and the same data points with the additional
augmented data points in blue (right). After data augmen-
tation, the curve is supported by more curve-defining data
points and the shape of the PLC curve is better defined,
which enhances the forecasting performance.

Importantly, we ensured that the augmented points
are equidistant both from one another and from the orig-
inal sales data when interpolating these additional data
points. The reason behind positioning all (augmented and
original) data points equidistant from one another is that
the augmented data points and the original sales data act
together as the new input to the forecasting algorithms.
If the input data points were not equidistant from one
another, it would translate into giving the algorithms
data with different x-positions and therefore different fre-
quencies (e.g. some daily and some monthly data points).
This would alter the skewness of the curves, as the al-
gorithms consider the time intervals between the points
equidistant from one another, requiring the forecaster to
reconcile the different frequencies into one before using
the data for forecasting.

5.2. Traditional statistical model

We apply a version of the autoregressive integrated
moving average (ARIMA) called ARIMAX as the tradi-

tional statistical forecasting method and as a baseline

10
for comparison with the DNN methods. ARIMA is best
suited to short-term forecasting for around 12 months
ahead (Stellwagen & Tashman, 2013), making it suitable
for forecasting sales of short-lived products. ARIMAX al-
lows for the use of exogenous (or explanatory) variables
(the ‘‘X’’ in ARIMAX) within the algorithm. Examples of
exogenous variables are prices and weather conditions. In
our case, the exogenous variables are the smoothed sales
values of all (older) products in either a cluster or the
entire data set.

Extending the ARIMA model, the mathematical formu-
lation of ARIMAX is given by

y∗

t =

n∑
i=1

βixit + µ +

p∑
i=1

φi y∗

t−i +

q∑
i=1

θi ϵt−i + ϵt , (2)

where βi is the coefficient associated with the smoothed
sales of product i at time t , xit ; n denotes the number
of older products or curves present in the cluster; µ
denotes the intercept coefficient; y∗

t = ∆dyt denotes the
observations of the target time-series values differenced
d times to fulfill the stationary requirements; φ and θ are
the coefficients of the AR and MA parts, respectively; and
ϵ denotes the prediction error.

As a general rule of thumb, ARIMA typically requires
50–100 data points as input (Box & Tiao, 1975). In Sec-
tion 6 we forecast with a minimum input of 10 and six
introduction weeks for the Dell and Retailer X data sets,
respectively. Therefore, adding nine data points between
each pair of sales data points augments the 10 weeks of
sales to 100 data points and the six weeks of sales to 60
data points, making the augmented data set suitable for
use with ARIMAX.

To validate our choice of nine additional data points,
we analyze the distribution of the residuals (errors) of
the fitted ARIMAX models. If the ARIMAX model is cor-
rectly specified, then the residuals should be normally
distributed with mean zero. In Fig. 8 we show an example
of the distribution of the residuals considering SKU 10 of
the Dell data set. The figure shows the difference between
the distribution before and after the data augmentation
step, and how adding nine data points changes the distri-
bution of the errors, indicating that the augmented data

set is appropriate for the model. In Table 1 we report
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Table 1
Best-fit values for Gaussian distribution (SKU 10, Dell data).
Metric Without augmentation With augmentation

Mean 0.1761 −0.002387
Standard deviation 0.02453 0.004813
Amplitude 3.548e+012 63.29
R2 n/a 0.9649

the best-fit values for fitting a normal distribution to the
two histograms. It can be seen that fitting a Gaussian
curve without data augmentation does not converge (no
R2), whereas applying data augmentation leads to a suffi-
ciently high R2 of 0.9646, which confirms that our choice
of nine-fold augmented data sets is appropriate.

5.3. Machine learning models

For the ML methods, we apply three types of DNNs:
ong short-term memory (LSTM), gated recurrent units
GRUs), and convolutional neural networks (CNNs). The
ain reason for choosing DNNs is that they, like ARIMAX,
an be multivariate, meaning that sales of other (e.g. old)
roducts can be fed into the algorithms when forecasting
ales of the new product. DNNs are an extension of single-
ayered artificial neural networks to multiple layers and
ave been tested and compared with other time-series
orecasting methods in many studies, often giving the best
esults (see Cao, Ewing, and Thompson (2012), Zhang,
hen, Zhao, and Yang (2017), Paliari, Karanikola, and Kot-
iantis (2021), and Hu, Wang, Ye, and Wang (2021)). We
lso tested XGBoost, but it did not provide meaningful
orecasting results for the considered numbers of sales
eeks of the new product, so we excluded it from our
eport. Recently, Kraus, Feuerriegel, and Oztekin (2020)
iscussed the importance of deep learning in the field
f business analytics (including sales forecasting) and ar-
ued that DNNs are able to identify previously unknown,
otentially useful patterns more accurately than other
idely used predictive models such as support vector
achines and random forests.
Recurrent neural networks (RNNs) such as LSTM and

RUs take sequential data as input and comprise a net-
ork f : X → Y, where the sequences in X have the
RNN
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form of xi = [xi1, x
i
2, . . . x

i
τ ], with xi representing the input

ariable, such as the sales time series of one old product
r the new product, given τ input week(s). The network
lso has internal hidden layers, denoted by hi

1, . . . , h
i
τ .

he knowledge of the sequence is accumulated in these
idden states. For a given time t ∈ {1, . . . , τ }, the input
o the network is the concatenation of xit and the previous
idden state hi

t−1. The output of the RNN is therefore a
omputation of the following:

RNN(xi1, . . . , x
i
τ )

= fDNN([xiτ , fDNN([x
i
τ−1, . . . , fDNN([x

i
1];W , b); ...];W , b];W , b),

(3)

here fDNN is a deep layer of neural networks composed
f k layers of single neural networks, given by

DNN(x) = fNN(fNN(. . . fNN(x)))  
k

. (4)

Each neural network fNN is computed via an activation
function and a linear combination as follows:

fNN(x;W , b) = σ (Wx + b), (5)

here σ is the activation function, which in our case is
he rectified linear unit (ReLU) function given by σ (x) =

ax(0, x) ∈ [0, ∞); W is the weight matrix; and b is the
intercept. We refer the reader to Kraus et al. (2020) for
more information regarding the architecture of RNNs and
CNNs and the optimization of model parameters.

Long short-term memory. LSTM is a type of RNN
that addresses the problem of vanishing gradients faced
by ordinary RNNs (Hochreiter & Schmidhuber, 1997). It
does so by learning to bridge time intervals without the
loss of short time-lag capabilities, allowing the network
to remember both long- and short-term patterns in the
data. The architecture consists of several gated units and
memory cells to facilitate information storage over time,
in addition to the other layers found in RNNs.

Gated recurrent units. GRUs are the second most
common type of RNN behind LSTM. GRUs are similar to
LSTM in that they operate through gates to overcome the
vanishing gradient problem, but they differ in the type
of gates used. GRUs use reset and update gates, whereas

LSTM uses input, output, and forget gates. Many studies
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Table 2
Summary of PLC shape-based methods.
Base curve family Forecasted demand at time t Parameters
Bass

D̂Bass
t =

p(p + q)2e−(p+q)2

(p + qe−(p+q)t )2
(p, q): shape parameters

Triangle
D̂triangle
t =

{
at + b 0 < t < t1
c(t − t1) + (at1 + b) t1 ≤ t ≤ T

(a, b, c) : shape parameters
t1 : turning point
T : life-cycle length

Trapezoid
D̂trapezoid
t =

⎧⎪⎨⎪⎩
at + b 0 < t < t1
at1 + b t1 ≤ t < t2
c(t − t2) + (at1 + b) t2 ≤ t ≤ T

(a, b, c) : shape parameters
t1 : beginning of maturity stage
t2 : end of maturity stage
T : life-cycle length

Polyn
D̂polyn
t =

n∑
j=0

ajt j
aj : shape parameters
for j = 0, . . . , n
demonstrate the applications of GRUs, with (Kumar, Hus-
sain, Banarjee, & Reza, 2018) showing that both LSTM and
GRUs perform best when used for forecasting.

Convolutional neural networks. CNNs are a type of
rtificial neural network commonly used in image pro-
essing. The aim is to form spatial filters and convolve
hese filters over each channel in an image (Rudin &
arlson, 2019) before passing the input to the next layer.
herefore, the number of filters in a CNN should be
ptimized. Although their use mostly involves image pro-
essing, some studies have applied CNNs to forecast time
eries. For example, Liu, Hou, and Liu (2017) used a
NN-based model to forecast foreign exchange rates and
howed that its performance for long-term forecasts out-
erforms other ML models, even when compared with
RUs. We therefore include it in our study.

.4. PLC shape-based methods

To complement our analysis, we also apply three fore-
asting methods that are based on fitting families of
urves – Bass diffusion, piece-wise linear, and polynomial
urves – to PLC shapes. Using these families of curves
as proposed by Hu et al. (2018), and their mathemat-

cal formulations are summarized in Table 2. We use
he methods on our two data sets after the smoothing
nd clustering steps. As in the work of Hu et al. (2018),
e apply two different approaches to fit the models’
arameters: ‘‘(a) Taking the average of similar curves (Gen-
rateAvg)’’ for each cluster; and ‘‘(b) Fitting the best curve
hrough the data points (GenerateFit)’’ in each cluster. For
enerateAvg, we simply calculate the average weekly sales
f all the products in a cluster at each time step (similar
o Section 4.2). For GenerateFit, we generate a represen-
ative curve in a similar fashion to Hu et al. (2018) by
ormulating an optimization problem that, depending on
he curve (bass, polynomial, triangle, and trapezoid), finds
he parameter values that minimize the sum of squared
rrors across all products in the cluster over all time steps.
Note that for the Bass diffusion model, we denote the

orecasting results (in Tables 3 and 4) obtained through
he two approaches described above by Bass-I. We then
se the Bass model in a different manner by applying it to
nly one PLC – the PLC of the most similar older product

n the cluster – instead of applying it to the average PLC
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curve per cluster. More specifically, we first calculate the
MSE between the data of the first few weeks of sales of
the new product and the first few weeks of each PLC in
the cluster. The PLC in the cluster with the lowest MSE
value is assumed to have the highest similarity to the
new product. After finding the most similar PLC of an old
product, we fit the Bass parameters to that PLC and use
it for forecasting. Denoted by Bass-II, this approach was
inspired by Zhu and Thonemann (2004) in which, over
time, new products are compared to old products and the
parameters of the Bass model are updated accordingly.
Importantly, by using Bass-II, the Bass model uses the
new product’s sales data available after a few weeks of its
launch and compares the data to sales of older products,
thus taking advantage of the sales information available
at that point.

In Fig. 9, we provide a small example to demonstrate
how the Bass-II approach works. Assume we place the
‘‘new product’’ after 20 weeks of launch in cluster 3,
which has only two older products: ‘‘old product 1’’ and
‘‘old product 2.’’ Considering the first 20 weeks, the MSE
measure between the new product and old product 1 is
lowest, so the sales of the new product are closest to old
product 1. We therefore fit the Bass-II model parameters,
p and q, to the sales time series of old product 1 and use
those parameters to forecast the rest of the PLC of the new
product.

It should be noted, however, that since the Bass-II
model parameters are obtained based on estimates from
a single old PLC, the results can be extremely poor if
it turns out that the old PLC has a very different sales
pattern afterwards. In our case, the old and new PLCs are
very similar, so this approach can be used. But if the new
product is expected to behave very differently from the
old products, this approach should not be considered, as
it relies on the sales of a single old product during fore-
casting and does not benefit from learning sales patterns
from different PLCs.

We also tried for the Triangle and Trapezoid to use
the additional information by fitting their a and b param-
eters to the first few weeks of sales data, but this gave
poor results, since these few data points are, in general,
insufficient to estimate these parameters accurately.

For each PLC shape-based method, we calculate the pa-
rameters for both GenerateAvg and GenerateFit twice: (1)
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Fig. 9. Reference to how the Bass-II model works.
with respect to the GenerateAvg and GenerateFit of each
cluster independent of the number of weeks of sales of
the new product; and (2) with respect to the GenerateAvg
and GenerateFit of each cluster starting from the number
of weeks of sales already encountered until the end of
the new product’s life cycle. We apply the second strategy
to make use of the additional sales information we have
available – by truncating the beginning (up to the new
product’s sales weeks encountered) of the representative
curves generated through the GenerateAvg and GenerateFit
approaches – and report the results of the more accurate
parameter calculation strategy. Superscripts 1 and 2 in Ta-
bles 3 and 4 denote which of the two strategies performed
best, and the results for both strategies are reported in
online Appendix H.

6. Forecasting results

This section reports the forecasting results on both
the Dell and Retailer X data sets, using ARIMAX and the
three considered DNNs – LSTM, GRUs, and CNNs – with
and without clustering, considering different weeks after
the introduction of the new product. It also includes a
comparison of the forecast accuracy of the quantitative
methods and the PLC shape-based methods. Note that the
results in terms of forecast accuracy reported here are
calculated between the forecasted sales and the actual
(unsmoothed) sales of the product over its life cycle,
across three groups of 15% of the data set, equal to 25
SKUs per group. To evaluate the out-of-sample forecast
accuracy, we measure the mean absolute scaled error
(MASE) and the sum of absolute errors (SAE). These two
error measurements are widely and commonly used in
the related literature. The errors are calculated per prod-
uct between the forecasted and actual (unsmoothed) sales
at each time step, and are then averaged over the group
of SKUs tested, as described in online Appendix I. Note
that for both data sets the parameters of ARIMAX and
those of the two Bass models are statistically significant
at the 5% level. In online Appendix J, we show the error
distributions over the different SKUs for each forecasting

method used.
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6.1. Dell data set

We start with the Dell data set and evaluate the sales
forecast accuracy over the new product’s entire life cycle,
at 10, 15, and 20 weeks after a new product is launched.
We chose 20 weeks as the maximum number of weeks
because products in clusters 1 and 2 would already be
in their decline stage after that. The forecast errors in
Table 3 show that ARIMAX achieved the highest forecast
accuracy. When compared to the best-performing DNN
– either LSTM or GRUs – the forecast errors in terms of
the MASE (SAE) achieved by ARIMAX are 24.32% (22.86%),
23.64% (37.14%), and 21.10% (39.29%) lower for 10, 15,
and 20 input weeks, respectively. On the other hand,
when compared with the worst-performing DNN – CNNs
– ARIMAX achieved even higher reductions of 38.69%
(47.06%), 34.38% (46.34%), and 37.23% (50%), respectively.
Even though ARIMAX without clustering gave the best
results, LSTM and GRUs also performed relatively well.
However, CNNs exhibited the poorest performance com-
pared with the two RNN methods, in contrast to what
was found by Liu et al. (2017) in the context of long-term
forecasting of exchange rates.

It can be observed from Table 3 that the PLC shape-
based methods produce relatively accurate forecasts and,
on average, perform better than the DNNs. In fact, when
ARIMAX is compared to the best-performing curve-fitting
method – either poly2 (Avg) or Bass-II – the forecast
errors in terms of the MASE (SAE) achieved by ARIMAX
are 9.68% (25%), 10.64% (31.25%), and 11.34% (34.61%)
lower for 10, 15, and 20 input weeks, respectively. This
can be explained by the relatively small size of the Dell
data set and by the PLCs of the included products, which
follow the classical life-cycle pattern with well-defined
PLC stages.

Fig. 10 displays the forecasting results of ARIMAX and
GRUs for an example SKU with 10 weeks of post-launch
sales data. Note that the forecasting is done before clus-
tering for ARIMAX and after clustering for GRUs, as this
gives the best results. It can be seen that the ARIMAX
outperforms GRUs, because the forecasted sales points of

ARIMAX lie closer to the actual sales curve than those of
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Table 3
Forecast errors for new products for different weeks after introduction (Dell data).
Quantitative Time-series MASE SAE

method clustering 10 weeks 15 weeks 20 weeks 10 weeks 15 weeks 20 weeks

LSTM No 1.14 1.13 1.18 0.43 0.36 0.30
Yes 1.13 1.13 1.09 0.35 0.35 0.28

GRUs No 1.16 1.10 1.10 0.44 0.35 0.32
Yes 1.11 1.11 1.12 0.42 0.35 0.29

CNNs No 1.37 1.23 1.20 0.51 0.38 0.30
Yes 1.32 1.28 1.37 0.49 0.41 0.34

ARIMAX No 0.84 0.84 0.86 0.27 0.22 0.17

Yes 0.97 0.99 1.06 0.37 0.32 0.26

Base curve Cluster curve MASE SAE

family generation 10 weeks 15 weeks 20 weeks 10 weeks 15 weeks 20 weeks

Bass-I Fit1 0.99 1.01 1.05 0.38 0.33 0.28
Avg1 0.97 1.00 1.04 0.38 0.33 0.28

poly2 Fit1 1.07 1.10 1.18 0.41 0.36 0.30
Avg1 0.93 0.94 0.98 0.36 0.32 0.26

poly3 Fit1 1.10 1.14 1.21 0.42 0.37 0.31
Avg1 0.97 0.98 1.02 0.37 0.32 0.27

poly4 Fit1,2 1.11 1.15 1.23 0.43 0.38 0.32
Avg2 0.98 1.00 1.04 0.38 0.33 0.28

Trapezoid Fit1 1.16 1.19 1.26 0.44 0.38 0.32
Avg1 1.11 1.13 1.14 0.42 0.36 0.30

Triangle Fit1 1.12 1.14 1.22 0.42 0.37 0.31
Avg1 1.10 1.14 1.21 0.42 0.37 0.31

Bass-II1,2 – 1.08 0.94 0.97 0.38 0.34 0.26

Note: Double boxes denote the best values in each column, while single boxes denote the second-best values.
Superscripts 1 and 2 denote that the best results for the curve-fitting methods were obtained by fitting the parameters to
the entire GenerateAverage/GenerateFit curves per cluster and only to the part after the introduction weeks, respectively.
Fig. 10. Comparison of forecasting results of ARIMAX and GRUs (SKU 112 from the Dell data set, with 10 weeks of introduction).
GRUs. Furthermore, ARIMAX shows a clear end of PLC as
the sales drop to zero, while GRUs shows that the life
cycle is longer than expected. In Fig. 11, we illustrate
the forecasting results of ARIMAX and Bass-II on another
example SKU with 10 weeks of post-launch sales data. As
can be seen, the results show that the forecasting perfor-
mance of ARIMAX is superior to Bass-II, which produces
a PLC with a lower peak and extended selling period, as
opposed to the actual PLC and the results of ARIMAX.
14
Although Hu et al. (2018) did not report actual forecast
errors, which would have allowed us to compare our
results with theirs, it is evident that the relative perfor-
mance of the curve families differs slightly. In their study
of pre-launch forecasts, even though poly2 performed
well, Trapezoid and Triangle performed best. Unlike Hu
et al. (2018), we find that the Bass model gives very good
results. This difference in relative performance may well
be explained by differences in the smoothing step or the
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Fig. 11. Comparison of forecasting results of ARIMAX and Bass-II (SKU 24 from the Dell data set, with 10 weeks of introduction).
fact that we consider the Dell products’ entire life-cycle
length, rather than truncate the end of the life cycles
like Hu et al. (2018). Also, it is important to note that
we do not normalize the selling period and therefore our
error calculations penalize the results if the methods do
not predict the life-cycle length accurately.

It is interesting to see, however, that while all consid-
red methods exhibit improved performance in terms of
AE when more weeks of sales are included, the quan-
itative forecasting methods do not always benefit from
ime-series clustering. The forecasts generated by ARI-
AX show substantially worse performance when using
lustering, whereas the DNNs with clustering often have
ower forecast errors (and, hence, higher accuracy), with
eductions in MASE (SAE) of up to 7.63% (18.6%), 4.31%
9.38%), and 3.65% (3.92%) under LSTM, GRUs, and CNNs,
espectively. The intuition behind this is that after clus-
ering, the variance between the sales of products in the
lusters is minimized, removing possible noise coming
rom PLCs that are different and that could affect the
orecasting accuracy. The reductions are rather modest,
s the Dell data set is composed of only 170 SKUs, so
eparating the data into clusters reduces the amount of
ata available for the DNN algorithms to train. We should
herefore expect greater improvements in accuracy by
lustering when applying our framework to the Retailer
data set, as it is almost five times larger.

.2. Retailer X data set

We now repeat the clustering and forecasting steps
or the second data set – Retailer X – to analyze the
erformance of our proposed framework on a second,
uch larger data set which consists of almost 850 SKUs
nd features irregular PLCs such as those with two ma-
urity phases. The accuracy of post-launch forecasts is
valuated at six, eight, and 10 weeks after a new product
s launched. We chose 10 weeks as the maximum, since
he majority of products have already started their decline
tage by then.
The results in terms of forecast accuracy are displayed

n Table 4 and show that the MASE generally does not fol-
ow any trend when more weeks are introduced, whereas

he SAE virtually always decreases as more data become

15
available. While the latter confirms that the considered
forecasting methods typically perform better with more
data, the improvement is not reflected in the MASE, due
to the fact that we introduce only two more weeks at a
time. It is now more apparent that clustering improves
the forecast accuracy of the quantitative methods, with
average MASE (SAE) improvements of 14.67% (19.16%),
8.97% (20.18%), 5.19% (12.54%), and 20.89% (21.31%) under
LSTM, GRUs, CNNs, and ARIMAX, respectively, which is in
line with the best results obtained for the Dell data set for
the DNN methods. Due to the increased amount of data
for Retailer X, the reduction in forecasting errors over no
clustering is much more substantial than for the Dell data
set, so clustering can be regarded as an important step,
especially when historical PLC data are plentiful.

The forecast errors in Table 4 support the results of
the Dell data set, with ARIMAX still generating the best
results, but the difference between ARIMAX and the three
DNNs is now reduced. In fact, when compared with the
best-performing DNN – again, either LSTM or GRUs – the
percentage reductions in MASE (SAE) achieved by ARI-
MAX with clustering are 9.24% (6.98%), 11.02% (10.26%),
and 10.29% (9.09%) for six, eight, and 10 input weeks,
respectively. On the other hand, when compared with
CNNs, ARIMAX again achieved higher improvements of
26.53% (24.53%), 23.91% (20.45%), and 28.65% (23.07%), re-
spectively. The standard deviation within the time-series
clusters of Retailer X is higher than that of Dell’s, mean-
ing the products have less similar PLC curves and the
linear dependencies between the PLCs are minimized,
which may explain why the forecast errors for ARIMAX
are almost always higher now.

It can also be observed from Table 4 that although
the PLC shape-based methods still perform relatively well,
they are generally outperformed by the DNN methods
in terms of SAE. Comparing the performance of ARIMAX
to the best-performing PLC shape-based method – ei-
ther Bass-I (Avg) or Bass-II – the percentage reductions
in MASE (SAE) achieved by ARIMAX are 1.82% (24.53%)
10.26% (28.57%), and 1.61% (33.33%) for six, eight, and
10 input weeks, respectively. The improved comparative
performance of the ML methods may again be explained
by the PLC curves in the Retailer X data set, which are less
similar and thus show a higher degree of variability than
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Table 4
Forecast errors for new products for different weeks after introduction (Retailer X data).
Quantitative Time-series MASE SAE

method clustering 6 weeks 8 weeks 10 weeks 6 weeks 8 weeks 10 weeks

LSTM No 1.40 1.46 1.52 0.50 0.46 0.46
Yes 1.19 1.19 1.36 0.43 0.39 0.33

GRUs No 1.41 1.46 1.50 0.52 0.49 0.45
Yes 1.47 1.18 1.32 0.45 0.39 0.33

CNNs No 1.65 1.61 1.56 0.57 0.52 0.46
Yes 1.47 1.38 1.71 0.53 0.44 0.39

ARIMAX No 1.26 1.53 1.47 0.47 0.44 0.42

Yes 1.08 1.05 1.22 0.40 0.35 0.30

Base curve Cluster curve MASE SAE

family generation 6 weeks 8 weeks 10 weeks 6 weeks 8 weeks 10 weeks

Bass-I Fit2 1.20 1.20 1.30 0.56 0.50 0.49
Avg1,2 1.10 1.17 1.24 0.53 0.49 0.45

poly2 Fit1 1.40 1.46 1.57 0.67 0.62 0.58
Avg2 1.15 1.40 1.54 0.54 0.50 0.47

poly3 Fit2 2.11 2.85 3.30 0.99 0.83 0.71
Avg2 1.14 1.39 1.54 0.54 0.50 0.46

poly4 Fit2 1.61 1.82 2.14 0.78 0.71 0.64
Avg1,2 1.13 1.38 1.53 0.54 0.51 0.46

Trapezoid Fit2 1.29 1.36 1.34 0.61 0.58 0.51
Avg1,2 1.29 1.30 1.25 0.58 0.54 0.47

Triangle Fit2 1.28 1.36 1.39 0.60 0.55 0.50
Avg2 1.20 1.25 1.26 0.56 0.51 0.47

Bass-II2 – 1.11 1.17 1.24 0.55 0.49 0.47

Note: Double boxes denote the best values in each column, while single boxes denote the second-best values.
Superscripts 1 and 2 denote that the best results for the curve-fitting methods were obtained by fitting the parameters to
the entire GenerateAverage/GenerateFit curves per cluster and only to the part after the introduction weeks, respectively.
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hose of Dell, and some of which even follow irregular life
ycles with two maturity stages.
It is interesting to note at this point that the perfor-

ance gap between ARIMAX and the DNNs reduces as
oth the variability in the historical PLC data increases
nd the similarity between past products’ life cycles de-
reases. Since PLC curves of new products are not smooth
ut rather tend to fluctuate substantially, we smoothed
he historical PLC curves before generating forecasts (see
ig. 4). In the next sub-section, we introduce noise to the
smoothed) input data for the new product to portray the
ifference in the accuracy of the quantitative forecasting
echniques – DNNs with clustering and ARIMAX without
lustering – for situations with various degrees of sales
luctuations. We do not test the robustness of the shape-
ased methods because, apart from Bass-II, adding noise
o the sales of the newly launched product does not
hange the fact that we fit the base curve shapes only
o the PLC curves of past products (albeit truncated at
he beginning under the superscript 2 strategy), which are
naffected by this noise.

. Robustness of the quantitative methods

.1. Impact of adding Gaussian white noise

Until now we have used smoothed data from the first
eeks of sales as input to the different forecasting meth-
ds for the new products. The first few weeks, however,

ay not be sufficient to generate an optimal fitted curve

16
that would represent the entire new PLC. So unsmoothed
or slightly smoothed sales of the new product might be
used as input into the forecasting algorithms.

To test how robust the quantitative methods are to
noise in the input data for new products, we introduce
noise with different standard deviations and evaluate the
impact on the forecast accuracy of each method. In partic-
ular, Gaussian noise with zero mean (µ = 0) and different
levels of standard deviation (σ ) is introduced to disrupt
he sales during the first few weeks after the new product
s launched. Introducing Gaussian white noise (GWN) is
common strategy to test the robustness of different

orecasting techniques, and we use it as our basic noise
odel. It is generally known that DNNs are prone to over-

itting, so adding noise will provide further validation
f this characteristic. We add noise after the smoothing
tep to be able to measure and control its level, because
ntroducing noise to the unsmoothed sales data can have
he opposite effect by decreasing the actual amount of
oise in the input.
Let D̃a,i

= (D̃a,i
t )τt=1 denote the vector of the smoothed

sales already encountered for product i. The length of the
vector corresponds to the number of weeks we choose
to introduce, with each component D̃a,i

t representing the
sales for week t , where t ∈ {1, 2, . . . , τ } and τ is the
number of weeks considered after a new product’s launch.
Then, the vector of disrupted weekly input sales of the
new product i after adding GWN, ỹ(i), is given by

˜
(i) ˜ a,i
y = D + ϵ, (6)
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Fig. 12. Forecast errors (MASEs) after adding Gaussian white noise to Dell data (with a log-scale vertical axis).
where ϵ is a vector of the same length as D̃a,i that consists
of components that are chosen randomly (i.i.d.) from a
zero-mean normal distribution: ϵt ∼ N (0, σ 2) ∀t ∈

{1, 2, . . . , τ }.
The results of the robustness testing are reported in

Fig. 12. We chose to test standard deviations σ ∈ {0.0001,
.001, 0.01, 0.1} and considered τ = 20 weeks of product
ntroduction. The results show that all the methods are
obust to GWN for σ -values up to 0.001. However, when
is increased to 0.01, the average MASE reported for ARI-
AX is substantially increased. The three DNNs, by con-

rast, are resistant and therefore robust to this noise level.
lthough introducing noise with a σ of 0.1 causes the
orecast errors for all methods to increase, only ARIMAX’s
erformance deteriorates drastically and its forecast error
ncreases exponentially. The intuition behind this behav-
or is that ARIMAX detects linear relationships between
he sales data, whereas the DNN methods detect non-
inear relationships. Because noise standard deviation is
nversely correlated to linearity, ARIMAX’s performance
ecreases substantially.
The robustness results indicate that ARIMAX is consid-

rably more sensitive to high levels of noise in the sales
ata than the three DNNs under consideration. When
ompared with the worst-performing DNN – CNNs – the
orecast errors (MASEs) achieved by ARIMAX are 15.71%,
78.43%, and 4291.63% higher for standard deviations
.001, 0.01, and 0.1, respectively. On the other hand, when
ompared with either LSTM or GRUs, ARIMAX achieved
ven higher increases of 36.14%, 715.64%, and 4923.62%,
espectively. Different levels of noise can represent differ-
nt sales patterns that may occur in real-world situations.
n fact, we also tested the forecasting methods using
nsmoothed sales as input for the new products and ob-
ained results very similar to those reported above for low
evels of σ . This similarity suggests that low noise levels
orrespond to sales fluctuations that can be reasonably
xpected to be present in real-world sales data. Higher
alues of σ can represent larger unexpected fluctuations,
uch as sharp spikes and/or drops in sales, that may occur
ue to economic booms and busts, recessions, wars, and
andemics.
17
7.2. Effect of incorrect cluster assignment

Although we have used integration and DTW to as-
sist managers in placing the new product in a cluster,
the results in Fig. 6 show that, on average, both cluster
assignment methods applied provide only around 60%
correct assignments given the input weeks considered in
our study. Until now we have assumed that we know
which cluster each new product belongs to when fore-
casting. In this section, we assign the new products to
(in)correct clusters and report the forecasting errors in
terms of the MASE. In the tables presented in this section,
the rows represent the clusters the products being fore-
casted belong to, and the columns represent the clusters
the new products have been (intentionally incorrectly)
assigned to. All results are obtained using 10 weeks of in-
put data, which corresponds to about 60% correct cluster
assignment for both integration and DTW (see Fig. 6). The
forecast errors are calculated for 15% of the data of each
cluster and averaged over three repetitions, using the
same set of randomly selected products for the different
methods in each repetition to ensure the comparability of
the results. The MASE results obtained using all products
in the Dell data set for forecasting, rather than solely those
of the assigned cluster, are reported for comparison in
online Appendix K.

The results in Table 5 show an increase in the av-
erage MASE for ARIMAX over all clusters with incorrect
cluster assignment when compared to the highest
possible accuracy achieved by either forecasting with cor-
rect cluster assignment (diagonal entries in Table 5) or
forecasting without clustering (see the ARIMAX column
of Table K.13).

Note that although the results indicate that incorrectly
assigning the products of cluster 1 (to clusters 2, 3, or
4) results in equally accurate forecasts as correct assign-
ments (to cluster 1), reporting results to more than two
decimal places would actually show that using all histor-
ical data (i.e. without clustering) produces slightly more
accurate forecasts. It can also be seen that incorrectly
assigning a product to cluster 1 results in substantial
increases in MASE values. This is because the properties

of cluster 1 are very different, due to the high initial sales
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Table 5
Average MASE results for (in)correct cluster assignment using ARIMAX on Dell data.
From To

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 1.77 1.77 1.77 1.77
Cluster 2 91.56 0.86 0.87 0.86
Cluster 3 23.15 1.86 1.07 1.07
Cluster 4 38.68 1.75 1.05 0.85
Table 6
Average MASE results for (in)correct cluster assignment using LSTM on Dell data.
From To

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 1.84 1.78 1.50 1.72
Cluster 2 1.17 0.97 1.45 1.16
Cluster 3 1.91 1.72 1.20 1.47
Cluster 4 1.58 1.19 1.39 0.92
Table 7
Average MASE results for (in)correct cluster assignment using GRUs on Dell data.
From To

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 1.87 1.77 1.50 1.73
Cluster 2 1.17 0.98 1.45 1.16
Cluster 3 2.02 1.80 1.20 1.48
Cluster 4 1.61 1.20 1.39 0.93
Table 8
Average MASE results for (in)correct cluster assignment using CNNs on Dell data.
From To

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 1.78 1.86 1.46 1.63
Cluster 2 1.23 1.01 1.46 1.28
Cluster 3 2.29 1.81 1.42 1.45
Cluster 4 1.73 1.23 1.42 1.02
volumes of the PLCs and short life cycles, and since ARI-
MAX captures linear relationships, the errors considerably
increase if the products in the cluster are very different
from the new products’ initial sales. Assuming forecasters
do not misplace a product in cluster 1 given the distinct
characteristics of the clusters, ARIMAX with an incorrect
cluster assignment results in an average MASE of 1.42,
which is substantially lower than in the three worst-case
incorrect cluster assignments.

Tables 6, 7 nd 8 show the results of (in)correct cluster
ssignment for LSTM, GRUs, and CNNs, respectively. It can
e observed that, except for cluster 1, an incorrect cluster
ssignment virtually always results in higher MASE values
ompared to a correct assignment. A correct cluster as-
ignment, however, does not necessarily lead to the most
ccurate forecasts. In fact, unlike for products from clus-
ers 2, 3, and 4, forecasts for products from cluster 1 are
enerally more accurate when all PLCs in the data set are
sed for forecasting (see Table K.13). Somewhat counter-
ntuitively, correctly assigning products from cluster 1
to cluster 1) generally results in poorer forecasts than
ncorrectly assigning them to clusters 2–4, which may be
xplained by the small size and the distinct characteris-
ics of cluster 1. Although the forecast accuracy of DNNs
18
also typically decreases through incorrect assignments,
the percentage increases in MASE values are lower than
for ARIMAX, with CNNs showing the least percentage
increase, which suggests that their performance is more
robust to incorrect cluster assignments.

It is interesting to note that the considered DNNs share
the same worst-case incorrect cluster assignment across
clusters. In fact, as can be seen from Tables 6–8, for all
three DNNs, the worst incorrect assignment in terms of
average MASE is found by assigning products from clus-
ters 1, 2, 3, and 4 to clusters 2, 3, 1, and 1, respectively.
Based on the results of this robustness analysis, it can be
argued that if forecasters are not sure to which cluster a
new product belongs, they may want to consider using
all the old PLCs rather than risking an incorrect cluster
assignment that might lead to poor forecasts. Indeed,
as shown in this section, forecasting without clustering
often results (especially for products from cluster 1) in
lower forecast errors than those obtained using incorrect
cluster assignments. Forecasters can then apply the ML-
based forecasting framework proposed in this paper and
follow all the steps, apart from the clustering step, to
obtain more accurate sales forecasts of newly launched,
short-lived products.
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8. Conclusions

In this paper, we developed a framework that uses
uantitative methods to forecast sales of new, but not
ompletely new, products with short life cycles after their
aunches. To accomplish this, our framework involves a
umber of important steps based on state-of-the-art tech-
iques. Firstly, we apply smoothing to obtain representa-
ive product life cycle (PLC) sales and then use time-series
lustering to group similar products. In order to assign
he newly launched product to one of the clusters, we
onsider two alternative quantitative methods – integra-
ion and dynamic time warping (DTW). Subsequently,
e perform data augmentation, a common approach in
achine learning (ML), to generate artificial data points

o support the training of the forecasting algorithms. In
ddition to three deep neural networks (DNNs) – long
hort-term memory (LSTM), gated recurrent units (GRUs),
nd convolutional neural networks (CNNs) – we apply a
raditional statistical approach, autoregressive integrated
oving average with exogenous variables (ARIMAX), in
ur framework’s forecasting step. We also apply three
orecasting methods that are based on fitting families of
urves – Bass diffusion, polynomial, and piece-wise linear
urves — to historical PLC shapes.
We illustrated the applicability of our framework using

he publicly available Dell data set comprising complete
LC order history for 170 products, and we addition-
lly evaluated the comparative performance of the fore-
asting methods using a second, much larger data set
from Retailer X – that includes customer orders for

43 complete PLCs. We investigated the accuracy of both
ntegration and DTW in correctly assigning a new prod-
ct to its cluster, and found that the effectiveness of
he latter was somewhat limited. In our empirical anal-
sis, we found that ARIMAX gave the best forecasting
esults for the three different numbers of input weeks
onsidered and, for our larger data set, showed that clus-
ering generally resulted in substantially lower forecast
rrors. In fact, we showed that, when compared with the
est-performing DNN – either LSTM or GRUs – the fore-
ast errors (MASEs) achieved by ARIMAX using Dell data
ere 24.32%, 23.64%, and 21.20% lower for 10, 15, and 20

nput weeks, respectively. On the other hand, when com-
ared with the best-performing PLC shape-based method
either poly2 (Avg) or Bass-II – ARIMAX achieved com-
aratively lower reductions of 9.68%, 10.64%, and 11.34%,
espectively. We obtained consistent results for our larger
ata set, but found that the performance gap between
he DNNs and ARIMAX was reduced and that the former
enerally outperformed the PLC shape-based methods.
We also investigated the robustness of the quantita-

ive forecasting methods to noise in the input data and
o an incorrect cluster assignment. We added Gaussian
hite noise with different levels of standard deviation
o represent different sales patterns that may occur in
eal-life situations and found that ARIMAX’s performance
eteriorated drastically as the level of noise increased,
hereas the three DNN methods’ forecast accuracy re-
ained relatively unaffected. In fact, we found that, when

ompared with the worst-performing ML method – CNNs

19
– the forecast errors (MASEs) achieved by ARIMAX were
more than 15%, 578%, and 4291% higher for standard
deviations of 0.001, 0.01, and 0.1, respectively. This means
that the three DNNs are considerably more robust to noise
in data sets and, as such, more suitable for forecasting
sales of newly launched, short-lived products when there
are sufficiently large demand fluctuations such as sudden
spikes and drops in sales. We assigned new products
to incorrect clusters to analyze the resulting impact on
forecasting results and found that the errors generally
increased considerably. Our results suggest that forecast-
ing may be carried out without the clustering step using
all data if it is unclear to which cluster a new product
belongs.

The framework proposed in this paper enables prac-
titioners to use quantitative methods to forecast demand
in data-scarce situations, and the managerial insights pro-
vided support practitioners to decide when to apply ML-
based forecasting methods and when to apply traditional
methods. In fact, we demonstrated how state-of-the-art
techniques that are simple and readily applicable can be
combined in a powerful framework in order to enable
companies to exploit the untapped potential of quantita-
tive forecasting methods when there is limited availability
of historical sales data. For example, integration for clus-
ter assignment – by determining the area under the curve
– and data augmentation for the generation of sufficient
training data – by performing interpolation – are both
simple and straightforward methods that can be readily
applied by practitioners.

There are several important directions for future re-
search. For example, our framework could be used in
tandem with existing prediction tools that provide pre-
launch forecasts to improve overall accuracy by forecast
updating. Alternatively, by assuming that the cluster to
which a new product belongs is known before the first
demand is realized, our framework could also be used
to generate a forecast before a product’s launch date. It
could also be interesting to evaluate other quantitative
methods, such as exponential smoothing or multi-layer
perceptron, to incorporate additional information such as
pricing and product reviews and to explore the applica-
tion of our proposed framework to forecast sales of old or
long-lived products.
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