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Objectives: Failures in identification, resuscitation and appropriate referral have
been identified as significant contributors to avoidable severity of illness and
mortality in South African children. In this study, artificial neural network models
were developed to predict a composite outcome of death before discharge from
hospital or admission to the PICU. These models were compared to logistic
regression and XGBoost models developed on the same data in cross-validation.
Design: Prospective, analytical cohort study.
Setting: A single centre tertiary hospital in South Africa providing acute paediatric
services.
Patients: Children, under the age of 13 years presenting to the Paediatric Referral
Area for acute consultations.
Outcomes: Predictivemodels for a composite outcome of death before discharge
from hospital or admission to the PICU.
Interventions: None.
Measurements andmain results: 765patientswere included in thedata setwith 116
instances (15.2%) of the study outcome. Models were developed on three sets of
features. Two derived from sequential floating feature selection (one inclusive,
one parsimonious) and one from the Akaike information criterion to yield 9
models. All developed models demonstrated good discrimination on cross-
validation with mean ROC AUCs greater than 0.8 and mean PRC AUCs greater
than 0.53. ANN1, developed on the inclusive feature-et demonstrated the best
discrimination with a ROC AUC of 0.84 and a PRC AUC of 0.64 Model calibration
was variable, with most models demonstrating weak calibration. Decision curve
analysis demonstrated that all models were superior to baseline strategies, with
ANN1 demonstrating the highest net benefit.
Conclusions: All models demonstrated satisfactory performance, with the best
performing model in cross-validation being an ANN model. Given the good
performance of less complex models, however, these models should also be
considered, given their advantage in ease of implementation in practice. An
internal validation study is now being conducted to further assess performance
with a view to external validation.
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Introduction
The reduction of avoidable childhood mortality and

morbidity is a key healthcare priority worldwide. Steps to

address failures in acute care and critical care processes are an

important aspect of strategies for improving care for critically

ill or injured children (1). One such failure is within triage

and identification systems needed to detect children in need

of life-saving care (2). In South Africa, Hodkinson et al.

found that patients with critical illness follow complex

pathways to appropriate care and that failures in

identification, accurate assessment of the severity of illness,

early resuscitation, and timely referral to higher levels of care

were responsible for significant avoidable severity of illness

and mortality (3). This serves as the rationale for conducting

research in this area and developing clinically implementable

tools for the identification of critically ill children that are

appropriate to the South African setting.

Triage scores are directed at sorting patients into categories

of urgency based on a combination of clinical characteristics

(history and clinical discriminators) and physiological

variables (4, 5). The purpose of these systems is to optimise

patient waiting times and ensure patients receive appropriate

and timeous treatment. Several triage systems have been

implemented in South Africa, although, in some regions, no

formal triage is applied (6). These include the South African

Triage Scale (SATS), Early Triage Assessment and Treatment

(ETAT) program and the Integrated Management of

Childhood Illness (IMCI) program (5–9). These systems are

implemented by a variety of healthcare workers, but nurse-

based triage is frequently the arrangement in South Africa (5).

Despite the presence of triage systems in South Africa, the

findings of Hodkinson et al., illustrate that the identification

of patients requiring referral to centralised services remains a

key contributor to avoidable death and severity of illness (3).

The role of applied machine learning in medicine and, more

specifically in paediatrics and child health has, as Lonsdale and

Rajkomar point out, not been fully explored in the literature (10,

11). Machine learning offers a wide range of possible use-cases

in the clinical setting, including diagnosis, prognosis, workflow

and improving patient access to services (11).

The use of machine learning in triage and mortality

prediction has been described in high-income countries. Goto

et al. and Hwang and Lee have described the use of machine

learning to predict paediatric intensive care unit (PICU)

admission and hospitalisation in the Emergency Department

setting and critical illness respectively (12, 13). Aczon et al.

and Kim et al. have described models for the prediction of

mortality in PICU. Notably, these models represent significant

progress compared to existing models in their ability to make

dynamic or continuous assessments of mortality risk over

time (14, 15). Our unit has recently published the
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development of an artificial neural network(ANN) model for

PICU mortality risk prediction with comparable performance

to a range of logistic regression models (16). With this

rationale, the development of an ANN model designed to

identify children at risk of severe illness requiring urgent

intervention or escalation of care to a PICU was undertaken.

Several distinctions exist between this study and our prior

work. Our PICU mortality risk prediction model was

designed to evaluate quality of care against model predictions

of mortality, whereas the models developed in this study are

intended to improve identification of children with or at risk

of critical illness at the time of presentation. The models

developed in this study are intended to augment the ability of

clinicians with limited experience and expertise in paediatric

critical illness in resource constrained settings. As such, the

variables selected for use in these models were identified using

a dedicated domain knowledge elicitation process including a

Delphi procedure and systematic literature search (17). The

variables identified were selected on the grounds that they

represented a compromise between comprehensiveness and

ease of use and specifically excluded radiological and

laboratory variables except point of care glucose testing. This

contrasts with the variables included in PICU mortality

prediction models, where more extensive and advanced data is

typically available or acquired at the time of admission to PICU.

ANNs are computational structures that broadly simulate

the learning process and organisation of biological neurons

(18). The network architecture is made up of interconnected

input, hidden and output layers. The strength or intensity of

each connection is represented by a numerical value, the

weight, and each neuron has a threshold term for activation.

Outputs of neurons are determined by a mathematical

function, the activation function that takes in the inputs to

input neurons, weights of connections and threshold terms of

each neuron (19). Learning is achieved when weights are

adjusted through stochastic gradient descent (20).

This model was compared to a logistic regression (LR)

model and XGBoost model developed on the same data. The

primary objective was to develop an artificial neural network

(ANN) model for the prediction of this outcome.
Methods and study design

The development pipeline used in this study is summarized

in Figure 1.
Ethical clearance

Internal review board approval was obtained from the

Health Sciences Research Ethics Committee (UFS-HSD2020/

2204/2505-0003) and the Free State Department of Health
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FIGURE 1

Consort diagram of development pipeline.
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(FS_202102_019). Informed consent was obtained in writing

from the legal guardians of children participating in the study.

Assent was obtained from children capable of doing so. All

data were stored on a secure server and were fully

anonymised before exporting as a CSV file for analysis.
Study site

This study was conducted at Pelonomi Regional Hospital, a

regional referral hospital in Mangaung in the Free State, South
Frontiers in Pediatrics 03
Africa. Data was collected in the Paediatric Referral Area. This

area receives acute referrals for specialised paediatric

consultations for the Southern Free State region and all

patients hospitalised by the Paediatrics and Child Health

service are first assessed in this area. Patients are referred

from primary healthcare centres and district hospitals as well

as accepting referrals from the Emergency Department. The

Paediatrics and Child Health service is supported by a five-

bedded PICU within Pelonomi Hospital that provides life-

supporting therapies, including mechanical ventilation,

cardiovascular support (excluding extracorporeal life support)

and renal replacement therapy together with a full suite of

invasive and non-invasive monitoring.
Study population and sampling

Data collection was conducted from April 2021 to January

2022. The inclusion criteria were as follows:

1. Children under the age of 13 years

2. Unscheduled consultations

3. Duration of illness or injury less than 7 days (including

acute exacerbations of underlying chronic illness)

Children presenting dead on arrival and admitted directly

referred to the PICU were excluded as the model outcome

was already present. Children presenting for scheduled clinic

visits and elective procedures were also excluded from the study.

The minimum required size of the sample was estimated by

considering the total number of records required as well as the

number of events of the study outcome in relation to the

number of features that can be included in the model without

overfitting. The minimum sample size was determined by the

rule of thumb of 500 and n = 100 + 50i. n refers to sample

size and i to the number of features included in each model

(21). The minimum number of events required per feature

was set at 10 (22). For a model with ten features, a

development sample of at least 600 samples was required with

100 events.
Data collection

The process of determining which features (predictors or

independent variables) were to be collected was determined

by a domain knowledge elicitation process and described

previously (17). The included features are presented in

Supplementary Table S1.

Data collection was conducted prospectively at the bedside

by the primary physician of each patient during initial

assessment. Data collection made use of a REDCap® survey

completed by the treating physician on their smartphone.

Enrolled patients were monitored by the principal researcher
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until discharge from hospital or death and the outcome was

entered into the research record.
Data preprocessing

Data preprocessing was conducted before model

development, training and testing. The first step was the

removal of duplicate entries, followed by manual deletion of

impossible values, e.g., systolic blood pressures lower than

diastolic blood pressure. Anthropometric values, pulse rate,

respiratory rate, systolic blood pressure and mean blood

pressure (calculated from systolic and diastolic blood pressure)

were normalised to available age-related norms as Z-scores

and standard deviations and then converted to their absolute

(positive) values (23–26). Further preprocessing was

conducted within cross-validation to prevent information

leakage from the test folds into training folds. Missing values

were imputed by multiple imputation through chained

equations (MICE) (27).
Feature selection

Features were selected for inclusion in model training by

sequential forward floating feature selection, using an ANN

model as estimator (28) and Akaike Information Criterion

(AIC) (29). Selected features are presented in Table 1.

Features were considered by the researcher in terms of

ambiguity and clinical relevance as well as the degree of

correlation with the study outcome evaluated by correlation

matrix visualisation. For this reason, the HIV status variable

was removed from the set initially selected by sequential

feature selection.
TABLE 1 Lists of features selected for inclusion in candidate models.

Inclusive Features Parsimonious
Features

AIC Features

Respiratory rate Z-score Mean blood pressure Z-
score

Respiratory Rate

Peripheral oxygen
saturation

Capillary blood glucose Peripheral oxygen
saturation

Pulse rate Respiratory distress Capillary blood glucose

Mean blood pressure Z-
score

AVPU scale Level of consciousness

Capillary refill time Inability to feed Age

Capillary blood glucose Inability to feed

Respiratory distress

Weak pulses

Level of consciousness

Inability to feed
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Feature engineering

Features were further optimised for model training. Some

features represent clinical abnormalities above and below their

normal values or in positive and negative ranges. Respiratory

rate and mean blood pressure Z-scores were converted to their

absolute (positive) values. Capillary blood glucose was

separated into hyper- and hypoglycaemia features as

continuous values greater than a threshold of abnormality.

For level of consciousness and AVPU scale, because of the

small number of records in some categories, the feature was

reduced to a binary feature. Features were then scaled by

standard scaling. Engineered features are presented in

Table 2.
Class imbalance

In the presence of imbalanced data sets, models will tend to

be biased towards the majority class (30–33). For the neural

network models, class imbalance was addressed by employing

focal loss as the loss parameter for training, whereby a

focusing parameter(γ) reduces the loss from easy examples

and a weighting factor(α) for each class (33). For the

comparator models, sample weighting was employed to

address class imbalance. These parameters were tuned during

hyperparameter tuning.
Model development

Model development was conducted within 5-fold stratified

cross-validation. For each of the three feature-sets, an ANN

model, LR model and XGBoost model were developed. This

resulted in a total of 9 candidate models. The models were

developed in Python 3 on the Jupyter Notebooks
TABLE 2 Feature engineering.

Base Feature Engineered Feature

Respiratory rate Z-score Absolute respiratory rate Z-score

Mean blood pressure Z-score Absolute Mean blood pressure Z-score

Capillary blood glucose Hyperglycaemia:

Level of consciousness/AVPU <10 mmol/L: 0

>= 10 mmol/L: Capillary blood glucose – 10

Hypoglycaemia:

>3 mmol/L: 0

<= 3 mmol/L: 3 – capillary blood glucose

Alert:

Yes: 1

No: 0
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TABLE 3 Descriptive analysis of data Set.

Continuous Features

Unit Mean SD Missing

Age Months 30.61 39.65

Respiratory Rate Frequency 42.44 15.05 1

SPO2 % 96.19 7.00

Pulse Frequency 143.79 27.73

Systolic Blood Pressure mmHg 98.38 18.76 4

Diastolic Blood mmHg 60.86 15.74

Pienaar et al. 10.3389/fped.2022.1008840
environment (34). The following libraries were used during

the process: Pandas, Numpy, SciKit Learn, Mlxtend,

Tensorflow, XGBoost, Statsmodels and Matplotlib (28, 35–

41). An ANN, LR and XGBoost model was developed on

each feature-set for comparison. Hyperparameters of the

machine learning models were tuned by iteratively and by

randomized grid search. Models were trained in five-fold

stratified cross validation with a resultant 80:20 train-test

split on each fold. Models were all trained with the same

train-test splits.

Pressure

Capillary Refill Time Seconds 2.29 0.76 14

Weight kg 10.46 8.16 13

Height cm 78.07 27.03 39

Temperature °C 36.94 0.93 3

Glucose mmol/L 6.04 4.25 6

Categorical Features

Categories Freq. % Missing

Deep Breathing No 544 71.58 5
Yes 216 28.42

Weak Pulse No 713 93.20
Yes 52 6.80

Level of Consciousness Alert 666 87.06
Prostrate 89 11.63
Coma 10 1.31

AVPU Scale Alert 635 83.53
Verbal 56 7.97
Pain 61 7.32
Unresponsive 9 1.18

Unable to Feed No 568 74.25
Yes 197 25.75

Respiratory Distress No 519 67.84
Yes 246 32.16

Jaundice No 717 93.73
Yes 48 6.27

Seizures No 634 82.88
Yes 131 17.12

Respiratory Support Room Air 569 74.38
Nasal Cannula 185 24.18
Intubated 11 1.44

HIV Infection Unexposed 499 65.23
Exposed, uninfected 197 25.75
Infected 49 6.41
Untreated 10 1.31
Treatment <3 months 12 1.57
Treatment
>=3 months

24 3.14

Treatment
Interrupted

3 0.39

Unknown 20 2.61

Outcome Death 30 3.92
PICU admission 99 12.94
Combined outcome 116 15.16
Model performance measurement

Model performance was assessed as mean performance in

cross-validation. Discrimination was assessed in terms of the

receiver operating characteristic (ROC) curve and the area

under the curve (AUC) together with the precision-recall

curve (PRC) with its AUC. Where the ROC curve relates

recall or sensitivity to the false positive rate (1− specificity),

PRC relates precision (also called positive predictive value

[True Positives/(True Positives + False Positives)] and recall

[True Positives/(True Positives + False Negatives)] and

provides a model-wide evaluation of performance. The AUC

of the ROC and PRC allow comparisons between models. As

opposed to the ROC AUC, where the baseline value for

random classifiers is 0.5, the value for random classifiers in

the case of the PRC AUC is not fixed, but rather corresponds

to the proportion of positive class [Positive/(Positive +

Negative)]. The PRC AUC of a perfect classifier is 1.0 (32).

AUC 95% confidence intervals were calculated by a non-

parametric bootstrap procedure for both PRC and ROC (42).

Calibration was assessed by the means of the expected

calibration error(ECE) for each model (43) together with the

calibration hierarchy published by Van Calster et al. (44) –

flexible calibration curves were plotted and inspected, and the

slope and intercept of these curves were calculated.

The likely clinical utility of models was compared using

decision curve analysis. Decision curve analysis was first

described by Vickers and Elkin in 2006 (45). Decision curve

analysis evaluates the “net benefit” of a predictive model or

diagnostic test over a range of threshold probabilities and

compares it to baseline strategies of responding in all cases or

none. Net benefit is calculated as:

net benefit ¼ sensitivity � prevalence� 1� specificityð Þ
� 1� prevalenceð Þ � w

where w is the odds at the threshold probability (46).
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FIGURE 2

ANN model architectures – input layer = green, hidden layer = blue, output layer = red. A ReLu activation was used in the input and hidden layers and
a sigmoid activation function in the output layer. ANN1 – Inclusive Model. ANN2 – Parsimonious Model, ANN3 – AIC Model. Figure compiled using
ann_visualizer (51).

Pienaar et al. 10.3389/fped.2022.1008840
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TABLE 4 Tuned hyperparameters.

ANN1 ANN2 ANN3

Hidden layers 1 1 1

Hidden layer
activation function

ReLu ReLu ReLu

Hidden layer
neurons

20 10 13

Output layer
activation function

Sigmoid Sigmoid Sigmoid

Optimizer Adam (learning
rate = 0.001)

Adam (learning
rate = 0.001)

Adam (learning
rate = 0.001)

Loss Function Focal Loss (α =
0.25, γ = 0.85)

Focal Loss (α =
0.25, γ = 0.95)

Focal Loss (α =
0.25, γ = 0.85)

Initializer He Uniform He Uniform He Uniform

Batch Size 1 1 1

Epochs 15 15 15

XGB1 XGB2 XGB3

Target Weight 1.4 1.4 1.4

Learning Rate 0.08 0.08 0.08

Subsample 0.9 0.8 0.8

Estimators 50 50 50

Alpha 0.2 0.2 0.2

Gamma 1.5 2.5 3.5

TABLE 5 Logistic regression models.

Inclusive Model (LR1)

Coef. p-value CI

Intercept −2.23 <0.001 −2.50, −1.94

Respiratory Rate Z-score 0.02 0.85 −1.20, 2.42

Peripheral Pulse Oximetry −0.19 0.07 −0.39, −0.01

Pulse Rate −0.13 0.26 −0.37, 0.10

Mean Blood Pressure Z-Score 0.21 0.08 −0.02, 0.43

Capillary Refill Time 0.03 0.84 −0.24, 0.30

Glucose Hypoglycaemia 0.16 0.17 −0.07, 0.38
Hyperglycaemia 0.50 <0.001 0.28,0.74

Alert −0.40 <0.001 −0.62, −0.18

Weak Peripheral Pulse 0.12 0.30 −0.10, 0.36

Respiratory Distress 0.58 <0.001 0.33, 0.82

Unable to Feed 0.54 <0.001 0.30, 0.78

Parsimonious Model (LR2)

Coef. p-value CI

Intercept −2.22 <0.001 −2.50, −1.93

Mean Blood Pressure Z-Score 0.24 0.03 0.08,0.50

Glucose Hypoglycaemia 0.23 0.02 0.03, 0.43
Hyperglycaemia 0.51 0.51 0.28, 0.74

Alert −0.48 <0.001 −0.69, −0.26

Respiratory Distress 0.60 <0.001 0.38, 0.83

Unable to Feed 0.49 <0.001 0.25, 0.74

AIC Model (LR3)

Coef. p-value CI

Intercept −2.16 <0.001 −2.43, −1.89

Peripheral Pulse Oximetry −0.28 0.004 −0.48, −0.09

Glucose Hypoglycaemia 0.21 0.10 0.00, 0.41
Hyperglycaemia 0 <0.001 0.28, 0.71

Alert −0.27 <0.001 −0.62, −0.07

Unable to Feed 0.59 <0.001 0.31, 0.80

Respiratory Rate 0.47 <0.001 0.24, 0.70

Age 0.13 0.33 0.00, 0.41

Pienaar et al. 10.3389/fped.2022.1008840
Results

Data set

After duplicated records were removed, 765 records

remained. 116 (15.2%) patients had the study outcome of

death before discharge from hospital or admission to the

PICU. The descriptive analysis of the collected data, together

with the frequency of missing data is presented in Table 3.

Continuous features are represented as means with standard

deviations (SD) and categorical features are presented as

frequencies and percentages.
Models

The optimised ANN architectures for each of the candidate

neural networks are presented in Figure 2. All three models

were simple feed-forward perceptrons with a single hidden

layer. Batch normalisation was not used, in keeping with the

observation that it negatively influences model calibration

(47), and training epochs were set at 15 for all models. The

tuned hyperparameters for the machine learning models are

presented in Table 4.

The logistic regression models for each feature-set are

presented in Table 5.
Frontiers in Pediatrics 07
Main results

The ROC and PRC of the best performing models for each

method are presented in Figure 3. The best performing model

was ANN1, derived from the inclusive data set, with the

highest ROC AUC and PRC AUC. All models had ROC

AUCs of at least 0.8, indicating excellent discrimination (48).

All models had PRC AUCs above 0.53, above the threshold

for a random classifier (0.15). The curves for all models are

presented in Supplementary Figure S1.

Calibration was variable across the models. Model-wide

calibration was similar as assessed by ECE (see Table 6).
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FIGURE 3

ROC (A) and PR (B) curves – AUC= area under the curve, CI = 95% confidence interval.
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TABLE 6 Expected calibration error(ECE) and mean confidences.

ANN1 ANN2 ANN3

Score CI Score CI Score CI

ECE 0.03 (0.02,
0.04)

0.04 (0.03,
0.06)

0.05 (0.04,
0.07)

Outcome
Frequency

0.15

Mean
Confidence

0.15 0.15 0.14

XGB1 XGB2 XGB3

Score CI Score CI Score CI

ECE 0.04 (0.03,
0.05)

0.03 (0.03,
0.05)

0.04 (0.03,
0.05)

Outcome
Frequency

0.15

Mean
Confidence

0.18 0.18 0.18

LR1 LR2 LR3

Score CI Score CI Score CI

ECE 0.02 (0.01,
0.03)

0.02 (0.01,
0.03)

0.02 (0.01,
0.02)

Outcome
Frequency

0.15

Mean
Confidence

0.15 0.15 0.15

FIGURE 4

Normalised flexible calibration curve.

Pienaar et al. 10.3389/fped.2022.1008840
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Most models were weakly calibrated with calibration slopes

close to 1 and intercepts close to 0. Inspection of the flexible

calibration curves, however, suggests that models were

generally not close to the perfect calibration line (Figure 4).

The decision curve analysis is presented in Figure 5. The net

benefit of all models was significantly better than a strategy of

intervening in all or no patients, but overall the decision curve

analysis favoured ANN1 with a more optimal curve.
Discussion

This study aimed to develop an artificial neural network

model for the prediction of paediatric critical illness

(represented by a composite outcome of death before hospital

discharge or admission to the PICU) to address avoidable

severity of illness and mortality in South African children with

a critical illness. In practice, such a model could trigger a range

of responses, such as increasing urgency of healthcare worker

response, heightened vigilance, further triage and resuscitation,

early involvement of senior personnel in case management, or

early decision making in the disposition of patients to higher

levels of care or centralised hospitals. This engages directly with

the challenges identified by Hodkinson et al. in the South

African setting (3). The possible integration of such a predictive

model within a mobile health (mHealth) platform also offers
frontiersin.org
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FIGURE 5

Decision Curve Analysis: (A) Net benefit compared to threshold probability; (B) Interventions avoided compared to threshold probability.
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the potential to create real-time links between the point of care

and advanced clinical and digital infrastructure in centralised

facilities using simple devices in more resource-constrained

settings such as primary healthcare (49).

Methodologically, the development process differed from

other applied machine learning studies in this area, such as

Aczon et al. (14), Kim et al. (15) and Goto et al. (12), in that

these models made use of existing electronic data sets. The lack

of such existing data necessitated a dedicated prospective data

collection in this study. While the need for a prospective data

collection process increased the labour-intensiveness of the

study and demand for resources, it also provided an

opportunity to integrate clinical domain knowledge within a

novel process of documented literature search and Delphi
Frontiers in Pediatrics 10
procedure, which allowed tailoring of the data collection process

to the specific clinical setting and an explicit description of this

process (17). Applications for machine learning research of this

nature, invite close interdisciplinary collaboration that allows the

integration of machine learning knowledge with clinical domain

knowledge, not only of biomedicine but also of clinical context

in a fashion that enhances the relevance and applicability of

these new methods. The documentation of these processes can

be seen to be an important aspect of rigour when publishing

reports of such models and demands the investigation of this

agenda (50).

All developed models demonstrated satisfactory

discrimination. Calibration was variable, with most models

demonstrating weak calibration. Given the relative similarity of
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performance of candidate models, there is likely a significant

practical advantage in implementing a parsimonious model in

the clinical setting as this would simplify its application, with

relatively little loss of clinical benefit.

Decision curve analysis favours the ANN1 over other

models. Decision curve analysis also allows incorporation of

clinical priorities into the consideration of model

performance. In this application, a response such as

triggering urgent assessment and resuscitation, involving

senior clinical personnel, referral to a higher level of care, or

notification and consultation of centralised PICU and

emergency medicine services may be directed by such a

model. The practical implications and costs of such responses

must be weighed against the costs of failing to identify

critically ill children timeously. Decision curve analysis in

this case suggests that increasing the threshold probability

above 0.4 brings about diminished gains in terms of avoided

interventions. Given the dire consequences of failure to

identify critically ill children and the possible increased costs

of healthcare associated with avoidable severity of illness, it

may be pragmatic to consider a lower threshold probability

for activating such responses.

Given the favourable findings of model performance in

cross-validation, an internal validation study is now being

undertaken with a view to external validation thereafter.

Paediatric research of this nature is novel in the South

African setting, with one similar publication from this centre

to date (16). This study furthers the research agenda for

machine learning research and applied machine learning in

South African healthcare.
Conclusion

All 9 models demonstrated satisfactory discrimination

and weak calibration in cross-validation. Overall assessment,

including decision curve analysis, however, favours the

ANN1 over other models. Decision curve analysis provides

useful insights into how such a model may be implemented

at different probability thresholds considering clinical

preference and judgement. While ANN1 demonstrated the

best performance in this data, other data sets using fewer

features also provided adequate performance. This has

important practical implications for implementation in

clinical settings.

There is still a significant need to investigate machine

learning research and clinical application in South Africa

and other similar settings. In this study, a documented

domain knowledge elicitation process has been combined

with machine learning methods to develop models directed

at identifying critically ill children. Model performance will

be further evaluated in internal and external validation

studies.
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