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Most of engineering and biological thin shell
structures are characterized by non-axisymmetric and
statically indeterminate configurations, which often
require the knowledge of the constitutive material
model to determine the stress state. In this work,
a forward elastostatic method is introduced for the
direct stress measurements in elastic homogeneous
thin shells of arbitrary shape. The stress distribution
is proven to be independent of the material properties
for incompressible solids, while in compressible
materials it depends only on the Poisson’s ratio,
which is shown to have a negligible influence on
the stress state. Hence, the proposed technique
enables the direct assessment of the stress field in
statically indeterminate thin shells without a known
material model. The shell formulation is implemented
using the finite difference method to independently
measure the stresses during finite inflation of planar
elliptical membranes and from the deformed shapes
obtained through digital image correlation during
bulge tests on a hyperelastic material, showing very
good agreement with finite-element predictions
and the applicability of the method to nonlinear
elastic materials. Therefore, the procedure can be
coupled with imaging techniques for the direct
assessment of stresses in thin shell structures and
in the identification of material parameters through
non-axisymmetric bulge tests.
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1. Introduction
Thin shells are one of the most widely used structural elements in civil [1], mechanical [2,3],
architectural [4], biomedical [5,6], aeronautical [7] and aerospace [8,9] applications because they
enable complex and large shapes while maintaining minimal weight. The limited thickness
requires a careful characterization and modelling of the behaviour of shell structures, to
thoroughly assess the stress distribution and avoid structural failure [10–13]. Although the
stresses in statically determinate thin shell configurations can be analytically obtained from
equilibrium equations in most of the cases [14], complex non-axisymmetric and statically
indeterminate shapes require numerical analyses that necessitate the material constitutive model
for an accurate prediction of the mechanical behaviour. However, oftentimes the material
response is not known beforehand and needs to be identified along with its parameters through
direct or iterative inverse method [15–17], thus hindering the prediction of the stress distribution
in statically indeterminate shells. This situation occurs in the in vivo determination of the stress
resultants in non-axisymmetric biological membranes [5,18], in the stress monitoring of civil
and mechanical shell structures [1] and in bulge (also known as diaphragm or inflation) tests,
an experimental procedure used to characterize the biaxial response and identify the material
parameters through the inflation of planar membranes or thin shells subjected to a uniform
pressure [19–21]. In these applications, the stress determination relies on the full-field assessment
of the deformed configuration through digital image correlation [22,23].

In bulge experiments, the mechanical characterization of thin films is commonly performed
by measuring the stress and strain fields independently at the apex of the inflated sample, even
though additional multiaxial data can be obtained from the entire shell surface [24]. Diaphragm
tests have been widely used with both axisymmetric samples, such as circular [21,25,26] and
non-axisymmetric shapes, including square and rectangular [27–30]. Once inflated, the circular
and square isotropic shells result in an equibiaxial stress state at the apex, whereas rectangular
membranes show different ratios of the principal stresses at their centre. The inflation of the non-
axisymmetric membranes has also been extended to elliptical profiles to avoid failure occurring at
the edges [31]. For the inflation of circular membranes, analytical solutions have been developed
to directly obtain the stress measurements using axisymmetric equilibrium equations on a
deformed configuration, without requiring any constitutive relations [32,33]. However, due to the
independence of principal curvatures in statically indeterminate and non-axisymmetric shapes,
a closed-form expression for the stresses cannot be obtained, and if the material constitutive
behaviour is unknown, only approximations exist for some geometries, which undermine the
accuracy of the solution. Hence, most of the existing formulations to determine the stresses
in statically indeterminate shells rely on the constitutive relations while using the deformation
history. Such a procedure cannot be employed in non-axisymmetric bulge experiments for inverse
problems, where the material parameters should be identified through the test, nor in the direct
stress determination of statically indeterminate shell structures when a precise material model is
not known. Therefore, the aim of this work is to develop an accurate method to directly determine
the stress distribution in thin shells of arbitrary shape without requiring the material constitutive
relation and using only the current deformed configuration, experimentally obtainable through
optical techniques, along with its boundary and loading conditions.

Within this framework, Vlassak & Nix [34] developed a method that requires the full
deformation history to obtain the material properties and residual stress through square and
rectangular bulge tests, assuming Hookean material and small deformations. Their technique
was used later to determine the mechanical properties of 3C-SiC membranes [27], TiN [28] and
silicon nitride [29] thin films. Neggers et al. [35] and Kalkman et al. [30] worked on the inflation
of rectangular membranes to find the stress at the apex using plane strain approximation for
aspect ratios greater than 4. Khayat & Derdouri [36,37] studied the free and confined inflation
of arbitrarily shaped and cylindrical hyperelastic membranes for blow moulding applications.
The bulging of planar elliptical membranes was studied by Verron et al. [38] using a dynamic
finite-element analysis (FEA) and explicit finite difference method (FDM), assuming hyperelastic
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and viscoelastic material models, respectively. Jayyosi et al. [39] analysed the accuracy in fitting an
ellipsoid to the inflated shape of an initially planar elliptical membrane of 1, 2 and 4 aspect ratios;
they found small shape deviation, which can lead to pronounced errors in the stress or strain
determination. Tonge et al. [40,41] approximated the deformed cross sections along the planes of
symmetry through ellipses. They calculated the stresses at the apex of the deformed shape by
using equilibrium expressions from axisymmetric theory, which showed reasonable agreement
with FEA but cannot be generalized to any arbitrary shape. Similarly, Yousif et al. [31] modelled
the bulging of elliptical diaphragms by approximating the deformed section in the major axis
with a circular profile, which produces a significant discrepancy in the stress and strain measures.

Lastly, the finite-element inverse elastostatic method has been applied to arbitrarily shaped
biological membranes and shells made of incompressible hyperelastic materials [5,18]. The
technique considers the known deformed shape and loading conditions, and works backwards
to find the initial unstressed configuration along with the stresses in the deformed state [42].
However, the non-uniqueness of the obtained stress-free configuration, which relies on accurate
knowledge of the material response, represents a limitation of the procedure. By contrast, the
thin shell formulation conceals the opportunity to perform a forward linear analysis on statically
indeterminate spatial configurations in order to directly obtain the corresponding stress state, in
equilibrium with the known external loads. By considering the deformed shape as the reference
configuration, a forward linear analysis could provide the current stress distribution under virtual
strains and displacements.

Therefore, this work introduces a forward elastostatic method for the direct stress
determination in homogeneous thin shells of arbitrary shape subjected to uniform pressure and
undergoing finite deformation, in the absence of a known material constitutive model. The linear
elastostatic shell formulation is presented in §2, starting from the description of the geometry
of the shell middle surface in §2a, which is followed by the governing equations in §2b. The
procedure is numerically implemented through a finite difference code and applied to the stress
measurement during the bulging of elliptical thin shells in §2c. It is shown that, if the shell spatial
configuration and applied pressure are known, the stress measurement results independent of
the material properties for incompressible materials, and only depends on Poisson’s ratio for
compressible solids. The validation of the proposed technique is presented and discussed in §3,
which reports a comparison with FE analyses and the assessment of the influence of an unknown
Poisson’s ratio on the stress distribution (§3a). Furthermore, the presented formulation is applied
to the direct stress calculation during diaphragm inflation experiments on a hyperelastic material,
proving its applicability to nonlinear elastic solids (§3b).

2. Stress determination in arbitrarily shaped shells through forward
elastostatic analysis

The determination of stresses, strains and displacements in statically indeterminate shell
structures often relies on the assumption of small displacements through a linear shell
formulation that involves a combination of equilibrium, constitutive model and compatibility
equations. When the stress state is sought in a statically indeterminate deformed thin shell
configuration, but the material constitutive model is unknown, an analogy can be set between
a soft shell undergoing finite deformation until a certain spatial configuration and a stiff shell
of identical shape, considered its reference state, subjected to the same loading and boundary
conditions. The equilibrium equations in the known configuration, and therefore the stress
distribution, remain the same. This observation will be used in the following elastostatic
formulation to obtain the stresses in any known non-axisymmetric shell configurations,
independently of the previous deformation history.

In the development of a method for the direct stress determination in shells of arbitrary shapes
made of a homogeneous elastic material, the choice of the coordinate system can help to minimize
the complexity of the formulation and its solution. Therefore, the two principal curvatures of
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Figure 1. (a) Three-dimensional view of the middle surface of an infinitesimal element taken from a deformed shell, where
the geometry of the surface is defined by position vector R in Cartesian coordinates xyz. Normal vector n and tangent vectors
Tx and Ty, aligned with the curvilinear local coordinate system x′y′, are also shown. (b) Element of themiddle surface showing
curvilinear coordinates x′y′ and principal curvature coordinates αβ . (c) Lines of principal curvature αβ mapped on a local
tangent plane formed by x′y′, where the tangent vectors Tα and Tβ make angle θ1 and θ2 with the x′ axis, respectively. (Online
version in colour.)

the shell surface will be employed as a local orthogonal coordinate system. Since the spatial
configuration of the shells is usually given in global coordinates, the transformation from a
global coordinate system to local principal coordinates (and vice-versa) is required. Hence, in the
following subsection, the geometry of the middle surface of a thin shell is considered to develop
the relations that will be used later in §2b to transform between global and local coordinate
systems and implement the formulation for the direct stress determination in inflated elliptical
shells (§2c).

(a) Geometry of the middle surface of an arbitrarily shaped shell
An element taken from the surface of a shell of arbitrary shape, figure 1a, can be represented
in global Cartesian coordinates as z = f (x, y). The position vector of a point on the surface takes
the form R = [x, y, z(x, y)], where bold symbols are used to denote vectors throughout this paper.
A local curvilinear coordinate system, x′y′, can be formed by projecting x and y axes on the shell
surface. The coordinates system x′y′ is not necessarily orthogonal and is characterized by the
angle γ between x′ and y′, figure 1b. The tangents to the curves x′ and y′ at each point of the
surface are given by the vectors Tx = [1, 0, ∂z/∂x] and Ty = [0, 1, ∂z/∂y], respectively, which form
the base vectors of the local coordinate system x′y′. The normal unit vector n is obtained by the
cross product of the two tangent vectors as n = Tx × Ty/|Tx × Ty|.

The shell surface can be fully characterized by curvature and metric tensors [43]. A curvature
tensor carries the information on the local shape changes of the surface, whereas a metric tensor
is related to the local coordinate system of a surface. The components of the curvature tensor in
local coordinates x′y′ are given by Green & Zerna [44]

bxx = n · ∂Tx

∂x
, byy = n · ∂Ty

∂y
, bxy = n · ∂Tx

∂y
= n · ∂Ty

∂x
, (2.1)

while the components of the metric tensor in the same coordinates are

Txx = Tx · Tx, Tyy = Ty · Ty, Txy = Tx · Ty. (2.2)

The metric tensor is an important feature of a curvilinear coordinate system to parametrically
describe the lengths of the coordinate base vectors and the angles between them. For example,
denoting an infinitesimal segment of the curve x′ by dx′, dx′ = √

Txx dx. It can be seen from
equations (2.1) and (2.2) that the non-diagonal terms of the curvature and metric tensors, bxy

and Txy, are non-zero, thus indicating non-principal coordinates and non-orthogonality of x′y′
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coordinate system, which leads to complex mathematical expressions for kinetic and kinematic
relations.

Hence, in order to simplify the subsequent shell formulation, a new orthogonal coordinate
system αβ can be introduced, figure 1b, formed by the lines of principal curvature of the surface.
The curvature and metric tensors can also be defined in αβ coordinates as a function of the base
vectors, Tα and Tβ , which are tangents to the α and β curves, respectively. The vectors Tα and Tβ

can be written as the derivatives of the position vector R with respect to α and β,

Tα =
[

∂x
∂α

,
∂y
∂α

,
∂z
∂α

]
and Tβ =

[
∂x
∂β

,
∂y
∂β

,
∂z
∂β

]
. (2.3)

The partial derivatives in equation (2.3) are not known beforehand, as the relation between the
principal coordinates αβ and the global coordinates xyz is unknown for an arbitrary shape of the
surface. Therefore, Tα and Tβ are found by rotating Tx by the angles θ1 and θ2 that the principal
curves α and β make with Tx, respectively, figure 1c. These angles can be determined from the
slopes λ1,2 of the tangents of α and β curves in the local coordinate system x′y′ [45]

λ1,2 =
−(bxxTyy − byyTxx) ±

√
(bxxTyy − byyTxx)2 − 4(bxyTyy − byyTxy)(bxxTxy − bxyTxx)

2(bxyTyy − byyTxy)
. (2.4)

Equation (2.4) is a result of a quadratic equation obtained by imposing dκn/dλ1,2 = 0, where κn is
the normal curvature of the surface [45]. From the trigonometry of figure 1c, the angles θ1 and θ2
can be written as

θ1,2 = arctan
[

λ1,2 sin(π − γ )
1 − λ1,2 cos(π − γ )

]
. (2.5)

The tangent vectors, Tα and Tβ , can now be written as the rotation of Tx by θ1 and θ2 about the
normal vector n [46]

Tα = Tx cos θ1 + n(n · Tx)(1 − cos θ1) + (Tx × n) sin θ1

and Tβ = Tx cos θ2 + n(n · Tx)(1 − cos θ2) + (Tx × n) sin θ2.
(2.6)

Equations (2.6) and (2.3) are useful to transform xy coordinates to the αβ coordinate system by
comparing their right-hand sides and using the chain rule, as will be shown in the following.
After obtaining the base vectors Tα and Tβ for principal coordinates, the curvature and metric
tensorial components can be written as

bαα = n · ∂Tα

∂α
, bββ = n · ∂Tβ

∂β
, bαβ = n · ∂Tα

∂β
= n · ∂Tβ

∂α
= 0, (2.7)

and

Tαα = Tα · Tα , Tββ = Tβ · Tβ , Tαβ = Tα · Tβ = 0. (2.8)

It should be noted that the diagonal terms of the curvature and metric tensors in equations (2.7)
and (2.8) are null, since αβ is an orthogonal principal coordinate system. Since Tα and Tβ are
functions of x and y, the partial derivative terms in equation (2.7) can be expanded using the
chain rule. For instance, ∂Tα/∂α takes the form

∂Tα

∂α
= ∂Tα

∂x
∂x
∂α

+ ∂Tα

∂y
∂y
∂α

. (2.9)

The partial derivatives ∂x/∂α and ∂y/∂α can be obtained by comparing equation (2.6) with
equation (2.3). Similarly, the expression for Tβ/∂β can be found. Furthermore, the surface can
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also be characterized by Lame’s coefficients [45], denoted by A and B, which are the square root
of the components of the metric tensor

A =
√

Tαα and B =
√

Tββ . (2.10)

The Lame’s coefficients will be used to express the equilibrium and compatibility equations for
the shell formulation reported in the next section. Lastly, the radii of principal curvatures R1 and
R2, corresponding to α and β curves, respectively, are given by

R1 = Tαα

bαα
and R2 = Tββ

bββ
. (2.11)

For curvilinear coordinates, the radius of curvature cannot be given as the reciprocal of
the component of the curvature tensor. Instead, it should be multiplied with the respective
component of the metric tensor since the base vectors are not necessarily the unit vectors, as it
occurs for Cartesian coordinates. The above relations for the shell middle surface will be used in
the following sections to present the governing equations for thin shells and transform them from
principal to Cartesian coordinates.

(b) Governing equations
A thin shell is clamped at its edge and subjected to a uniform normal pressure p, in static
equilibrium, as shown in figure 2a. It should be noted that, although the figure shows an
elliptic paraboloid-like non-axisymmetric configuration, the governing equations presented in
this section are valid for any arbitrarily shaped thin shell. For a known equilibrium configuration,
using principal curvature coordinates αβ, the local equilibrium is represented by a linear system
given by Ventsel & Krauthammer [45]

∂

∂α
(N1B) + 1

A
∂

∂β
(SA2) − 2H

R2

∂A
∂β

− 1
R1

(
∂

∂α
(M1B) − M2

∂B
∂α

+ 2
∂

∂β
(HA)

)
− N2

∂B
∂α

= 0

∂

∂β
(N2A) + 1

B
∂

∂α
(SB2) − 2H

R1

∂B
∂α

− 1
R2

(
∂

∂β
(M2A) − M1

∂A
∂β

+ 2
∂

∂α
(HB)

)
− N1

∂A
∂β

= 0

and N1
AB
R1

+ N2
AB
R2

+ ∂

∂α

{
1
A

[
1
A

∂

∂β
(A2H) + ∂

∂α
(BM1) − M2

∂B
∂α

]}

+ ∂

∂β

{
1
B

[
1
B

∂

∂α
(B2H) + ∂

∂β
(AM2) − M1

∂A
∂β

]}
+ ABp = 0,

(2.12)

where S = N12 + H/R2 = N21 + H/R1, Ni (i = 1, 2) represents the normal stress resultants (force
per unit width), N12 or N21 denote the in-plane shear stress resultants, figure 2b, Mi (i = 1, 2) and
H are the bending and twisting moments per unit width, figure 2c, while the subscripts i = 1 and
i = 2 denote the principal curvature directions α and β, respectively. The stress resultants and
moments used in the equilibrium equations are expressed in terms of stresses in appendix A,
while the coefficients R1, R2, A and B are functions of the known geometry of the shell, equations
(2.10) and (2.11). If the boundary conditions are in the form of imposed stress resultants and
moments, equation (2.12) is sufficient to obtain the stresses over the entire shell. However, a thin
shell with prescribed displacements, such as clamped edges, represents a statically indeterminate
problem for which kinematics need to be used [47,48]. In both cases of a thin shell having an initial
configuration as shown in figure 2a and undergoing small deformation, or a thin shell reaching
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Figure 2. (a) Geometry of a clamped thin shell subjected to a normal pressure p, and an element of the shell showing force (b)
and moment (c) resultants in principal coordinatesαβ . (Online version in colour.)

the same state after finite deformation, if the pressure p and boundary conditions are identical, the
equilibrium equations and the stress distribution remain the same. This analogy will be employed
to obtain the stresses in statically indeterminate thin shells through a forward linear analysis
of the three-dimensional equilibrium configuration, irrespective of the previous deformation
history. Therefore, the elastic constitutive relations for a general homogeneous isotropic material
undergoing small deformation are given by

N1 = Eh
1 − ν2 (ε1 + νε2), N2 = Eh

1 − ν2 (νε1 + ε2), S = Eh
2(ν + 1)

γ12

and M1 = Eh3

12(1 − ν2)
(χ1 + νχ2), M2 = Eh3

12(1 − ν2)
(νχ1 + χ2), H = Eh3

12(ν + 1)
χ12,

(2.13)

where εi (i = 1, 2) are the normal strains for the middle surface, γ12 is the in-plane shear,
χi (i = 1, 2, 12) denote the change in curvatures, E is Young’s modulus, ν is the Poisson’s ratio
and h is the thickness of the shell in the reference configuration, figure 2, which remains small
compared with the shell radii of curvature. Although the constitutive relations are written here
for a linear elastic material, it will be shown in the following sections that the stresses result
independent of the material parameters and of the Young’s modulus E, for incompressible
and compressible solids, respectively. Therefore, the formulation can be employed for other
linearized constitutive relations. This observation is fundamental for the development of a
forward elastostatic procedure to directly obtain the stress distribution in statically indeterminate
non-axisymmetric shells, without requiring the knowledge of the material model. Denoting the
displacements u, v and w along the α, β and normal directions of the equilibrium configuration
of the shell, the strain–displacement relations are given by Ventsel & Krauthammer [45]

ε1 = 1
A

∂u
∂α

+ 1
AB

∂A
∂β

v − w
R1

ε2 = 1
B

∂v

∂β
+ 1

AB
∂B
∂α

u − w
R2

γ12 = B
A

∂

∂α

( v

B

)
+ A

B
∂

∂β

( u
A

)

χ1 = − 1
A

∂

∂α

(
u

R1
+ 1

A
∂w
∂α

)
− 1

AB
∂A
∂β

(
v

R2
+ 1

B
∂w
∂β

)

χ2 = − 1
B

∂

∂β

(
v

R2
+ 1

B
∂w
∂β

)
− 1

AB
∂B
∂α

(
u

R1
+ 1

A
∂w
∂α

)

and χ12 = − 1
AB

(
∂2w

∂α ∂β
− 1

A
∂A
∂β

∂w
∂α

− 1
B

∂B
∂α

∂w
∂β

)
− 1

R1

A
B

∂

∂β

( u
A

)
− 1

R2

B
A

∂

∂α

( v

B

)
.

(2.14)
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In equations (2.12) and (2.14), the derivatives with respect to principal coordinates αβ are not
known beforehand for an arbitrary shape. However, the surface of the thin shell is simply
defined by the global Cartesian coordinates xyz. Therefore, to transform the derivatives from
αβ coordinates to Cartesian coordinate xyz, the chain rule is applied, equation (2.9). Since the
boundary conditions are in the form of displacements, equations (2.12)–(2.14) are simultaneously
solved to give three partial differential equations in terms of unknown displacements u, v

and w:

C1
∂3w
∂x3 + C2

∂3w
∂x2∂y

+ C3
∂3w

∂x∂y2 + C4
∂3w
∂y3 + C5

∂2u
∂x2 + C6

∂2u
∂x∂y

+ C7
∂2u
∂y2

+ C8
∂2v

∂x2 + C9
∂2v

∂x∂y
+ C10

∂2v

∂y2 + C11
∂2w
∂x2 + C12

∂2w
∂x∂y

+ C13
∂2w
∂y2

+ C14
∂u
∂x

+ C15
∂u
∂y

+ C16
∂v

∂x
+ C17

∂v

∂y
+ C18

∂w
∂x

+ C19
∂w
∂y

+ C20u + C21v + C22w = 0,

C23
∂3w
∂x3 + C24

∂3w
∂x2∂y

+ C25
∂3w

∂x∂y2 + C26
∂3w
∂y3 + C27

∂2u
∂x2 + C28

∂2u
∂x∂y

+ C29
∂2u
∂y2

+ C30
∂2v

∂x2 + C31
∂2v

∂x∂y
+ C32

∂2v

∂y2 + C33
∂2w
∂x2 + C34

∂2w
∂x∂y

+ C35
∂2w
∂y2

+ C36
∂u
∂x

+ C37
∂u
∂y

+ C38
∂v

∂x
+ C39

∂v

∂y
+ C40

∂w
∂x

+ C41
∂w
∂y

+ C42u + C43v + C44w = 0

and C45
∂4w
∂x4 + C46

∂4w
∂x3∂y

+ C47
∂4w

∂x2∂y2 + C48
∂4w

∂x∂y3 + C49
∂4w
∂y4 + C50

∂3u
∂x3 + C51

∂3u
∂x2∂y

+ C52
∂3u

∂x∂y2 + C53
∂3u
∂y3 + C54

∂3v

∂x3 + C55
∂3v

∂x2∂y
+ C56

∂3v

∂x∂y2 + C57
∂3v

∂y3 + C58
∂3w
∂x3

+ C59
∂3w

∂x2∂y
+ C60

∂3w
∂x∂y2 + C61

∂3w
∂y3 + C62

∂2w
∂x2 + C63

∂2w
∂x∂y

+ C64
∂2w
∂y2 + C65

∂2u
∂x2

+ C66
∂2u
∂x∂y

+ C67
∂2u
∂y2 + C68

∂2v

∂x2 + C69
∂2v

∂x∂y
+ C70

∂2v

∂y2 + C71
∂u
∂x

+ C72
∂u
∂y

+ C73
∂v

∂x
+ C74

∂v

∂y
+ C75

∂w
∂x

+ C76
∂w
∂y

+ C77u + C78v + C79w + C80 = 0.

(2.15)

The coefficients C1–C80 in equation (2.15) are known functions of the deformed shape, shell
thickness, material properties and applied pressure, i.e. Ci = Ci (x, y, z, h, E, ν, p). The first 10
coefficients, C1–C10, and C80 are given in appendix B as an example. It is worth noting that
all the coefficients are independent of the elastic modulus E, except for C80, in which E−1

is a common multiplicative factor that is separable. Therefore, the particular solution of the
system of equation (2.15) is proportional to E−1, further explained in appendix B. However,
the resulting stresses become independent of Young’s modulus after the displacement field is
back substituted in equations (2.14) and (2.13), because of the presence of E in the constitutive
equations. This result represents the cornerstone of the proposed forward elastostatic method
to directly compute the stresses in thin shells of known arbitrarily deformed geometry, without
requiring the full knowledge of the material response. In compressible materials, only Poisson’s
ratio, which remains an independent variable, should be assumed in the determination of the
stresses. Whereas, in incompressible solids, the stress field can be directly computed without
knowing any material parameters. Lastly, it should be noted that, differently from the stress state,
the kinematic fields depend on the material parameters and they should be considered virtual
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Figure 3. (a) Discretized quarter of elliptical domain along with the boundary conditions. (b) Stencil of points required for first
to fourth order derivatives in the two-dimensional finite difference scheme. (c) Finite difference grid near the boundary region
showing fictitious points outside the elliptical domain and points lying on the boundary. (Online version in colour.)

when the above formulation is employed in the direct stress determination for finite elasticity
problems.

(c) Solution procedure through finite difference method
The system of equation (2.15) is applicable to any arbitrary shape of the shell surface that is given
as z = f (x, y) and can be solved for the unknown displacements u, v and w by a suitable method
using prescribed boundary conditions. One of the common techniques used in solving boundary
value problems is the FDM, where a spatial domain is discretized [49].

Various engineering problems can benefit from the presented formulation for the
determination of the stress distribution in statically indeterminate shells of known spatial
configurations when the material model is not available. One of which is the development of
constitutive relations and parameters identification in soft materials through bulge testing at
increasing pressures [50], where the deformed configurations can be measured through optical
techniques, such as digital image correlation (DIC) [22,32]. In particular, the inflation of non-
axisymmetric planar shells can be used to introduce unequal stresses at the apex of the deformed
configuration. In this framework, a favourable choice is through elliptical samples having a
continuous clamped edge, for which there are no available solutions to directly determine the
stresses in the deformed shell.

Therefore, the formulation presented in the previous section is here applied to directly
determine the stress state during finite elliptic bulge testing, and the FDM is implemented for
elliptical shells. The finite difference formulae used to discretize equation (2.15) are presented in
appendix C for the displacement w as a reference. The elliptical domain is discretized in x and
y directions using uniform increments x and y. Exploiting symmetry, only one quarter of the
ellipse is considered, shown in figure 3a along with the boundary conditions. Null displacements
and rotations are prescribed on the curved boundary, while on the axes of symmetry, the
perpendicular displacements are zero, along with the derivatives of the remaining displacement
components. Since the curved boundary is approximated with a linear grid parallel to the x and
y axes, the zero rotation condition can be written as

∂w
∂x

= 0 and
∂w
∂y

= 0. (2.16)

The highest derivative in equation (2.15) is of the fourth order, which implies that the
approximation near the boundaries requires discretizing points outside the elliptical domain,
as depicted by a stencil of points in figure 3b,c. For the normal displacement w, the boundary
conditions at the curved edge (w = 0, ∂w/∂x = 0 and ∂w/∂y = 0) can be used to approximate the

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 D

ec
em

be
r 

20
22

 



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220619

..........................................................

higher-order derivatives. For example, the fourth order derivative of w with respect to x can be
approximated as

∂4w
∂x4

∣∣∣∣∣
i,j

= 1
x4

(
wi+2,j − 4wi+1,j + 6wi,j − 4wi−1,j + wi−2,j

)
, (2.17)

where i and j represent the x and y position of the point, respectively. Denoting wm,j as the
displacement of the point lying on the vertical segment of the curved boundary, figure 3c, the
clamped conditions imply wm,j = 0. Therefore, the discretized equations need to be written for i
up to m − 1, so that i can be replaced by m − 1 in equation (2.17)

∂4w
∂x4

∣∣∣∣∣
m−1,j

= 1
x4

(
wm+1,j − 4wm,j + 6wm−1,j − 4wm−2,j + wm−3,j

)
, (2.18)

where wm+1,j is the fictitious point lying outside the considered domain. To find wm+1,j, the central
finite difference form of equation (2.16)1 is written for the point (m, j) as

∂w
∂x

∣∣∣∣
m,j

= wm+1,j − wm−1,j

2x
= 0 �⇒ wm+1,j = wm−1,j, (2.19)

implying that wm+1,j can be replaced by wm−1,j in the finite difference equations. Similarly,
the displacement w of all fictitious points can be substituted with the displacement of the
corresponding symmetric points lying inside the domain. For the displacement components u
and v, the boundary conditions at the clamped edge do not include the derivatives of u and v.
Hence, linear extrapolation is used to write the finite difference equations for the points lying
outside the domain. It should be noted that the highest derivative for u and v in equation
(2.15) is of the third order, thus requiring a fewer number of points than those illustrated in
figure 3b.

The discretization of the system of differential equations (2.15) results in a system of linear
equations, which is solved by the direct method to give u, v and w. The resulting displacement
components are back substituted in equation (2.14) to find the strains, and subsequently,
constitutive equations (2.13) are used to convert the strain components into stress resultants, from
which the normal stresses for the middle surface, σ1 and σ2, can be calculated as

σ1 = N1

h
and σ2 = N2

h
. (2.20)

As noted before, the displacement and strain components are functions of the material
parameters, elastic modulus E and Poisson’s ratio ν, but when they are back substituted in the
constitutive relations, equation (2.13), the stresses become independent of E, and only ν affects
the stress distribution for compressible materials. Hence, the small displacements and strains
calculated through the finite difference code should be treated as virtual when nonlinear problems
with deformable shells are considered, and only the stresses are useful. The stress distribution
independence of E is of paramount importance, as it enables the direct stress determination in
elastic shells of known arbitrary shape without requiring the knowledge of the full constitutive
model.

Lastly, it is worth noting that the stresses can also be directly obtained through an
equivalent finite-element forward elastostatic method, where linear analysis is performed on
each deformed shell configuration. In this approach, validated in appendix D, the deformed
shape is reconstructed in the finite-element software, and constitutes the reference configuration,
in equilibrium with the external loads. Therefore, the equilibrated stress state from the
linear analysis is independent of the subsequent deformations, which can be considered
virtual, and of the material model employed, where linear elasticity can be assumed for
simplicity.
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3. Results and discussion
The presented forward elastostatic method is here applied to the determination of the
stresses during inflation of elliptical shells and validated through finite-element analyses and
experiments. The finite difference formulation was implemented in a Matlab script that can be
found at https://github.com/fbosi/StressesEllipticBulging. The influence of Poisson’s ratio on
the stress distribution is presented in §3a, while in §3b, it is shown that the proposed method for
direct stress measurements is applicable to nonlinear elastic materials.

(a) Comparison of the present solution with finite-element analysis
The first validation of the developed formulation and its finite difference implementation was
performed through FEA run in Abaqus 2019 (Dassault Systèms). Elliptical planar shells of
different aspect ratios, characterized by the major radius a, minor radius b and initial thickness
h0, were inflated by a normal uniform pressure p from the initial flat configuration, clamped at
its edge. The initial thickness h0 was 100 µm, a was fixed to 60 mm for all the analyses, whereas
b was varied to achieve different aspect ratios. Geometric nonlinear FE analyses were performed
using shell elements (S4 and S3), where a quarter of the elliptical shell was modelled, thanks
to symmetry conditions. The elastic material model was characterized by Young’s modulus
E = 2.5 GPa and Poisson’s ratio ν = 0.35.

From the FEA results, each shell deformed shape was acquired in the form of (x, y, z) data
points and thickness h for each node, and it was given as input to the finite difference code to
calculate the stresses throughout the shell and compare them with the FEA stress field. A cubic
interpolation (‘griddata’ in Matlab) was used to form the uniformly spaced finite difference grid
(size between 0.25 and 1 mm) from the scattered nodal FEA data points. The base vectors Tα and
Tβ , and the surface parameters R1, R2, A and B, were obtained using the equations presented in
§2a to initiate the finite difference code. Each deformed state of the inflated elliptical shell from
FEA was processed independently to obtain the stress fields at each equilibrium configuration,
thus making the finite difference code independent of the deformation history. A fictitious elastic
modulus, Ē = 1, was used in the finite difference scheme since the stresses are independent of
Young’s modulus, as observed in the previous section.

The normalized stresses along the major and minor axis of the inflated shell, σ1b/Eh0 and
σ2b/Eh0, obtained from FEA and the finite difference formulation, are compared in figure 4 for
an elliptical geometry with an aspect ratio of 0.5. The normalized stresses are plotted against
the dimensionless major and minor radial coordinates x/a and y/b for deformation levels z0/b ≈
[0.25, 0.5, 1], where z0 represents the z coordinate at the apex of the deformed shell. The finite
difference predictions (solid line) match well with the FEA results (dotted line) in all plots
of figure 4 for z0/b ≈ 0.25 and z0/b ≈ 0.5, when the same value of Poisson’s ratio, ν = 0.35, is
considered. However, for highly deformed configurations, z0/b ≈ 1, σ1 shows some deviations
in figure 4a,c. The difference between FEA and finite difference results is due to the pronounced
change in curvature in the first direction R1 (aligned with σ1) for higher deformation levels,
whereas, along y, the deformed shape resembles a cylinder with an almost uniform radius of
curvature R2. The higher gradients of R1 are difficult to capture, especially near the ellipse’s
edge, where extrapolation is used and causes the discrepancies observed for σ1. Nonetheless,
the maximum error in σ1, at the apex of the shell, remains under 5% for the highest deformation
level z0/b ≈ 1. Above this deformation, the shell surface bulges out from its planar domain, which
hinders the reconstruction of the deformed shape through a planar grid because the gradients of
the surface become infinite. As noted before, the stress state in each deformed shape can also
be obtained by means of independent finite-element forward elastostatic analyses performed on
the reconstructed configurations. Each deformed equilibrium configuration obtained from the
nonlinear FE finite inflation of planar elliptical shells with prescribed material properties was
used as the reference state for a static linear analysis performed with the same software, owning
a fictitious unit Young’s modulus. The stress results obtained from the finite element forward
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Figure 4. Normalized stress along the first principal direction, σ1b/Eh0 (a,c), and second principal direction, σ2b/Eh0 (b,d)
plotted against the dimensionless coordinates x/a (a,b) and y/b (c,d) for z0/b≈ [0.25, 0.5, 1]. The results from FE (solid line
with dot) and finite difference forward elastostaticmethod (solid line) are compared forν = 0.35 during the inflation of planar
elliptical shellswithb/a= 0.5. Thegrey areawithin thedashed curves represents thepresent solutionwhenν ∈ [0.25 − 0.5].
(Online version in colour.)

elastostatic analysis are reported in appendix D, figure 12, and compared with the predictions
shown in figure 4, showing excellent agreement and testifying the validity of this alternative
reconstructed FE approach.

The stress distribution obtained through the finite difference forward elastostatic method
was shown to depend only on Poisson’s ratio. Therefore, in order to assess its influence on the
accuracy of the results, ν was varied from 0.25 to 0.5, which represents the classical range for most
engineering materials. The different values of Poisson’s ratio result in grey areas for each curve of
figure 4, where the lower bound represents ν = 0.25 and the upper bound is for ν = 0.5. Overall,
the range of Poisson’s ratio produces a maximum of ±10% deviation from the mean stress value at
the apex of the shell for σ1 and ±2% deviation from the mean value of σ2. The lower sensitivity of
σ2 to Poisson’s ratio is due to the limited variation of curvature in the second principal direction,
which makes the stresses more sensitive to the curvature rather than the Poisson’s ratio. These
results show that, for compressible materials, even in the absence of a known Poisson’s ratio,
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Figure 5. Stress ratio at the apex of the deformed thin shell, σ2/σ1, plotted against non-dimensional vertical position at the
apex, z0/b, for elliptical membrane with aspect ratios b/a= [0.1, 0.2, 0.3, 0.4] (a) and b/a= [0.5, 0.6, 0.7, 0.8] (b), obtained
fromFE (solid linewithdot) andfinite difference forward elastostatic (solid linewithdiamond)methods,withν = 0.35. (Online
version in colour.)

and therefore without any knowledge of the material response, the proposed technique can still
provide an accurate range of stresses throughout the entire shell by assuming an arbitrary, yet
realistic, value for ν, with the accuracy that increases for less deformed (or shallow) shells.

To further compare the finite difference and the FE results for different aspect ratios throughout
the entire deformation history, the stress ratio σ2/σ1 at the thin shell’s apex is plotted against the
dimensionless vertical position z0/b in figure 5. The choice of plotting the stresses at the apex is
motivated by the fact that those produce the highest equivalent stress and they are less disturbed
by the edge effects during bulge tests. Both the finite difference and FE analyses were run for
b/a = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] and ν = 0.35, with the results for aspect ratio higher than 0.5
shown in figure 5b for clarity. Overall there is a very good agreement between theoretical and FE
results for all the aspect ratios and levels of deformation investigated. The maximum difference
between the finite difference and FE results occurs for b/a = 0.8, although the error is amplified
because the ratio between the stresses is shown. When the difference is calculated separately
for the stress components, it is maximum 6% for σ2 at z0/b ≈ 0.25 for b/a = 0.8. The source of
discrepancy for a higher aspect ratio is due to the presence of a singularity of principal curvatures,
which hinders the results in its proximity. At the singularity, the two principal curvatures become
equal and the lines of principal curvature converge into one point. The point of singularity does
not exist when b/a < 0.5, while it appears near the edge x = a when b/a = 0.5, and moves towards
the centre x = 0 when b/a = 1. For this reason, it is not advisable to use the current formulation
for direct stress determination during the bulging of circular isotropic membranes. Instead, since
that problem is statically determinate and equilibrium equations suffice, it is suggested to employ
analytical solutions present in the literature for faster computation [32,33,51]. Alternatively, the
present method can produce accurate results for the inflation of circular membranes by using the
analytical expressions at the apex of the axisymmetric shape, where the singularity lies, and by
applying the finite difference formulation to the remaining domain.

(b) Experimental validation through elliptical bulge tests
The developed forward elastostatic method and its finite difference implementation were
employed in the direct determination of stresses during elliptic bulge experiments carried out
on a hyperelastic material, in order to show the applicability of the proposed procedure also
to nonlinear elastic solids. The finite difference code is devised using linear elastic constitutive
equations, and in §2b it was shown that the calculation of stresses is independent of Young’s
modulus of the material. Since the formulation is based on small displacements on a known
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equilibrium configuration of the shell, its applicability to nonlinear materials is justified because
the nonlinear constitutive equations can be linearized for infinitesimal strains, as shown in
appendix E for a hyperelastic constitutive relation. Hence, the script based on linear elasticity can
be used to compute the stresses in non-axisymmetric shells made of a nonlinear elastic material.

(i) Material characterization

Thermoplastic polyurethane (TPU) membrane of thickness h0 = 110 ± 10 µm (Elastollan C 85-A
from BASF) was chosen because of its highly deformable elastomeric characteristics. First,
uniaxial tensile and axisymmetric biaxial inflation tests were performed at room temperature to
determine the stress–strain response of TPU and to model its constitutive behaviour necessary for
the FE predictions of the inflation of elliptical thin shells. The uniaxial specimens were cut into the
dumbbell shape according to ASTM D412-16 (Type A). An Instron 5985 electromechanical testing
machine, fitted with 2 kN 2713-004 self-tightening grips and a 500 N load cell, was used to test the
material [52]. Second, for the axisymmetric biaxial inflation test, a custom-made pressure chamber
with a circular cut of 100 mm diameter was used to clamp the membrane at its periphery through
fasteners [21]. Additionally, the chamber has an inlet port for air pressure and LED lights inside to
illuminate the background of the transparent sample for DIC measurements. The high-pressure
air is supplied to the testing system and is controlled by an onboard electric valve (Omega IP610-
030) that regulates output air pressure in the range 0–30 psi. The pressure control valve uses
4–20 mA of current generated by onboard circuitry that includes a DC power supply and a current
transmitter AD694. The transmitter converts 0–10 V DC analogue voltage from the computer,
provided through a NI data acquisition system (DAQ) and a LabVIEW Signal Express script, to
4–20 mA of current. An electrical pressure gauge (Omega DPG409-015G) is used to display and
send the pressure data of the chamber to the computer through the same DAQ in the form of 0 to
10 V analogue voltage.

The surface strains for both uniaxial and biaxial tests were measured through the DIC
technique, where two stereo 5 MP cameras (Basler), equipped with Schneider Kreuznach
Xenoplan lenses (focal length 35 mm), were held at an angle of ∼ 30◦. The images were captured
from the cameras using Vic-Snap software and were post-processed on Vic-3D (Correlated
Solutions). Uniaxial experiments were performed in two orthogonal directions of the material
to inspect the anisotropy, and the material was found to be isotropic. Therefore, for the biaxial
inflation test, equilibrium equations under the material isotropy assumption were used to obtain
the equibiaxial true stresses at the apex of the membrane, σ = pr/(2h), where r represents the
radius of curvature [32,33]. Poisson’s ratio was measured with DIC during uniaxial tensile tests
from the transverse and longitudinal strains, and it was found to be ≈ 0.5. Hence, the mean true
stress–strain response for TPU films was calculated using the incompressibility assumption from
three uniaxial tensile tests and three biaxial inflation tests, shown in figure 6a,b, respectively. The
strain rate for these tests was kept in the range 0.1–0.2%/s, which corresponds to the strain rate
at the apex of the membrane during the next set of inflation tests on elliptical membranes.

The stress–strain data from figure 6 were used to calibrate the hyperelastic material model
required as input in Abaqus 2019 to obtain the FE predictions of stresses in any deformed
configuration during inflation [53]. These FE results will serve as a reference for comparison with
the experimentally derived stresses obtained from the presented forward elastostatic formulation,
which do not require the knowledge of the constitutive model. The material hyperelastic response
was modelled through a fifth-degree polynomial strain energy function, whose coefficients are
reported in appendix E, Table 1, and were used in the Abaqus subroutine UHYPER to predict
the stresses in the TPU membrane during FE elliptical inflation, as described in the next section.
For the fitting, the strain energy density corresponding to different values of the Cauchy–Green
strain invariants I1 and I2 was calculated from the uniaxial and biaxial test data. The comparison
between the fitted model and the experimental data for uniaxial and biaxial response is shown in
figure 7a,b, respectively.
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Figure 6. True stress–strain response of TPU membranes from uniaxial tensile tests (a) and biaxial inflation experiments
(b), showing average (red curve) and raw (blue region and dots) data. (Online version in colour.)
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Figure 7. Comparison between uniaxial (a) and equibiaxial (b) experimental data and the hyperelastic model predictions
obtained through a fifth-degree polynomial fitting of the strain energy density function. (Online version in colour.)

(ii) Stress determination during elliptical bulge experiments

The elliptical diaphragm inflation tests were performed in a pressure chamber similar to the one
employed for the circular inflation set-up. The chamber has multiple configurations for elliptical
inner cuts with major radius a = 60 mm and minor radii b of 30 mm and 42 mm to provide 0.5 and
0.7 aspect ratios, respectively. The rest of the components for the elliptical inflation test remain the
same as in the circular inflation experiments described in the previous section.

The deformed shape, principal curvatures and directions were extracted from DIC, while the
thickness of the shell was computed using the incompressibility assumption from the surface
strains. The data were processed using the Matlab finite difference code to calculate the stresses
in the principal directions of the inflated membrane for each deformed state. A uniform grid
of 0.5 mm was used to export the data from DIC. However, due to the finite box size used for
DIC correlation, the data near the edge of the sample could not be computed. Therefore, a linear
surface extrapolation function in Matlab (‘scatteredInterpolant’) was used to fill the gaps near
the boundary and perform the calculations. In addition to the extrapolation, a smoothing spline
function in Matlab (‘spaps’) was employed to reduce the noise of the DIC data. The code also
requires the pressure values, which were measured by the DIC software through the DAQ, at
each deformed shape.

Three inflation tests were performed on TPU films using the elliptical pressure chamber of
0.5 aspect ratio, and the results are presented in figure 8, along with the predictions from the
nonlinear FEA simulation. The principal stresses at the apex of the membrane are plotted against

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 D

ec
em

be
r 

20
22

 



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220619

..........................................................

8

6

4

2

0

10

8

6

4

2

01 2

experiments—finite difference
FEA

experiments—finite difference
FEA

3
p b/h0 (Pa) ×106

4 5 6 1 2 3
p b/h0 (Pa) ×106

4 5 6

σ 1 
(M

Pa
)

σ 2 
(M

Pa
)

σ2

σ1

σ2

σ1

(a) (b)

1

0.8

0.4

0.6

0.2

0

10

8

6

4

2

01 2

experiments—finite difference
FEA

experiments—finite difference
FEA

3
p b/h0 (Pa) ×106

4 5 6 0.2 0.4 0.6 0.8

z 0/
b

(c) (d)

ε0

σ 0 
(M

Pa
)

Figure 8. Comparison between FEA (red curve) and finite difference experimental (blue region and dots) results for the
diaphragm inflation of elliptical TPU membranes of aspect ratio b/a= 0.5. The stresses in the first σ1 (a) and second σ2

(b) principal directions, and the dimensionless vertical position z0/b (c) at the apex of the membrane are plotted against
normalized pressure p b/h0. (d) Equivalent stress σ̄0 versus equivalent strain ε̄0 at the apex of the membrane. (Online version
in colour.)

the normalized pressure pb/h0 in figure 8a,b, while the vertical position of the apex, normalized
by the minor radius of the membrane, z0/b, is plotted against the normalized pressure in figure 8c
for both the experimental and FEA results. In the horizontal axis of figure 8, the pressure is
multiplied by the factor b/h0 to normalize the effects of initial thickness, which is ±10% for the
tested TPU samples. The results show a very good agreement, as the FE curves lie very close to
the experimental data, obtained through the finite difference code. The minor discrepancies are
due to the fitting deviations evident in figure 7a,b. The vertical displacement plot of figure 8c is
a direct result of the DIC measurements, which do not involve the finite difference code and
show the high fidelity of the calibrated hyperelastic model. The plot of equivalent stress σ̄0
versus equivalent strain ε̄0 at the apex of the membrane is shown in figure 8d, which also depicts
good agreement between nonlinear FE predictions and finite difference elastostatic calculations.
Alternatively to the finite difference analysis, forward linear elastic finite-element simulations can
be performed starting from the deformed experimental configuration used as the reference state,
with any fictitious incompressible material model. The forward finite-element predictions of the
stresses σ1 and σ2 obtained from the reconstructed measured geometries are added to the plots of
figure 8a,b and shown in appendix D, figure 13.

Experiments were also performed on the 0.7 aspect ratio elliptical membrane, and the
deformed shapes were post-processed to directly calculate the stresses using the developed
formulation and the finite difference code. Nonlinear FE simulations were carried out for the
0.7 aspect ratio ellipse, and the results are added for comparison in figure 9. The principal
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Figure 9. Comparison between FEA (red curve) and finite difference experimental (blue region and dots) results for the
diaphragm inflation of elliptical TPU membranes of aspect ratio b/a= 0.7. The stresses in the first σ1 (a) and second σ2

(b) principal directions, and the dimensionless vertical position z0/b (c) at the apex of the membrane are plotted against
normalized pressure p b/h0. (d) Equivalent stress σ̄0 versus equivalent strain ε̄0 at the apex of the membrane. (Online version
in colour.)

stresses at the apex of the membrane, figure 9a,b, and the vertical position, figure 9c, show very
good agreement for all the normalized pressure values. Similarly, the equivalent stress versus
equivalent strain plot from experiments and FEA shows a good match, figure 9d. Overall, the
results from the inflation of two different aspect ratios of TPU elliptical membranes (figures
8 and 9) prove a very good accuracy of the stress computation through the newly developed
finite difference forward elastostatic formulation, where the deformation levels reach up to the
minor radius, z0/b ≈ 1.

In addition to the results extracted at the apex of the membrane, the full-field plots of first,
σI, and second, σII, principal stresses, directly obtained during TPU inflation, are compared with
the FEA contour plots in figure 10 for the deformation levels of z0/b ≈ 0.25 and z0/b ≈ 0.5. The
stress contours from FEA and experiments of figure 10a,b match to a great extent, while the
difference near the curved edge is due to the intrinsic noise in the DIC measurement of the
radii of principal curvatures and the smoothing function, which affects the accuracy of extracted
results, especially in the areas of sharp gradients. The noise of DIC is higher at small deformation,
while it decreases as the shell is inflated more. The effect of decreasing noise results in improved
accuracy for figure 10c,d, when z0/b ≈ 0.5. In particular, throughout the entire shell, the mean
absolute percentage difference between the experimental and FE predictions for z0/b ≈ 0.25 is
6.74% and 7.61% for σI and σII, respectively, while for z0/b ≈ 0.5 is 2.45% and 7.17% for σI

and σII, respectively. The grey area around the curved edge for the experimental contour plots
of figure 10 shows the lack of DIC data due to the finite size of the box chosen for image
correlation and the edge shadow. In all plots of figure 10, the location of the maximum principal
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Figure 10. Comparison of principal stresses between FEA and finite difference experimental results for the diaphragm inflation
of elliptical TPU membranes of aspect ratio b/a= 0.5. σI (a,c) and σII (b,d) are shown for z0/b≈ 0.25 (a,b) and z0/b≈ 0.5
(c,d). (Online version in colour.)

stresses appears at the apex, where the FEA and experiments show the best agreement between
each other.

An important aspect of the finite difference formulation is represented by its ability to
determine the stresses in elastic shells without the knowledge of material parameters. Indeed,
in the developed formulation, the experimental stresses can be directly calculated from imaging
measurements without using any information on the constituent material property, except
for its Poisson’s ratio for compressible solids. Furthermore, it can be used with highly
nonlinear elastic materials. Although TPU has a varying tangent modulus Et, as can be seen in
figure 7a,b, a fictitious value of constant elastic modulus Ē = 1 was used in the finite difference
code to determine the stresses throughout the entire samples. These outcomes show that
the proposed forward elastostatic method and its numerical implementation yield promising
results for the direct calculation of the stress distribution in elastic and homogeneous statically
indeterminate shells, with applications ranging from the assessment of biological membranes to
the determination of constitutive models, especially for anisotropic materials.

4. Conclusion
A forward elastostatic method for the direct stress determination in thin shells of arbitrary shapes
has been introduced and implemented through a finite difference procedure. The presented linear
thin shell formulation is general and applicable to any small displacement problems of statically
indeterminate shells under uniform pressure to give the complete deformation response when
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the constitutive relation of the material is known. However, the major strength of the proposed
work lies in the ability to directly measure the stresses, under virtual kinematic fields, during
finite deformation of elastic shells in the absence of material properties, starting from the known
deformed shapes, boundary and loading conditions. The only material property required by
the developed formulation, solely for compressible solids, is Poisson’s ratio, which is shown to
have a limited influence on the stress distribution and therefore can be assumed without loss
of accuracy.

The proposed method has been validated and used to determine the stresses in non-
axisymmetric inflatable planar elliptical membranes without knowing the constituent material
properties. Firstly, the developed procedure is applied to a compressible elastic material and the
deformed shapes obtained from finite-element analysis of shell inflation. A good agreement is
found for the stresses along the major and minor axes of an elliptical shell with a 0.5 aspect ratio,
as well as the stresses at the apex for aspect ratios that range between 0.1 and 0.8, until the height
of the deformed shape approaches the ellipse’s minor radius. Secondly, the finite difference code
is applied to directly compute the stresses from imaging measurements during the experimental
inflation of nonlinear incompressible TPU elliptic diaphragms of 110 ± 10 µm thickness, for 0.5
and 0.7 aspect ratios. The finite difference results, obtained without using any information on
the material response, have been found in good agreement with the stresses computed through
nonlinear finite-element analysis by using a calibrated hyperelastic model for TPU. Lastly, for
both sets of validations, a finite-element forward elastostatic analysis on reconstructed deformed
configurations has been proven as a valid alternative to the finite difference approach.

These outcomes show that the proposed technique and its numerical implementation yield
promising results for the direct calculation of the stress distribution in elastic and homogeneous
shells, with applications ranging from the determination of constitutive models through bulge
tests to the assessment of non-axisymmetric thin shell structures. In particular, the presented
method is expected to be advantageous in inverse problems, where the stress state in non-
axisymmetric bulge tests can be measured independently from the strain field through imaging
techniques, and it can be employed for the development of constitutive models and parameters
identification when the material response is unknown. The application of the method in
developing material models for structural membranes and its extension to non-axisymmetric
elastoplastic bulging represent future avenues of research.

Data accessibility. The developed finite difference code and some examples can be found at https://github.com/
fbosi/StressesEllipticBulging. Additional data are available on request from the corresponding author.
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Appendix A. Definition of stress resultants and moments in thin shells
An infinitesimal element of a thin shell is reported in figure 11, where α and β represent the
principal curvature coordinates, while ξ is the normal coordinate that ranges from −h/2 to h/2.
The stress resultants and moments acting on each face of the thin shell can be obtained by
integrating over the thickness direction the stress components highlighted in the figure [45]

N1 =
∫ h/2

−h/2
σ

ξ

1

(
1 − ξ

R2

)
dξ , N2 =

∫ h/2

−h/2
σ

ξ

2

(
1 − ξ

R1

)
dξ ,

N12 =
∫ h/2
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ξ
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Furthermore, the stress components can be written in terms of stress resultants and moments at
any normal coordinate ξ as [45]

σ
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Figure 11. Three-dimensional view of an infinitesimal thin shell element of thickness h showing the stress components in the
αβ and normal coordinate system. (Online version in colour.)

Appendix B. Coefficients of the PDEs and solution procedure
The first 10 coefficients, C1–C10, and C80 from equation (2.15) are given below as an example.
Similar expressions exist for the coefficients C11–C79, which are not reported here due to their
lengthy forms. They can be found in the script developed for the finite difference solution of
equation (2.15), available at https://github.com/fbosi/StressesEllipticBulging.
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The expressions for C1–C80 and the finite difference formulae from equation (C 1) can be
substituted into equation (2.15) to obtain three algebraic equations written for each point of the
finite difference grid that discretize the domain, figure 3a. Denoting n̄ as the total number of points
in the grid, the resulting system has a total of 3 × n̄ algebraic equations that can be represented in
a matrix equation as

DX = Q, (B 2)

where D is a square coefficient matrix whose elements are the functions of C1–C79, X is the
unknown column vector representing the displacement components u, v and w for all grid points
and the vector Q is formed by the constant terms of the system of equations, all null except for
those associated with the third equation of the system (2.15), which are equal to −C80 for all
points. Since the multiplicative factor E−1 appearing in the expression of C80 can be separated on
the right-hand side of equation (B 2), the unknown vector X can be found as

X = E−1D−1Q′, (B 3)

where Q = E−1Q′. This implies that the particular solution of equation (2.15) and the resulting
strains, equation (2.14), have a common multiplicative factor E−1, which will be cancelled when
the stresses are calculated through the constitutive relation equation (2.13), thus proving the
independency of the stress state on the elastic modulus.

Appendix C. Finite difference formulae
The finite difference formulae for the displacement component w obtained by Taylor series
expansion and using the method of undetermined coefficients are given below. Similar equations,
employed in §2c, can be written for the other displacement components by substituting w with u
or v.

∂w
∂x
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x2
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∂x∂y
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4xy

∂2w
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y2

∂3w
∂x3 = 1

2x3

(
wi+2,j − 2wi+1,j + 2wi−1,j − wi−2,j
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Appendix D. Finite-element forward elastostatic analyses
The forward elastostatic method for the direct stress determination in thin shells of arbitrary
shape can also be implemented through finite-element analyses, in a procedure equivalent to the
finite difference approach. In this alternative method, linear FE analyses are carried out on each
known deformed configuration, in equilibrium with the external loads. Each deformed shape,
which can change for every pressure value considered during the finite deformation of inflated
thin shells, is imported in the finite-element software and subjected to the corresponding loading
and boundary conditions. A linear analysis is run on each reconstructed and known geometry,
assumed to be the reference state. Considering the independence of the stress state on the material
stiffness, a fictitious unit elastic modulus is set, while Poisson’s ratio is assumed the same as in
the nonlinear FEA run to perform the validations. In this forward elastostatic FE method, carried
out on reconstructed geometries and hence named here ‘reconstructed FEA’, only the stress field
should be considered, while the displacements and strains, which depend on the material model,
have to be treated as virtual.

The forward linear finite-element approach has been tested for the two problems considered in
§§3a,b, respectively, and compared with the results presented therein. In the former validation, the
deformed FE meshes from the finite inflation of a flat elliptical membrane with aspect ratio b/a =
0.5 are imported back in Abaqus and used as the reference configuration. Although the boundary
conditions remain the same, the pressure and thickness field data change for each deformed
state. The results from the ‘reconstructed FEA’ are shown in figure 12, where they are compared
against the reference stresses from the large deformation FE inflation and finite difference results
presented in figure 4. In all plots of figure 12, the reconstructed FE predictions agree very well
with the reference results, thus proving the validity of the alternative finite-element forward
elastostatic method.

In the second experimental validation, the DIC-extracted deformed shapes from TPU elliptic
bulge tests were imported into Abaqus, along with pressure and thickness data. For each
deformed configuration, an independent linear FE analysis was carried out to obtain the stress
distribution. In this forward elastostatic FE analysis, the same grid spacing employed for the finite
difference method was used to create the mesh using quadrilateral shell elements, for which the
thickness h was prescribed from the nodal field data. Incompressible elastic properties with a
fictitious unit modulus were assigned to the shell elements. The stresses from the reconstructed
FEA are overlaid to the data obtained from nonlinear FEA and finite difference, figure 8a,b,
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Figure 12. Normalized stress along the first principal direction, σ1b/Eh0 (a,c), and second principal direction, σ2b/Eh0 (b,d)
plotted against the dimensionless coordinates x/a (a,b) and y/b (c,d) for z0/b≈ [0.25, 0.5, 1]. The results from FE (solid
line with dot), finite difference forward elastostatic method (solid line) and reconstructed FEA (dashed line) are compared for
ν = 0.35 during the inflation of planar elliptical shells with b/a= 0.5. (Online version in colour.)

and are presented in figure 13 for the three inflation tests performed on elliptical membranes with
aspect ratio b/a = 0.5. Although the experimentally reconstructed FE results are overall in good
agreement with the numerical predictions, they show more scattering than the finite difference
data, obtained from the same experimental measurements. This is because the stress field is very
sensitive to the deformed shape. Any inaccuracies or noise in the experimental surface fitting
cause errors in the resulting stresses. For the finite difference code, the smoothed curvature data
from DIC are directly employed in the computations, whereas, for reconstructed FEA, only the
shell surface is given as an input, which cannot capture the local shape changes of the surface
as curvature, proportional to the second derivative of the surface coordinates, does. Moreover, in
figure 13b, one of the FE reconstructed results shows a higher deviation for σ2 at high pressures,
as the inflated shape from the DIC is not perfectly symmetric. By contrast, the smoothing of
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Figure 13. Comparison between the experimentally derived finite difference (blue region and dots) and FEA reconstructed
(green dots) results, and FEA predictions fromfinite inflation (red curve) for the bulge test of elliptical TPUmembranes of aspect
ratio b/a= 0.5. The stresses in the first σ1 (a) and second σ2 (b) principal directions at the apex of the inflated thin shell are
plotted against normalized pressure p b/h0. (Online version in colour.)

the experimental curvatures from DIC in finite difference code forces the data to become more
symmetric, thus reducing discrepancies in results for the finite difference formulation.

The finite-element forward elastostatic analysis was compared with the finite difference
code for computational efficiency. Both methods took approximately the same time to compute
the stresses for one deformed configuration. However, the finite difference code could be
incorporated in the DIC software packages to provide the surface stresses along with kinematic
quantities in real-time. Another benefit of the finite difference code lies in its flexibility to
incorporate a spatial variation of stiffness or Poisson’s ratio, as it would be required for
elastoplastic analyses.

Appendix E. Linearization of the hyperelastic constitutive model
The polynomial form of the strain energy density function of degree m for an isotropic
incompressible hyperelastic material is given by Rivlin & Saunders [54]

W(I1, I2) =
m∑

j=1

m−j∑
i=1

Pij(I1 − 3)i(I2 − 3)j, (E 1)

where I1 and I2 are the invariants of the right Cauchy–Green strain tensor, while Pij are the
coefficient used to fit the response of TPU membranes, reported in table 1.

Consider a shell in a deformed state characterized by its strain energy density W0. After
reaching W0, the shell is deformed again under small displacements. For an infinitesimal
deformation identified by I′1 and I′2, the strain energy density function can be approximated by
the first power of the polynomial strain energy density function, equation (E 1), as

W(I′1, I′2) = W0 + P10(I′1 − 3) + P01(I′2 − 3), (E 2)

where the last two terms coincide with the first-order Mooney–Rivlin model of a hyperelastic
material, and they represent the tangent plane in the (I1, I2, W) space, as shown in figure 14. For
small strains, the strain energy density W(I′1, I′2) can be written as a function of the nominal strains,
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Figure 14. Tangent plane approximation (grey region) of a nonlinear strain energy density function for small deformation I′1
and I′2. (Online version in colour.)

Table 1. Material parameters (in MPa) for the fifth-degree polynomial strain energy density functionW for TPU, obtained by
fitting uniaxial and equibiaxial stress–strain data.

coefficients values coefficients values coefficients values coefficients values

P10 1.372 P30 −0.486 P31 0.675 P41 −0.071
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P01 1.745 P21 0.596 P22 −1.376 P32 0.060
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P20 0.861 P12 1.681 P13 0.446 P23 0.083
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P11 −3.363 P03 −0.760 P04 0.025 P14 −0.064
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P02 0.720 P40 −0.061 P50 0.014 P05 0.008
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W(ε1, ε2, ε3). Denoting the principal stretches by Ui (i = 1, 2, 3), the invariants are given by

I′1 = U2
1 + U2

2 + U2
3

and I′2 = U2
1U2

2 + U2
2U2

3 + U2
3U2

1.
(E 3)

Considering that U = 1 + ε and the incompressibility condition is ε1 + ε2 + ε3 = 0, the invariants
can be written in the form of nominal strains as

I′1 = 3 + 2(ε2
1 + ε2

2 + ε1ε2)

and I′2 = 3 + ε4
1 + 2ε3

1ε2 + 6ε2
1ε2 + 6ε1ε

2
2 + 3ε2

1ε2
2 + 2ε1ε

3
2 + ε4

2.
(E 4)

If high order powers of strains are neglected, equation (E 4) gives I′2 ≈ 3. Hence, equation (E 2)
becomes

W(ε1, ε2) = W0 + 2P10(ε2
1 + ε2

2 + ε1ε2), (E 5)

from which the second Piola–Kirchhoff stress components can be obtained as σi = ∂W
∂εi

by

assuming that the Green–Lagrangian strain tensor is reduced to nominal strain for infinitesimal
deformation

σ1 = 2 P10(2ε1 + ε2)

and σ2 = 2 P10(2ε2 + ε1).
(E 6)

Equation (E 6) is similar to the linear elastic constitutive equations, equation (2.13), for an
incompressible material. In particular, it should be noted that the coefficient P10 is a common
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multiplicative factor, as it is the elastic modulus in equation (2.13). Therefore, if the former
linearized constitutive relations are employed in equation (2.13), the solution for the stress
distribution in the shell results independent of the hyperelastic material parameter P10.
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