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Prefrontal cortex (PFC) inhibitory microcircuits regulate the gain and timing of pyramidal neuron firing, coordinate neural
ensemble interactions, and gate local and long-range neural communication to support adaptive cognition and contextually tuned
behavior. Accordingly, perturbations of PFC inhibitory microcircuits are thought to underlie dysregulated cognition and behavior
in numerous psychiatric diseases and relevant animal models. This review, based on a Mini-Symposium presented at the
2022 Society for Neuroscience Meeting, highlights recent studies providing novel insights into: (1) discrete medial PFC
(mPFC) interneuron populations in the mouse brain; (2) mPFC interneuron connections with, and regulation of, long-range
mPFC afferents; and (3) circuit-specific plasticity of mPFC interneurons. The contributions of such populations, pathways,
and plasticity to rodent cognition are discussed in the context of stress, reward, motivational conflict, and genetic mutations
relevant to psychiatric disease.

Key words: inhibitory neurons; prefrontal cortex; plasticity; microcircuits; cognition

Introduction
The PFC coordinates neural communication across expansive
brain networks to facilitate high-order cognitive functions.
Complex inhibitory microcircuits within PFC, comprised of its
many GABAergic interneurons and their interconnections,
dynamically gate and integrate neural input from distal brain
regions to support contextually tuned behaviors (Miller and
Cohen, 2001). Unsurprisingly, disruptions to these microcir-
cuits have been implicated in a wide array of neuropsychiatric
disorders, including schizophrenia, autism spectrum disorder,
and depression (Dienel and Lewis, 2019; Fogaça and Duman,

2019; Yan and Rein, 2022). Therefore, characterization of the
rich diversity of the interneurons that comprise PFC microcir-
cuits, their synaptic connectivity, and the plastic nature of this
connectivity stand to inform the neural basis of typical and dis-
ordered cognition. Here, we briefly review recent advances in
the parsing of rodent mPFC interneurons into molecularly,
anatomically, and functionally defined subpopulations. We also
describe newly uncovered complexity in the synaptic connec-
tions between mPFC interneurons and their distal inputs, and
novel mechanisms of plasticity and neuromodulation that regu-
late this long-range synaptic connectivity. How these distinct
cell types, circuits, and circuit adaptations guide rodent cogni-
tive functions is discussed in relation to stressful and rewarding
experiences, motivational conflict, and disease-relevant genetic
insults.

Prefrontal interneuron populations
The rodent mPFC harbors a network of inhibitory interneurons
interspersed among glutamatergic pyramidal neurons. Despite
their vast heterogeneity stemming from differences in develop-
mental origin, genetic profile, morphology, connectivity, and
functional properties (DeFelipe et al., 2013; Kepecs and Fishell,
2014), nearly all mPFC interneurons can be broadly (albeit
imperfectly) classified based on their expression of parvalbumin
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(PV), somatostatin (SST), or the 5HT3a serotonin receptor
(Rudy et al., 2011; Tremblay et al., 2016). PV-INs, the most
abundant of these interneuron subtypes, exert potent inhibitory
control over pyramidal neurons by synapsing onto their somatic
and perisomatic compartments (Kepecs and Fishell, 2014). SST-
INs are less abundant and tend to innervate the distal dendrites
of pyramidal neurons (Kepecs and Fishell, 2014), positioning
them to gate the influence of local and long-range inputs. Recent
work indicates that mPFC SST-INs can also disinhibit pyramidal
neurons through their monosynaptic inhibition of neighboring
PV-INs (Xu et al., 2019; Cummings and Clem, 2020; Jiang et al.,
2021). Interneurons that express vasoactive intestinal polypep-
tide (VIP-INs) represent the largest group of 5HT3a-positive
interneurons (Rudy et al., 2011; Tremblay et al., 2016). VIP-
INs are the canonical “disinhibitors”: in mPFC and neocortex
broadly, VIP-INs inhibit SST-INs and to a lesser extent PV-
INs to promote pyramidal neuron activity (Pi et al., 2013).
Importantly, the foundational studies examining interneuron
specializations were conducted in sensory cortices (Rudy et
al., 2011; Tremblay et al., 2016). While recent work indicates
that interneuron classes are broadly conserved across neo-
cortex (e.g., Tasic et al., 2018), specific classifications and
properties of mPFC interneurons are likely to differ from
those of sensory regions (e.g., Whissell et al., 2015; Y. Kim et
al., 2017).

Novel molecularly and functionally defined prefrontal inter-
neuron subpopulations
Within these heterogeneous populations are interneuron
subclasses, each with unique anatomical connectivity, physi-
ological properties, and behavioral contributions, that are
defined by expression of additional proteins and neuropepti-
des, such as, calretinin, (Saffari et al., 2019), cholecystokinin
(CCK) (Nguyen et al., 2020), and corticotropin-releasing factor
(P. Chen et al., 2020; see also Tasic et al., 2018; Yao et al., 2021).
Among these is a novel subclass of interneurons expressing pro-
dynorphin (PDyn)-derived peptides, including dynorphins
(Dyn). In mPFC, PDyn is expressed in pyramidal neurons and a
subset of SST-INs (Sohn et al., 2014; ACNP 60th Annual
Meeting, 2021). Tejeda and colleagues have recently demon-
strated that Dyn1 SST-INs, which comprise ;10% of SST-INs,
are localized to deeper mPFC layers relative to Dyn-lacking SST-
INs (Fig. 1A) (ACNP 60th Annual Meeting, 2021). Using inter-
sectional viral and genetic approaches, Tejeda and colleagues fur-
ther demonstrated that Dyn1 SST-INs are heavily activated by

footshocks and footshock-predictive cues (ACNP 60th Annual
Meeting, 2021). Interestingly, Dyn1 SST-INs immediately
adapted their activity on the first omission of the shock dur-
ing threat extinction procedures by switching to inhibitory
responses during the shock-predictive cue. In contrast, Dyn-
lacking SST-INs were activated by footshocks but showed little
response to footshock-predictive cues during associative learn-
ing or inhibitory responses during threat extinction, consistent
with the notion that Dyn1 SST-INs represent a distinct subtype
of SST-IN.

Supplementing these and other genetic approaches to dis-
secting novel interneuron subclasses and their behavioral con-
tributions (Ma et al., 2006; He et al., 2016) is new work that
seeks to characterize experientially and behaviorally defined
interneuron populations (Cummings et al., 2021). In a recent
study, Cummings et al. (2022) developed a novel intersec-
tional viral, transgenic, and activity-dependent tagging strategy
to gain genetic access to mPFC SST-INs that are activated in
response to an experimental manipulation. With this approach,
the authors were able to tag, manipulate, and functionally inter-
rogate populations of mPFC SST-INs activated by auditory fear
conditioning or morphine administration (Fig. 1A). Doing so,
they found that fear-activated SST-INs, which represented
;30% of all prelimbic mPFC SST-INs, were selectively reacti-
vated during memory retrieval and were necessary and suffi-
cient for the expression of cued fear. Fear-tagged SST-INs also
exhibited unique circuit properties, including greater inhibitory
drive onto PV-INs and non–fear-tagged pyramidal neurons.
Moreover, morphine treatment recruited a non-overlapping
population of SST-INs that promoted motivational reward
behaviors and opposed fear memory expression. Furthermore,
optogenetic activation of fear- and morphine-responsive SST-
INs recruited distributed brain networks related to fear and
reward processing, respectively (Cummings et al., 2022).

Long-range GABAergic prefrontal projection neurons
The vast majority of mPFC GABAergic neurons project locally
and play crucial roles in local microcircuit computations and
input-output transformations. In contrast, a small fraction of
mPFC GABAergic neurons send axons to remote cortical and
subcortical brain regions, thus forming long-range GABAergic
projections (Lee et al., 2014; Tomioka et al., 2015; Malik et al.,
2022). Although the existence of sparse long-range GABAergic
projection neurons in hippocampus (Sik et al., 1994; Jinno, 2009)
and sensorimotor cortices (Tamamaki and Tomioka, 2010;

Figure 1. A, Schematic represents distinct and overlapping populations of SST-INs in mPFC (ACNP 60th Annual Meeting, 2021; Cummings et al., 2022). B, Schematic represents simplified
connectivity motifs between superficial (Calb1) and deep (Calb-lacking) pyramidal neurons in vHPC with downstream mPFC neuron types (Sánchez-Bellot et al., 2022), and between long-range
GABAergic neurons in mPFC with VIP-INs in dHPC (Malik et al., 2022). SST-INs, somatostatin-positive interneurons; dHPC, dorsal hippocampus; mPFC, medial prefrontal cortex; PN, pyramidal
neurons; FSI, fast-spiking interneurons; ISI, irregular-spiking interneurons; RSI, regular-spiking interneurons. Created with www.BioRender.com.
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Melzer and Monyer, 2020) has been known for over a dec-
ade, we are only now beginning to understand the organiza-
tion and function of prefrontal long-range GABAergic
projections.

The first evidence of long-range GABAergic projection neu-
rons in the mPFC came from Lee et al. (2014), who described the
properties and function of mPFC GABAergic projections to the
nucleus accumbens, a key subcortical node for reward and aver-
sion circuits in the brain. The authors demonstrated that optoge-
netic activation of this molecularly heterogeneous population of
accumbens-projecting long-range GABAergic neurons enhanced
aversion behavior. This and subsequent studies have revealed
axon collaterals of mPFC long-range GABAergic neurons in
multiple subcortical structures, such as the BLA, claustrum, stria-
tum, and VTA (Tomioka et al., 2015).

The recent discovery of long-range GABAergic neurons from
the mPFC to the dorsal hippocampus (dHPC) by Malik et al.
(2022) has disrupted long-held assumptions about the neural
pathways supporting mPFC-HPC communication and the na-
ture of this top-down information flow. Indeed, it was widely
assumed that the mPFC transmits information to the dHPC near
exclusively via indirect excitatory connections with the thalamic
nucleus reuniens (Vertes et al., 2007). Enriching this understand-
ing, Malik et al. (2022) demonstrated that monosynaptic projec-
tions from a molecularly and physiologically mixed population
of GABAergic neurons in the mPFC preferentially inhibit dHPC
VIP-INs (Fig. 1B). As in mPFC and cortex generally, VIP-
INs disinhibit hippocampal microcircuits (Acsády et al.,
1996); thus, stimulating mPFC-dHPC long-range GABAergic
projections increased dHPC feedforward inhibition (a mecha-
nism capable of enhancing the “signal-to-noise ratio” of select
excitatory neural pathways/ensembles) (Buzsáki, 1984) and
enhanced object-related dHPC spatial encoding of objects in
the environment (Malik et al., 2022). Accordingly, activating or
inhibiting long-range GABAergic projections enhanced or sup-
pressed object exploration, respectively.

Projection-specific targeting of prefrontal interneurons
mPFC receives long-range excitatory inputs from across the
brain, including contralateral mPFC, thalamus, BLA, and ventral
hippocampus (vHPC) (Anastasiades and Carter, 2021). Each of
these projections is proposed to support unique functional roles
during behavior (Sierra-Mercado et al., 2011). For example, BLA
inputs are thought to support the learning, expression, and updat-
ing of affective associations (e.g., aversive threat memory) (Sotres-
Bayon et al., 2012; Janak and Tye, 2015), whereas vHPC inputs are
thought to convey context, or state information on which associa-
tions can be formed (Gershman et al., 2010; Maren et al., 2013;
Marek et al., 2018).

Differential targeting of prefrontal interneurons by inputs from
widespread brain regions
Although much evidence for the function of long-range inputs
into mPFC has focused on their interactions with pyramidal neu-
rons, a key means by which these long-range inputs influence
mPFC circuitry is via dense and specific connectivity with local
interneurons (Anastasiades and Carter, 2021). Anatomical
studies using anterograde and retrograde tracing techniques
suggest that all interneuron types in mPFC receive glutamater-
gic inputs by long-range sources (Ährlund-Richter et al., 2019;
Q. Sun et al., 2019). Accordingly, electrophysiological record-
ings have shown that long-range inputs form excitatory synap-
tic connections with mPFC PV-, SST-, and VIP-INs, albeit in

different layers that correspond to the biased laminar posi-
tioning of each interneuron type (Delevich et al., 2015;
McGarry and Carter, 2016; Marek et al., 2018; Lee et al.,
2019; Anastasiades et al., 2021). However, researchers have
identified notable preferential targeting of interneuron types
by different long-range inputs. For example, contralateral
mPFC inputs preferentially target PV1 chandelier cells in
layer 2/3 (Lu et al., 2017), whereas vHPC inputs show robust
targeting of layer 5 CCK-INs (Liu et al., 2020) and layer 2/3
VIP-INs (Lee et al., 2019). Similarly, inputs from mediodor-
sal thalamus target a specific class of layer 1 VIP-INs, whereas
inputs from ventromedial thalamus show biased targeting of apical
tuft-targeting, neuron-derived neurotrophic factor-expressing
interneurons (Collins et al., 2018; Anastasiades et al., 2021).
This network of generalized and specific targeting of different
interneuron types provides the foundation needed for contex-
tually tuned mPFC computations.

Differential targeting of prefrontal interneurons by intermingled
long-range inputs
The complex innervation of mPFC interneuron types is
accompanied by marked heterogeneity of afferent projec-
tion neurons. Indeed, regions that provide mPFC afferents,
such as the hippocampus (Cembrowski et al., 2016, 2018a,
2018b; Gergues et al., 2020), thalamus (C. Gao et al., 2020),
contralateral mPFC (Murugan et al., 2017), and BLA (J.
Kim et al., 2016), are composed of intermingled popula-
tions of genetically distinct neurons that often have oppos-
ing function during behavior.

Recent work characterized important structural and func-
tional heterogeneity within vHPC inputs to the mPFC (Sánchez-
Bellot et al., 2022). Consistent with a previous study showing at
least two molecularly distinct populations of mPFC-projecting
vHPC neurons (Cembrowski et al., 2018a), Sánchez-Bellot et al.
(2022) found two populations of mPFC-projecting neurons in
vHPC that were differentiated by their expression of Calbindin1
(Calb1), their position along the radial axis of the vHPC pyrami-
dal neuron layer (deep and superficial), and their biased targeting
of mPFC cell types. Calb11 vHPC input preferentially targeted
adapting mPFC interneurons (corresponding to CCK-INs and
SST-INs), whereas Calb1-lacking vHPC input preferentially tar-
geted pyramidal neurons and fast-spiking interneurons (corre-
sponding to PV1 basket cells; Fig. 1B). Thus, these parallel
vHPC-mPFC pathways are well placed to control the balance of
feedforward inhibition onto pyramidal neuron dendrites and
somas. Sánchez-Bellot et al. (2022) further showed that the paral-
lel inputs from vHPC had distinct activity during, and control
over, exploratory behavior. Calb11 input was preferentially
active on entry to the open arms of the elevated plus maze,
whereas Calb1-lacking input was active on entry to the closed
arms. Consistent with this opposing activity in the two path-
ways and known behavioral effects of directly manipulating
the mPFC populations they target (Soumier and Sibille, 2014;
Canetta et al., 2016; Berg et al., 2019), activation of Calb11

input promoted exploration of the open arms, whereas activa-
tion of Calb1-lacking input reduced open arm exploration.

Prefrontal interneuron plasticity
Plastic changes of interneuron structure and function, whether
through disease-relevant genetic insult, exogenous neuronal
activation, receptor modulation, or experience-induced altera-
tions, are poised to remodel computations within mPFC, and
the routing of circuit-specific information through mPFC, to
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sculpt behavior. Numerous interneuron adaptations have
been reported following each of these types of manipulations,
manifesting as changes to mesoscopic and microscopic inter-
neuron structure (e.g., Boksa et al., 2016; Al-Absi et al., 2020;
Gildawie et al., 2020; Bueno-Fernandez et al., 2021), protein
expression (e.g., Stedehouder et al., 2018; Mukherjee et al.,
2019; Reichelt et al., 2021), and intrinsic physiology (e.g.,
Campanac and Hoffman, 2013; Dao et al., 2020; Zorrilla de San
Martin et al., 2020). Here, we highlight some recent advances
in our understanding of how plasticity in the synaptic and cir-
cuit connectivity of mPFC interneurons can reshape typical
and disordered mPFC function and associated behavior (see
also Yang et al., 2021).

Genetic insult-induced prefrontal interneuron plasticity
Rodent models bearing genetic mutations relevant to psychiatric
diseases, such as schizophrenia and autism spectrum disorder,
have deepened our understanding of how specific disease-related
genes regulate prefrontal interneuron structure and function.
Indeed, a wealth of data now links the pathophysiology of these
neurodevelopmental disorders with impaired local and long-
range synaptic connections with mPFC inhibitory microcircuits
(e.g., Cho et al., 2015; Vogt et al., 2015; Selimbeyoglu et al., 2017;
Delevich et al., 2020).

Animal models for the study of autism spectrum disorder
present particularly robust links between specific gene dis-
ruptions and mPFC interneuron synaptic dysfunction. For
example, a recent study showed that mice lacking one copy
of the Pogz gene, which is involved in chromatin regulation
and strongly linked with autism (Stessman et al., 2016), ex-
hibit abnormal anxiety-related avoidance, impaired oscilla-
tory synchrony between the vHPC and mPFC, and deficits in
hippocampal excitatory input to fast-spiking (putative PV1)
mPFC interneurons (Cunniff et al., 2020). Further support
for autism-related microcircuit adaptations come from mice
modeling the 16p11.2 duplication syndrome (Weiss et al.,
2008), which show deficient GABAergic synaptic transmis-
sion and concurrent hyperexcitability in mPFC pyramidal
neurons, as well as social and cognitive deficits. All of these
phenotypes were rescued by restoring expression of the
GABA synapse regulator, Npas4 (Rein et al., 2021). Likewise,
a loss-of-function mutation in the autism-associated Shank3
gene (Durand et al., 2007) was recently shown to reduce den-
dritic inhibition onto mPFC pyramidal neurons via decreased

NMDAR currents in, and reduced firing of, SST-
INs (Ali et al., 2021). Strikingly, selective deletion
of Shank3 from only BLA-projecting mPFC py-
ramidal neurons resulted in reduced inhibitory
transmission onto these cells and reduced sociabil-
ity (S. Kim et al., 2022). Together, these and many
other studies are helping to inform the causal links
between disease-relevant genetic insults, microcir-
cuit connectivity, and behavior.

Activity-induced interneuron plasticity
Numerous studies have described long-term synap-
tic plasticity at long-range connections with the
rodent mPFC following brain stimulation (e.g.,
Laroche et al., 1990; Takita et al., 1999; Maroun and
Richter-Levin, 2003). In particular, connectivity
between vHPC and mPFC has been demonstrated
to be highly plastic, and this plasticity has been
linked with cognitive function and disease-relevant
dysfunction (e.g., Jay et al., 2004; Baudin et al.,

2012; Tripathi et al., 2020; Park et al., 2021). Although mPFC
interneurons have been implicated in gating some forms of ac-
tivity-induced vHPC-mPFC plasticity (Caballero et al., 2014;
Alvarez et al., 2020), plastic changes at vHPC and other long-
range inputs to mPFC interneurons themselves are vastly unex-
plored (Lu et al., 2007; Sarihi et al., 2008; H. X. Chen et al.,
2009). Further, given roles for mPFC interneurons in cogni-
tion-relevant functional connectivity between vHPC and mPFC
(Abbas et al., 2018; Lee et al., 2019), and vHPC-mPFC dyscon-
nectivity in models relevant to psychiatric disease (Mukai et al.,
2015; Tamura et al., 2016; Song et al., 2022), it is important to
understand how vHPC inputs interact with mPFC inhibitory
microcircuits, whether these interactions are disrupted in dis-
ease-relevant models, and whether these interactions are plastic,
offering a potential path to correcting circuit dysconnectivity
(Kupferschmidt and Gordon, 2022).

To these ends, Clarity and colleagues used an all-optical
approach to characterize in vivo dynamics and activity-
induced plasticity of discrete mPFC interneuron population
responses to vHPC input stimulation (Kupferschmidt et al.,
2022). In wildtype and Df(16)A1/– mice that model the schizo-
phrenia-predisposing 22q11.2 deletion syndrome, vHPC inputs
were optogenetically stimulated and postsynaptic Ca21 responses
in mPFC SST-, VIP-, and PV-INs were monitored with fiber
photometry. SST-IN responses to vHPC terminal stimulation
were weak at baseline in wildtype and Df(16)A1/– mice but pro-
gressively increased over 50d of minimal, periodic optogenetic
stimulation (Fig. 2). The potentiation of SST-IN Ca21 responses
was blunted in Df(16)A1/– relative to wildtype mice, and partially
recovered with additional high-frequency optical vHPC input
stimulation. In contrast, VIP- and PV-IN responses to vHPC
input stimulation were initially strong but rapidly suppressed
in wildtype and Df(16)A1/– mice that received additional high-
frequency optical stimulation. By reshaping the recruitment of
mPFC interneurons by long-range inputs, these forms of plasticity
and others like them stand to bias the routing of pathway-specific
information through mPFC and may be leveraged to influence
cognition-relevant circuit function and dysfunction.

Modulation-induced interneuron plasticity
The mPFC is rich with neuromodulators capable of regulating the
synaptic input, output, and intrinsic excitability of mPFC inter-
neurons. Dopamine (e.g., W. J. Gao and Goldman-Rakic, 2003;

Figure 2. Schematic represents simplified long-range connectivity changes following activity-induced plastic-
ity or stress/fear-associated experience. Left, Cell type-specific changes in in vivo functional connectivity between
vHPC inputs and mPFC interneuron population types following repeated optical stimulation of vHPC inputs to
mPFC (Kupferschmidt et al., 2022). Right, Bidirectional changes to synaptic connectivity between BLA inputs
and mPFC SST-INs versus PV-INs following exposure to restraint stress (Joffe et al., 2022) or fear conditioning
(Cummings and Clem, 2020). vHPC, ventral hippocampus; mPFC. medial prefrontal cortex; SST, somatostatin; VIP,
vasoactive intestinal polypeptide; PV, parvalbumin; PN, pyramidal neuron. Created with www.BioRender.com.
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Floresco and Tse, 2007; Tierney et al., 2008; Anastasiades et al.,
2019), acetylcholine (e.g., Komal et al., 2015; Tikhonova et al.,
2018; Maksymetz et al., 2019), serotonin (e.g., Puig et al., 2010;
Zhong and Yan, 2011), norepinephrine (e.g., Wang et al.,
2013; Luo et al., 2015), endocannabinoids (e.g., Younts and
Castillo, 2014; Liu et al., 2020), and glutamate (e.g., H. Sun
and Neugebauer, 2011; Maksymetz et al., 2021), as well as
various neuropeptides (e.g., Nakajima et al., 2014; Aracri et
al., 2015; Vollmer et al., 2016; Birdsong et al., 2019; Casello
et al., 2022) are among the many agents that exert complex
and interacting receptor-, cell-, and circuit-specific modu-
lation of mPFC interneurons.

Dyn, through its actions on k opioid receptors (KORs), is
emerging as a potent modulator of mPFC interneuron circuit
function and stress-related motivated behavior. Recent work by
Tejeda and colleagues revealed that Dyn inhibits glutamate
release from various KOR-expressing mPFC afferents (e.g., BLA,
paraventricular nucleus of the thalamus, contralateral mPFC)
onto pyramidal neurons (ACNP 60th Annual Meeting, 2021).
Further, Dyn/KOR signaling differentially regulates BLA inputs
onto mPFC interneurons (ACNP 60th Annual Meeting, 2021).
Specifically, direct excitation of SST-INs by BLA inputs to the
mPFC was inhibited by Dyn, an effect that was absent at BLA
synapses innervating mPFC PV interneurons. These results sug-
gest that Dyn/KOR signaling can filter excitatory inputs onto
mPFC interneurons in a synapse-specific manner and reduce
SST-IN-mediated feedforward inhibition of pyramidal neu-
rons. Moreover, by inhibiting local GABA release from KOR-
expressing SST- and PV-IN terminals, Dyn potently inhibited
polysynaptic inhibition driven by incoming glutamatergic
inputs, regardless of whether the inputs themselves express
KORs. Together, these findings demonstrate that Dyn/KOR
signaling is poised to directly suppress KOR-expressing exci-
tatory inputs while concurrently amplifying mPFC engage-
ment by KOR-lacking inputs via disinhibition (ACNP 60th
Annual Meeting, 2021). This complex synaptic modulation by
Dyn appears to have implications for behavior under threat-
ening environmental conditions, as evidenced by in vivo Dyn
release within mPFC in response to environmental threat, and
impaired toggling between active and passive defense strat-
egies following PDyn knockdown in the mPFC (ACNP 60th
Annual Meeting, 2021).

Experience-induced interneuron plasticity
By engaging mechanisms of activity- and modulation-induced
neural plasticity, salient experiences can trigger robust and per-
sistent synaptic changes in mPFC. Although experience-induced
plastic changes in synaptic physiology of mPFC pyramidal cells
have been the subject of significant research, we are just begin-
ning to appreciate how salient events and environmental factors
shape synaptic function in mPFC interneurons (e.g., Canetta et
al., 2016; Skorput and Yeh, 2016; Slaker et al., 2018).

Recent findings reveal that stressful experiences readily
facilitate synaptic adaptations in mPFC interneurons. In sepa-
rate studies, restraint stress (Joffe et al., 2022) and footshock
conditioning (Cummings and Clem, 2020; ACNP 60th Annual
Meeting, 2021) were shown to each enhance Ca21 responses
within SST-INs and potentiate excitatory transmission from the
BLA onto mPFC SST-INs (Fig. 2). The potentiation induced by
these aversive experiences appears selective to SST-INs, as excita-
tory transmission in PV-INs was unaltered by restraint stress
(Joffe et al., 2022) and seemingly reduced following footshock
conditioning (Perova et al., 2015; Cummings and Clem, 2020)

(Fig. 2). Initial efforts to parse the mechanisms mediating this
stress-induced potentiation of excitatory drive onto SST-INs
have implicated postsynaptic mGlu5 metabotropic glutamate re-
ceptor signaling. Indeed, mice lacking mGlu5 receptors in SST-
INs showed no mGlu1/5 agonist-induced LTP, no stress-induced
increases in excitatory drive onto SST-INs (or corresponding
increases in pyramidal cell inhibition), resilience to stress-
induced deficits in spatial working memory task performance,
and impaired cue-associated fear learning (Joffe et al., 2022).

Although stressful experiences can alter both synaptic trans-
mission in mPFC inhibitory microcircuits and behavior, whether
these synaptic alterations promote the encoding of experience-
induced learning and behavioral adaptations is less clear. Early
support for this more causal role comes from Cummings and
Clem (2020), who showed that excitatory drive onto SST-INs
was potentiated in mice that formed associative fear memories
through paired footshock-tone presentations, but not in mice
that received unpaired footshocks and tones. These data provide
compelling evidence that persistent synaptic changes in mPFC
SST-INs are not an unavoidable consequence of a stressful expe-
rience; rather, interneuron plasticity appears to instruct the for-
mation of persistent memories (i.e., CS-US association) and
future behaviors (i.e., conditioned freezing).

Further evidence for a causal link between experience-induced
synaptic and behavioral adaptations comes from studies of PV-IN
plasticity following stress and drug exposure. Perova et al. (2015)
showed that male mice displaying a phenotype of “helplessness”
following repeated footshocks (i.e., fewer escapes and longer
escape latencies) showed reduced excitatory synaptic strength in
mPFC PV-INs. In contrast, PV-IN synaptic strength was unal-
tered in “resilient”mice, despite undergoing an identical shock ex-
perience. A similar link was established by Ferranti et al. (2022) in
a study of the neural adaptations encoding alcohol reward. By
manipulating the timing of the same intoxicating dose of alcohol,
the researchers conditioned mice to express either a place prefer-
ence or aversion to the drug. Despite both groups of mice receiv-
ing identical alcohol exposure, only those that formed a rewarding
alcohol association exhibited enhanced excitatory drive in PV-INs.
Thus, bidirectional synaptic adaptations in mPFC interneurons
may help encode specific behavioral adaptations to salient experi-
ence, rather than simply reflect a history of such experience.

Conclusions
In conclusion, we have highlighted some recent advances in our
understanding of the rich diversity of mPFC interneuron subpo-
pulations, the neural pathways they are embedded within and
regulate, and the dynamic changes they undergo to remodel
mPFC computations and distal network interactions to shape
cognitive functions. That these interneurons and their connec-
tions are engaged and dysregulated by stress and psychoactive
drug exposure, fear learning, motivational conflict, and disease-
relevant genetic insults suggests their privileged contributions to
various forms of disordered cognition. Importantly, while this
mini-review did not segregate findings based on mPFC subre-
gions, considerable regional variations in the anatomical, molec-
ular, and functional properties of mPFC interneurons and their
embedded circuits further complicate the study of interneuron
contributions to typical and disordered cognition (Heidbreder
and Groenewegen, 2003; Euston et al., 2012; Laubach et al., 2018;
Anastasiades and Carter, 2021). Through continued innovation
and democratization of transcriptomic sequencing, elaboration
of intersectional genetic strategies, and expansion of the toolset
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to tag populations based on dynamic cellular processes, the next
decade of neuroscience research will see remarkable advances in
the parsing of these important cells into increasingly refined sub-
classes (Bugeon et al., 2022; Zeng, 2022). By pairing these advan-
ces with more sophisticated tools to monitor and manipulate
interneuron populations, we stand to build a detailed guide to
their interconnections, plasticity, and behavioral contributions.
As tools emerge that enable synapse-specific manipulations (e.g.,
altered connectivity between defined presynaptic and postsynap-
tic elements) (Ransey et al., 2021; Prakash et al., 2022), we will
similarly need innovation in behavioral analyses sensitive to the
subtle effects these targeted manipulations may yield. Last, along-
side efforts to identify and target molecules and synaptic proc-
esses unique to select cell types and circuits in the rodent brain,
we must advance similar efforts in nonhuman primates with due
consideration of the anatomical, functional, and behavioral homol-
ogy across species.
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