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Abstract
Reduced-order modelling and low-dimensional surrogate models generated using machine
learning algorithms have been widely applied in high-dimensional dynamical systems to
improve the algorithmic efficiency. In this paper, we develop a system which combines
reduced-order surrogate models with a novel data assimilation (DA) technique used to incor-
porate real-time observations from different physical spaces. We make use of local smooth
surrogate functions which link the space of encoded system variables and the one of cur-
rent observations to perform variational DA with a low computational cost. The new system,
named generalised latent assimilation can benefit both the efficiency provided by the reduced-
order modelling and the accuracy of data assimilation. A theoretical analysis of the difference
between surrogate and original assimilation cost function is also provided in this paper where
an upper bound, depending on the size of the local training set, is given. The new approach
is tested on a high-dimensional (CFD) application of a two-phase liquid flow with non-linear
observation operators that current Latent Assimilation methods can not handle. Numerical
results demonstrate that the proposed assimilation approach can significantly improve the
reconstruction and prediction accuracy of the deep learning surrogate model which is nearly
1000 times faster than the CFD simulation.
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Abbreviations
NN Neural network
ML Machine learning
LA Latent assimilation
DA Data assimilation
PR Polynomial regression
AE Autoencoder
CAE Convolutional autoencoder
RNN Recurrent neural network
CNN Convolutional neural network
LSTM Long short-term memory
POD Proper orthogonal decomposition
SVD Singular value decomposition
ROM Reduced-order modelling
CFD Computational fluid dynamics
2D Two-dimensional
MSE Mean square error
LHS Latin hypercube sampling
DL Deep learning
GLA Generalised latent assimilation

List of Symbols
xt State vector in the full space at time t
x̃t Encoded state in the latent space at time t
x̃b,t Background (predicted) state in the latent space at time t
x̃a,t Analysis (assimilated) state in the latent space at time t
xtrue,t/x̃true,t True state vector in the full/latent space at time t
xrPOD, xrCAE, xrPOD AE Reconstructed state in the full space
yt Observation vector in the full space at time t
ỹt Encoded observation vector in the latent space at time t
Ex , Ey Encoder for state/observation vectors
Dx ,Dy Decoder for state/observation vectors
L̃X,q POD projection operator with truncation parameter q
Ht Transformation operator in the full physical space
H̃t Transformation operator linking different latent spaces
H̃p

t Approximated transformation operator in GLA
B̃t , R̃t Error covariance matrices in the latent space

1 Introduction

Spatial field prediction and reconstruction are crucial in the control of high-dimensional
physical systems for applications in CFD, geoscience or medical science. Running physics-
informed simulations is often computationally expensive, especially for high resolution and
multivariate systems. Over the past years, numerous studies have been devoted to speed up the
simulation/prediction of dynamical systems by constructing surrogate models via reduced-
order modelling (ROM) and machine learning (ML) techniques [1–4]. More precisely, the
simulation/experimental data are first compressed to a low-dimensional latent space through
an Autoencoder (AE). A recurrent neural network (RNN) is then used to train a reduced-
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order surrogate model for predicting the dynamics in the latent space using compressed
data. Once the ML surrogate model is computed, monitoring the model prediction with
limited sensor information constitutes another major challenge. Making use of a weighted
combination of simulation (also known as ‘background’) and observation data [5], data
assimilation (DA) methods are widely used in engineering applications for field prediction
or parameter identification [5, 6].

To incorporate real-time observations for correcting the prediction of the surrogate model,
the idea of Latent Assimilation (LA) was introduced [7–9] where DA is performed directly
in the reduced-order latent space. It has been shown in [7] that LA has a significant advantage
in terms of computational efficiency compared to classical full-space DAmethods. However,
current approaches of LA require the compression of the observation data into the same
latent space of the state variables, which is cumbersome for some applications where the
states and the observations are either compressed using different AEs or different physical
quantities. The latter is common practice in geoscience and CFD applications. For example,
the observation of wind speed/direction can be used to improve the quality of the initial
conditions of weather forecasts [10] and precipitation data can be used to correct the river
flow prediction in hydrology [11, 12].

TheDA is performed through a transformationoperator (usually denotedbyH)which links
the state variables to real-time observations. In real applications,H is often highly non-linear
[13]. In the case of LA, since the assimilation is carried out in the latent space, theH function
also includes several encoder, decoder functions, leading to extra difficulties in solving the
assimilation problem. Furthermore, if the state vector and the observation vector are not in
the same physical space, the latent spaces where the data are reduced might be different too.
In this case, the operator of the data assimilation inverse problem includes the twoML-based
functions used to compress the data (state vector and observations) in two different latent
spaces. Also, ML functions often involve many parameters and are difficult to train in real-
time. This means that performing variational LA, when the background simulation and the
observation vector are not in the same physical space, is cumbersome.

The idea of applying ML algorithms, namely recurrent neural networks in a low-
dimensional latent space for learning complex dynamical systems has been recently adapted
in a wide range of applications including CFD [2, 14], hydrology [12], nuclear science [15]
and air pollution quantification [3]. Both proper orthogonal decomposition (POD)-type (e.g.,
[2, 3, 12, 16]) and neural networks (NNs)-based autoencoding methods [1, 14] have been
used to construct the reduced-order latent spaces. The work of [3] is extended in [17] which
relies on an Adversarial RNN when the training dataset is insufficient. In terms of com-
pression accuracy, much effort has been devoted to compare the performance of different
auto-encoding approaches. The study of [18] shows a significant advantage of NNs-based
methods compared to classical POD-type approaches when dealing with highly non-linear
CFD applications. A novel ROMmethod, combining POD and NNs AE has been introduced
in the very recent work of [19]. The authors have demonstrated that one of the advantages of
this approach, for projection-based ROMs, is that it does not matter whether the high-fidelity
solution is on a structured or unstructured mesh. Other approaches applying convolutional
autoencoders to data on unstructuredmeshes include space-filling curves [20], spatially vary-
ing kernels [21] or graph-based networks [22].

Performing DA in the latent space in order to monitor surrogate models with real-time
observations has led to an increase in research interest recently. The approaches used in the
work of [3, 23] consist of learning assimilated results directly via a RNN to reduce forecasting
errors. With a similar idea, [24] proposes an iterative process of (DL) and DA, i.e., a NN is
retrained after each DA step (based on NN predictions and real observations) until conver-
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gence has been achieved. Collectively, the methods in [3, 23, 24] aim to enhance the system
prediction by including assimilated dynamics in the training data. However, the require-
ment to retrain the NN when new observation data become available leads to considerable
computational cost for online application of these methods.

In order to incorporate unseen real-time observation data efficiently, the recent works of
[7, 8, 25] introduce the concept of LA where an AE network is used to compress the state
variables and pre-processed observation data. The DA updating is performed in the reduced-
order latent space subsequently. Similarly, in [9], a Generative Adversarial Network (GAN)
was trained to produce time series data of POD coefficients, and this algorithm was extended
to assimilate data bymodifying the loss function and using the back-propagation algorithm of
the GAN. Again, this produces an efficient method as no additional simulations of the high-
fidelity model are required during the data assimilation process. Also, [26] proposes the use
of a recurrent Kalman network in the latent space tomake locally linear predictions. However,
as mentioned in the Introduction, an important bottleneck of the current LA techniques is that
the state and observation variables often can not be encoded into the same latent space for
complex physical systems. Performing online LA thus requires a smooth, explainable and
efficient-to-train local surrogate transformation function, leading to our idea of implementing
polynomial regression.

Local polynomial regression has been widely used for the prediction and calibration of
chaotic systems by providing smooth and easily interpretable surrogate functions. The work
of [27] usesmultivariate local polynomial fitting (M-MLP)which takes previous time steps in
a multivariate dynamical systems as input and forecasts the evolution of the state variables. It
is demonstrated numerically that the M-MLP outperforms a standard NN in the Lorenz twin
experiment. Recently this work has been developed by the same authors to a local polynomial
autoregressivemodel [28]which shows a good performance in one-step prediction.A detailed
numerical comparison between (PR) and NN has also been given in [29, 30]. Their results
show that PR with a polynomial degree lower than five, can achieve similar results to NNs
when fitting a variety of multivariate real functions. Using a similar idea, [31] applies the
local polynomial regression to provide not only the single mean forecast but an ensemble of
future time steps, which provides better forecasts with noisy data as proved in their paper
with geological applications.

Polynomial regression, or more generally, interpretable surrogate models such as Lasso
or a Decision Tree (DT), have been widely used to approximate sophisticated deep learning
algorithms to improve interpretability [32]. For example, [33] developed the model of Local
Interpretable Model-agnostic Explanations (LIME) for improving the interpretability of ML
classifiers. More precisely, they make use of a linear regression model to approximate a NNs
classifier where the loss function is defined as a fidelity-interpretability tradeoff. The training
set of the linear surrogate model is generated via samplings for local exploration of each ML
input. It is pointed out by both [32] and [33] that both the distribution and the range of local
samplings are crucial to the robustness of the local surrogate model. A small range may lead
to overfitting while the efficiency and the local fidelity can decrease when the sampling range
is too large.

A graph-based sampling strategy is proposed in the recent work of [34] to improve the
performance of LIME. The principle of LIME can be easily extended by using a polynomial
regression since our prime concern is not the interpretability but the smoothness of the local
surrogate model. On the other hand, some effort has been given to replace the computational
expensive ML models by polynomial functions which are much more efficient to evaluate.
The use of a data-driven polynomial chaos expansion (PCE) has been proposed recently
by [35] to perform ML regression tasks with a similar performance compared to DL and
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Fig. 1 Flowchart of the generalised latent assimilation with machine learning surrogate models

Support vector machine. Furthermore, PCE is able to deliver a probability density function
instead of a single mean prediction for the model output. A similar idea can be found in [36]
where the authors compare PCE- and NNs-based surrogate models for sensitivity analysis in
a real-world geophysical problem. The study of [37] aims to reduce the over-parametrization
of neural networks by using polynomial functions to fit a trained NN of the same inputs.
Their study includes sophisticatedNNs structures such as twodimensional (2D) convolutional
neural network (CNN), in the global space. Despite the fact that the classification accuracy of
the surrogate polynomial regression is slightly lower than the state-of-the-art DL approaches,
the former exhibits a significantly higher noise robustness on real datasets. In addition, the
theoretical study in [37] provides an upper bound of the PR learning error with respect to the
number of samplings. Another important advantage of PR compared to other ML models,
namely deep learning approaches, is the good performance for small training sets thanks
to the small number of tuning parameters required [35]. Moreover, unlike DL methods,
polynomial regression requires much less fine tuning of hyper-parameters which makes it
more appropriate for online training tasks.

In this study, we develop a novel LA algorithm scheme which generalises the current
LA framework [7] to heterogeneous latent spaces and non-linear transformation operators
while keeping the important advantage of LA in terms of low computational cost. We use
local surrogate functions to approximate the transformation operator from the latent space
of the state vector to the observation one. This approach can incorporate observation data
from different sources in one assimilation window as shown in Fig. 1. The latent transforma-
tion operator, which combines different encoder/decoder networks, and the state-observation
transformation mapping, H in the full physical space, is then used to solve the LA inverse
problem. A crucial requirement is ensuring both the approximation accuracy (for unseen
data) and the smoothness and interpretability of the surrogate function. For these reasons,
we used local PR which is sufficiently accurate and infinitely differentiable [38]. We provide
both a theoretical and numerical analysis (based on a high-dimensional CFD application)
of the proposed method. The surrogate models we build are based on AE and long short-
term memory (LSTM) technologies which have been shown to provide stable and accurate
solutions for ROMs [17].
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In summary, we make the following contributions in this study:

• We propose a novel Generalised Latent Assimilation (GLA) algorithm. Making use of a
local PR to open the blackbox of DL functions addresses one of the major bottlenecks
of current LA approaches for combining information sources (namely state vector and
observations) issued from different latent spaces. The main differences of the proposed
novel Generalised LA compared to the existing LA approaches are underlined in red in
Fig. 1.

• We provide a theoretical error upper-bound for the expectation of the cost function in LA
when using the local surrogate polynomial function instead of the original DL function.
This upper-bound, depending on the polynomial degree and the input dimension, is
obtained based on the general results of learning NNs functions via PR [37].

• The new approach proposed in this work can be easily applied/extended to other dynami-
cal systems. The repository of python code scripts, including ROM (POD, Convolutional
autoencoder (CAE) and POD AE), latent LSTM and Generalised LA can be found at c

The rest of this paper is organised as follows. In Sect. 2.1, several dimension reduction
methods, including POD, ML-based AE and POD AE are introduced. We then address
the RNN latent surrogate model in Sect. 2.2. The novel Generalised LA approach with
a theoretical analysis is described in Sect. 3 after the introduction of classical variational
DA. The CFD application, as a test case in this paper, is briefly explained in Sect. 4.1. The
numerical results of this study are split into two parts: Sect. 4.2 for latent surrogate modelling
(including ROM reconstruction and LSTM prediction), and Sect. 5 for Generalised LA with
heterogeneous latent spaces. Finally, concluding remarks are provided in Sect. 6.

2 Methodology: ROM and RNN

2.1 Reduced-Order-Modelling

Different ROM approaches are introduced in this section with the objective to build an
efficient rank reduction model with a low dimensional latent space and high accuracy of
reconstruction. Their performance is later compared in the oil-water flow application in
Sect. 4.2.1.

2.1.1 Proper Orthogonal Decomposition

The principle of proper orthogonal decomposition was introduced in the work of [39]. In
general, a set of nstate state snapshots, issued from one or several simulated or observed
dynamics, is represented by a matrix X ∈ R

[dim(x)×nstate] where each column of X represents
an individual state vector at a given time instant (also known as snapshots), i.e.

X[:, i] = xt=ti , ∀i ∈ {0, 1, . . . , nstate − 1}. (1)

Thus the ensembleX describes the evolution of the state vectors. Its empirical covarianceCx
can be written and decomposed as

Cx = 1

nstate − 1
XXT = LXDXLX

T (2)
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where the columns of LX are the principal components of X and DX is a diagonal matrix
collecting the associated eigenvalues {λX,i , i = 0, . . . , nstate − 1} in a decreasing order, i.e.,

DX =
⎡
⎢⎣

λX,0
. . .

λX,nstate−1

⎤
⎥⎦ . (3)

For a truncation parameter q ≤ nstate, one can construct a projection operator LX,q with
minimum loss of information by keeping the first q columns of LX. This projection operator
can also be obtained by a singular value decomposition (SVD) [40] which does not require
computing the full covariance matrix Cx. More precisely,

X = LX,q�VX,q (4)

where LX,q and VX,q are by definition with orthonormal columns. , i.e.,

LX,q
TLX,q = VX,q

TVX,q = I and ��T = Dq,X , (5)

where Dq,X is a diagonal matrix containing the first q eigenvalues of DX . For a single state
vector x, the compressed latent vector x̃ can be written as

x̃ = LX,q
T x, (6)

which is a reduced rank approximation to the full state vector x. The POD reconstruction
then reads,

xrPOD = LX,q x̃ = LX,qLX,q
T x. (7)

The compression rate ρx and the compression accuracy γx are defined respectively as:

γx =
q−1∑
i=0

λ2X,i

/ nstate−1∑
i=0

λ2X,i and ρx = q
/
nstate. (8)

2.1.2 Convolutional Auto-encoder

An auto-encoder is a special type of artificial NNs used to perform data compression via an
unsupervised learning of the identity map. The network structure of an AE can be split into
two parts: an encoder which maps the input vector to the latent space, and a decoder which
connects the latent space and the output. More precisely, the encoder Ex first encodes the
inputs x to latent vector x̃ = Ex(x), which is often of a much lower dimension (i.e., dim(x̃) �
dim(x)). A decoder Dx is then added to approximate the input vector x by computing a
reconstructed vector xrAE = Dx

(Ex(x)
)
. The encoder and the decoder are then trained jointly

with, for instance, the mean square error (MSE) as the loss function

J
(
θE , θD

) = 1

NAE
train

NAE
train∑
j=1

||x j − xrAE, j ||2 (9)

where θE , θD denote the parameters in the encoder and the decoder respectively, and NAE
train

represents the size of the AE training dataset.
Neural networks with additional layers or more sophisticated structures (e.g.,CNN or

RNN) can better recognise underlying spatial or temporal patterns, resulting in a more effec-
tive representation of complex data. Since we aim to obtain a static encoding (i.e., a single
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latent vector will not contain temporal information) at this stage, we make use of a CNN to
build our first AE. In general, a convolutional layer makes use of a local filter to compute
the values in the next layer. By shifting the input tensor by a convolutional window of fixed
size, we obtain the output of a convolutional layer [41]. Compared to standard AEwith dense
layers, the advantage of CAE is mainly two-folds: the reduction of the number of parameters
in the AE and the capability of capturing local information. Standard 2D CNNs are widely
applied in image processing problems while for unsqaured meshes, 1D CNN and Graph NNs
[21] are often prioritised due to the irregular structure. For more details about CNN and CAE,
interested readers are referred to [41].

2.1.3 POD AE

The combination of POD and AE (also known as POD AE or SVD AE) was first introduced
in the recent work of [19] for applications in nuclear engineering. The accuracy and efficiency
of this approach has also been assessed in urban pollution applications (e.g., [17]), especially
for problems with unstructured meshes. This method consists of two steps of dimension
reduction. We first apply the POD to obtain the full set of principle components of the
associated dynamical system. Using a part of the principle components as input, a dense
autoencoder with fully connected neural networks is then employed to further reduce the
problem dimension [17]. As an important note, including all of the PCs can involve some
redundancy and noise which affects the performance of the AE. To avoid such effect, a prior
POD truncation can be performed. In other words, both the input and ouput of this AE (with
Encoder E ′

x and Decoder D′
x) are the compressed latent vectors x̃λ associated with the POD

coefficients, i.e.,

x̃λ = Lq ′,X
T x, x̃ = E ′

x(x̃λ) while x̃rλ = D′
x(x̃), xrPOD AE = Lq ′,X x̃rλ (10)

where x̃rλ and xrPOD AE denote the reconstruction of the POD coefficients and the reconstruc-
tion of the full physical field respectively. The prior POD truncation parameter is denoted as
q ′. Since the POD considerably reduce the size of the input vectors in AE, applying fully con-
nectedNNs layers is computationally affordablewithout the concernof over-parameterization
as pointed out by [19]. Furthermore, the training time will be reduced in comparison to a
full CNN AE applied directly to the high-fidelity solutions. It is important to point out that
convolutional layers can also be used in the POD AE approach.

2.2 Surrogate Model Construction andMonitoring

Now that the ROM is performed, we aim to construct a lower-dimensional surrogate model
by understanding the evolution of the latent variables. For this purpose, we build a ML
surrogate model in the latent space, which is trained by encoded simulation data. With the
development of ML techniques, there is an increasing interest in using RNNs to learn the
dynamics of CFD or geoscience applications. Addressing temporal sequences as directed
graphs, RNNs manage to handle complex dynamical systems because of their ability of
capturing historical dependencies through feedback loops [42]. However, training standard
RNNs to solve problems with long-term temporal dependencies can be computationally
difficult because the gradient of the loss function may decrease exponentially with time. This
is also known as the vanishing gradient problem [43]. A specific type of RNN, the long-short-
term-memory (LSTM) network is developed to deal with long-term temporal dependencies.
In brief, different from standard RNN units, LSTM units CLSTM

t (here t denotes the time) are
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capable of maintaining information in memory of long periods with the help of a memory
cell. Three gates, each composed of a Sigmoid activation function σ(x) = (1/(1 + e−x )),
are used to decide when information is memorised or forgotten. The different gates and their
transition functions are listed herebelow:

• Forget gate decides whether the information is going to be forgotten for the current cell
unit. Here the recurrent variable ht−1 summarises all historical information and xt is the
current layer input,

f LST M
t = σ(W f · [ht−1, xt ] + b f ) (11)

• Input gate determines the new information which is going to be added with

C̃ LST M
t = tanh(WC · [ht−1, xt ] + bC ), (12)

it = σ(Wi · [ht−1, xt ] + bi ), (13)

while C̃ LST M
t is multiplied by weight coefficients, leading to an update of CLST M

t ,

CLST M
t = f LST M

t � CLST M
t−1 + it � C̃ LST M

t , (14)

where � denotes the Hadamard product of vectors and matrices.
• Output gate decides the recurrent state ht as a function of previous recurrent output ht−1

and the current layer input xt through a Sigmoid activation function, i.e.,

ot = σ(Wo[ht−1, xt ] + bo) (15)

ht = ot � tanh(CLST M
t ) (16)

Here W and b denote the weight and the bias coefficients for different gates respectively.
Once the LSTMNN is trained in the latent space, a low dimensional surrogatemodel can then
be established for predicting the evolution of the dynamical system with a low computational
cost.

3 Methodology: Generalised Latent Assimilation

Latent Assimilation techniques [7, 8] have been developed for the real-time monitoring of
latent surrogate models. Here we have developed a new generalised LA approach which can
incorporate observation data encoded in a latent space different from the one of state variables.
Since we aim to assimilate a dynamical system, the dependence on time t is introduced for
all state/observation variables in the rest of this paper.

3.1 Variational Assimilation Principle

Data assimilation algorithms aim to improve the prediction of some physical fields (or a set
of parameters) xt based on two sources of information: a prior forecast xb,t (also known
as the background state) and an observation vector yt . The true state which represents the
theoretical value of the current state is denoted by xtrue,t . In brief, Variational DA searches
for an optimal weight between xb,t and yt by minimising the cost function J defined as

Jt (x) = 1

2
(x − xb,t )TB−1

t (x − xb,t ) + 1

2
(yt − Ht (x))TR−1

t (yt − Ht (xt ))

= 1

2
||x − xb,t ||2B−1

t
+ 1

2
||yt − Ht (x)||2R−1

t
(17)
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whereHt denotes the state-observation mapping function, andBt andRt are the error covari-
ance matrices related to xb,t and yt , i.e.,

Bt = Cov(εb,t , εb,t ), Rt = Cov(εy,t , εy,t ), (18)

where

εb,t = xb,t − xtrue,t , εy,t = Ht (xtrue,t ) − yt . (19)

Since DA algorithms often deal with problems of large dimension, for the sake of simplicity,
prior errors εb, εy are often supposed to be centered Gaussian, i.e.,

εb,t ∼ N (0,Bt ), εy,t ∼ N (0,Rt ). (20)

Equation (17), also known as the three-dimensional variational (3D-Var) formulation, repre-
sents the general objective function of variational assimilation. Time-dependent variational
assimilation (so called 4D-Var) formulation can also be reformulated into Eq. (17) as long
as the error of the forward model is not considered. The minimisation point of Eq. (17) is
denoted as xa,t ,

xa,t = argmin
x

(
Jt (x)

)
, (21)

known as the analysis state. WhenHt is non-linear, approximate iterative methods [44] have
been widely used to solve variational data assimilation. To do so, one has to compute the
gradient ∇ J (x), which can be approximated by

∇ J (x) ≈ 2B−1
t (x − xb,t ) − 2HTR−1

t (yt − Ht (x)). (22)

In Eq. (22),H is obtained via a local linearization in the neighbourhood of the current vector
x. The minimization of 3D-Var is often performed via quasi-Newton methods, including for
instance BFGS approaches [45], where each iteration can be written as:

xk+1 = xk − L3D-Var
[
Hess(J )(xk)

]−1∇ J (xk) (23)

Here k is the current iteration, and L3D-Var > 0 is the learning rate of the descent algorithm,
and

Hess
(
J (x = [x0, . . . , xn−1])

)
i, j

= ∂2 J

∂xi∂x j
(24)

is the Hessian matrix related to the cost function J . The process of the iterative minimization
algorithm is summarised in Algorithm 1.

Variational assimilation algorithms could be applied to dynamical systems for improving
future prediction by using a transition operator Mtk→tk+1 (from time tk to tk+1), thus

xtk+1 = Mtk→tk+1(xtk ). (25)

In our study, theMtk→tk+1 operator is defined by a latent LSTM surrogate model. Typically
in DA, the current background state is often provided by the forecasting from the previous
time step, i.e.

xb,tk = Mtk−1→tk (xa,tk−1). (26)

A more accurate reanalysis xa,tk−1 leads to a more reliable forecasting xb,tk . However, in
practice, the perfect knowledge of M is often out of reach. Recent work of [24] makes
use of deep learning algorithms to improve the estimation of Mtk−1→tk . From Algorithm 1,
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Algorithm 1 Iterative minization of 3D-Var cost function via quasi-Newton methods
1: Inputs: xb,t , yt ,Bt ,Rt ,Ht
2: parameters: kmax , ε
3: x0 = xb, k = 0
4:
5: while k < kmax and ||∇ Jt (xk )|| > ε do
6: Jt (xk ) = 1

2 ||xk − xb,t ||2B−1
t

+ 1
2 ||yt − Ht (xk )||2R−1

t
7: linearize theHt operator in the neighbourhood of xk
8: ∇ Jt (xk ) ≈ 2B−1

t (xk − xb,t ) − 2HTR−1
t (yt − Ht (xk ))

9: compute Hess
(
Jt (xk )

)

10: xk+1 = xk − L3D-Var
[
Hess(J )xk

]−1∇ Jt (xk )
11: k = k+1
12: end while
output: xk

one observes that the linearization of H and the evaluation of Hess
(
J (xk)

)
is necessary for

variational assimilation. Since in this application, the latent variables and observations are
linked via NNs functions, the linearization and the partial derivative calculation are almost
infeasible due to:

• the huge number of parameters in the NNs combined with non-linear transformation
functions;

• the non-differentiability of NNs functions, for instance, when using activation functions
such as ReLu or LeakyReLu [46].

Therefore, we propose the use of a smooth local surrogate function to overcome these diffi-
culties.

3.2 Assimilation with Heterogeneous Latent Spaces

Latent Assimilation techniques are introduced in the very recent work of [7, 8] where the
DA is performed after having compressed the state and the observation data into the same
latent space. In other words, it is mandatory to have the transformation operator H̃t = I in
the latent space. To fulfil this condition, [7] preprocesses the observation data via a linear
interpolation to the full space of the state variables. However, as mentioned in their work, this
preprocessing will introduce additional errors, which may impact the assimilation accuracy.
More importantly, it is almost infeasible to compress x and y into a same latent space in a
wide range of DA applications, due to, for instance:

• partial observation: only a part of the state variables are observable, usually in certain
regions of the full state space;

• a complex H function in the full space: x and y are different physical quantities (e.g.,
temperature vs. wind in weather prediction, river flow vs. precipitation in hydrology).

A general latent transformation operator H̃t which links the state and the observation latent
spaces can be formulated as

H̃t = Ey ◦ Ht ◦ Dx, i.e., ỹ = Ey ◦ Ht ◦ Dx
(
x̃
) = H̃t

(
x̃
)
,

with ỹt = Ey(yt ), xt = Dx(x̃t ), (27)

where Ey,Dx denote the encoder of the observation vectors and the decoder of the state
variables respectively. A flowchart of the generalised LA is illustrated in Fig. 2. The cost
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Fig. 2 Flowchart of the LA with heterogeneous latent spaces

function J̃t of general LA problems reads

J̃t (x̃) = 1

2
(x̃ − x̃b,t )T B̃

−1
t (x̃ − x̃b,t ) + 1

2
(ỹt − H̃t (x̃)T R̃

−1
t (ỹt − H̃t (x̃)). (28)

x̃a,t = argmin
x̃

(
J̃t (x̃)

)
. (29)

The latent covariance matrices B̃t and R̃t which represent the error covariances in the
latent spaces, are defined as

B̃t = Cov(x̃b,t − x̃true,t , x̃b,t − x̃true,t ), (30)

R̃t = Cov(H̃t (x̃true,t ) − ỹt , H̃t (x̃true,t ) − ỹt ). (31)

In the rest of this paper, it is supposed that the latent error covariances B̃t = B̃, R̃t = R̃
are time invariant.

3.3 Polynomial Regression for Surrogate Transformation Function

Despite the fact that traditional variationalDAapproaches can dealwith complexH functions,
it is almost impossible to perform descent methods for Algorithm 1 because of the drawbacks
described at the endof Sect. 3.1.Our idea consists of building a local smooth anddifferentiable
surrogate function H̃p

t such that

H̃p
t (x̃st ) ≈ H̃t (x̃st ) for x̃st in a neighbourhood of x̃b,t . (32)

It is important to note that the computation of H̃p will also depend on the value of the latent
variable x̃. The approximate cost function can then be written as

J̃ p
t (x̃) = 1

2
(x̃ − x̃b,t )T B̃

−1
(x̃ − x̃b) + 1

2
(ỹt − H̃p

t (x̃))T R̃
−1

(ỹt − H̃p
t (x̃)). (33)

The way of computing the surrogate function makes crucial impact on both the accuracy
and the computational cost of DA since the H̃ function may vary a lot with time for chaotic
dynamical systems. From now, we denote H̃t and H̃p

t , the latent transformation function at
time t and the associated surrogate function. For time variant H̃t and xt , the computation
of H̃p

t must be performed online. Thus the choice of local surrogate modelling approach
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Fig. 3 Flowchart of the polynomial-based local surrogate model in latent assimilation

should be a tradeoff of approximation accuracy and computational time. As mentioned in the
Introduction of this paper, the idea of computing local surrogate model has been developed
in the field of interpretable AI. Linear regression (including Lasso, Ridge) and simple ML
models such as DT are prioritised for the sake of interpretability (e.g., [33]). In this study,
the local surrogate function is built via polynomial regression since our main criteria are
smoothness and differentiability. Compared to other approaches, employing PR in LA has
several advantages in terms of smoothness and computing efficiency.

To perform the local PR,we rely on local training datasets {x̃qb,t }q=1..ns generated randomly
around the current background state x̃b,t since the true state is out of reach. The sampling is
performed using Latin Hypercube Sampling (LHS) to efficiently cover the local neighbour-
hood homogeneously [47]. Other sampling techniques, such as Gaussian perturbation, can
also be considered regarding the prior knowledge of the dynamical system. We then fit the
output of the transformation operator by a local polynomial function,

H̃p
t = argmin

p∈P(dp)

⎛
⎝

ns∑
q=1

||p(xqb,t ) − Ht (x
q
b,t )||22

⎞
⎠

1/2

, (34)

where P(dp) represents the set of polynomial functions of degree dp . We then evaluate the
H̃t function to generate the learning targets of local PR as shown in Fig. 3. The pipeline of
the LA algorithms for dynamical models is summerised in Algorithm 2, where M̃ denotes
the forward operator in the latent space. In the context of this paper, M̃ is the latent LSTM
surrogate model. When using a sequence-to-sequence prediction, the forecasting model can
be accelerated in the sense that a sequence of future background states can be predicted
by one evaluation of LSTM. The PR degree, the sampling range and the sampling size are
denoted as dp, rs and ns respectively. These parameters affect considerably the performance
of Generalised LA. Their values should be chosen carefully as shown later in Sect. 5.2.

3.4 Theoretical Analysis of the Loss Function

The accuracy of the surrogate model with LA depends on a variety of different uncertainties,
including the ROM error, the RNN error, the observation error, the minimization error of DA,
and the approximation error of GLA. In this section, we focus on the latter which is induced
by the approximation using local polynomial functions in our new model.
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Algorithm 2 Generalised LA with local polynomial surrogate function

1: Inputs: x̃b,0, {yt },Ey , B̃, R̃, H̃,M̃
2: paramters: dp , rs , ns , T
3: x̃0 = x̃b, k = 0
4: for t = 0 to T do
5: x̃b,t = M̃(

x̃t−1, x̃t−2, x̃t−3, . . .
)

6: if yt is available then
7: ỹt = Ey(yt )
8: {x̃qb,t }q=1..ns = LHS{d p ,rs ,ns }(x̃b,t )
9: for q = 0 to ns do
10: ỹqt = H̃(x̃qb,t )
11: end for
12: H̃p

t = PRtrain
(
input:{x̃qb,t }, output:{ỹqt }, q = 1..ns

)

13: optional: {x̃qtest}q=1..ns = LHS Sampling{d p ,rs ,ns }(x̃b,t )
14:
15: optional: ε

p
r−rmse =

√
1
ns

∑ns
q

(||H̃t (x̃
q
test ) − H̃p

t (x̃qtest)||2
/||H̃t (x̃

q
test )||2

)

16: x̃a,t = argmin
x̃

(
1
2 ||x̃ − x̃b,t ||2

B̃
−1 + 1

2 ||ỹt − H̃p
t (x̃)||2

R̃
−1

)

17: x̃t = x̃a,t
18: else
19: x̃t = x̃b,t
20: end if
21: end for

Objective We aim to provide a theoretical upper bound for the expected absolute and
relative approximation error evaluated on the true state, i.e.,

E
(
J p
t (x̃true,t ) − Jt (x̃true,t )

)
and

E
(
J p
t (x̃true,t ) − Jt (x̃true,t )

)

E
(
Jt (x̃true,t ))

. (35)

Assumptions Following assumptions are made in this section,

1. Both background and observation prior errors follow a centred Gaussian distribution [5]
and the prior error covariances are perfectly specified, i.e.,

ε̃b,t = x̃b,t − x̃true,t ∼ N (0, B̃), ε̃y,t = ỹt − H̃t (x̃true,t ) ∼ (0, R̃). (36)

2. For simplicity, all the activation functions in the NNs are supposed to be Rectified Linear
Unit (ReLu).

Analysis In fact, the difference between Jt (x̃) and J p
t (x̃) for any point x̃ in the space can

be bounded as

J p
t (x̃) = 1

2

(
||x̃ − x̃b,t ||2

B̃
−1 + ||ỹt − H̃t (x̃) + H̃t (x̃) − H̃p

t (x̃)||2
R̃

−1

)
(37)

≤ 1

2

(
||x̃ − x̃b,t ||2

B̃
−1 + ||ỹt − H̃t (x̃)||2

R̃
−1 + ||H̃t (x̃) − H̃p

t (x̃)||2
R̃

−1

+ 2||ỹt − H̃t (x̃)||R̃−1 · ||H̃t (x̃) − H̃p
t (x̃)||

R̃
−1

)
(38)

≤ 1

2

(
Jt (x̃) + ||H̃t (x̃) − H̃p

t (x̃)||2
R̃

−1

)
+ ||ỹt − H̃t (x̃)||R̃−1 · ||H̃t (x̃) − H̃p

t (x̃)||
R̃

−1 .

(39)
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We are interested in the expectation value of the loss function evaluated on the true state, i.e.,
E(J p

t (x̃true,t )). Following Eq. (39),

E
(
J p
t (x̃true,t )

) ≤ E
(
Jt (x̃true,t )

) + 1

2
E

(||H̃t (x̃true,t ) − H̃p
t (x̃true,t )||2

R̃
−1

)

+ E
(||ỹt − H̃t (x̃true,t )||R̃−1 · ||H̃t (x̃true,t ) − H̃p

t (x̃true,t )||R̃−1
)
. (40)

Following Eq. (36) ,

√
B̃

−1
(x̃b,t − x̃true,t ) ∼ N (0, Idim(x̃)),

√
R̃

−1
(ỹt − H̃t (x̃true,t )) ∼ N (0, Idim(ỹ)). (41)

Here we remind that by definition, B̃ and R̃ are real constant symmetric positive definite

matrices thus

√
B̃

−1
and

√
R̃

−1
are well-defined.

E(||x̃true,t − x̃b,t ||2
B̃

−1) = E

(
(x̃true,t − x̃b,t )T B̃

−1
(x̃true,t − x̃b,t )

)
(42)

= E

((√
B̃

−1
(x̃b,t − x̃true,t )

)T ·
(√

B̃
−1

(x̃b,t − x̃true,t )
))

(43)

= E

(
||
√
B̃

−1
(x̃b,t − x̃true,t )||22

)
(44)

= dim(x̃) (45)

For the same reason, E(||ỹt − H̃t (x̃)||2
R̃

−1) = dim(ỹt ). One can then deduce

E
(
Jt (x̃true,t )

) = dim(x̃t ) + dim(ỹt ). (46)

A similar reasoning via Mahalanobis norm can be found in the work of [48].
Now we focus on the other terms of Eq. (40). In fact, the observation error ||ỹt −

H̃t (x̃true,t )||R̃−1 is only related to instrument noises or representation error if the encoder

error can be neglected. On the other hand, the approximation error ||H̃t (x̃) − H̃p
t (x̃)||

R̃
−1 is

only related to polynomial regression where the real observation vector y is not involved.
Therefore, we can suppose that ||ỹt −H̃t (x̃true,t )||R̃−1 is uncorrelated to ||H̃t (x̃)−H̃p

t (x̃)||
R̃

−1

. This assumption will be proved numerically in experiments. One can further deduce that,

E
(||ỹt − H̃t (x̃true,t )||R̃−1 · ||H̃t (x̃true,t ) − H̃p

t (x̃true,t )||R̃−1
)

= E
(||ỹt − H̃t (x̃true,t )||R̃−1

) · E(||H̃t (x̃true,t ) − H̃p
t (x̃true,t )||R̃−1

) = 0. (47)

Now we only need to bound the polynomial regression error. For this, we rely on the recent
theoretical results in the work of [37], which proves that for learning a teacher NNs via
polynomial regression,

N∗ = dO(L/ε∗)L for the ReLU activation function, (48)

where N∗ is the required number of samples in the training dataset, d is the input dimension,
L is the number of NNs layers and ε∗ is the relative target prediction error (i.e., in our

case ε =
(
||H̃t (x̃) − H̃p

t (x̃)||2/||H̃t (x̃)||2
)

≤ ε∗). Since we are looking for a bound of the
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regression error ε,

N∗ = d
(
c(L/ε∗)L

)
where c is a real constant (49)

⇔ logd N∗ = c(L/ε∗)L (50)

⇔
( logd N∗

c

)1/L = L/ε∗ (51)

⇔ ε ≤ ε∗ = L
( c

logd N∗
)1/L

(52)

⇔ ||H̃t (x̃) − H̃p
t (x̃)||2 ≤ L

( c

logd N∗
)1/L ||H̃t (x̃)||2. (53)

Now that we have a relative bound of the polynomial prediction error in the L2 norm, we
want to extend this boundary to the matrix norm ||.||

R̃
−1 . For this we use a general algebraic

result:

∀a ∈ R
dim(a), Cp,d ∈ R

dim(a)×dim(a) is a symmetric positive definite matrix then√
λmin||a||2 ≤ ||a||Cp,d ≤ √

λmax||a||2 (54)

where λmin, λmax represent the smallest and the largest eigenvalues of Cp,d respectively.

Since Cp,d is positive definite, 0 < λmin ≤ λmax. We denote 0 < λR̃dim(ỹ) ≤ · · · ≤ λR̃1

the eigenvalues of R̃. Thus the eigenvalues of R̃
−1

are 0 < 1/λR̃1 ≤ · · · ≤ 1/λR̃dim(ỹ).
Following the result of Eq. (54),

||H̃t (x̃)||2 ≤
√

λR̃1 ||H̃t (x̃)||R̃−1 and

||H̃t (x̃) − H̃p
t (x̃)||2 ≥

√
λR̃dim(ỹ)||H̃t (x̃) − H̃p

t (x̃)||
R̃

−1 . (55)

Therefore, we can deduce from Eq. (53) that

||H̃t (x̃) − H̃p
t (x̃)||

R̃
−1 ≤

√
λR̃1 /λR̃dim(ỹ)L

( c

logd N∗
)1/L ||H̃t (x̃)||R̃−1 . (56)

Thus,

E
(||H̃t (x̃true,t ) − H̃p

t (x̃true,t )||2
R̃

−1

)

= cond(R)L2
( c

logd N∗
)2/L

E
(||H̃t (x̃true,t )||2

R̃
−1), (57)

where cond(R) = λR̃1 /λR̃dim(ỹ) is the condition number of the R matrix. Combining
Eqs. (40), (47) and (57),

E
(
J p
t (x̃true,t )

)

≤ E
(
Jt (x̃true,t )

) + 1

2
cond(R)L2

( c

logd N∗
)2/L

E
(||H̃t (x̃true,t )||2

R̃
−1)

= dim(x̃t ) + dim(ỹt ) + 1

2
cond(R)L2

( c

logd N∗
)2/L

E
(||H̃t (x̃true,t )||2

R̃
−1). (58)

Thereforewe have an upper bound ofE
(
J p
t (x̃true,t )

)
andE

(
J p
t (x̃true,t )

)−E
(
Jt (x̃true,t )

)
which

doesn’t depend on the local polynomial surrogate model H̃p
t . An upper bound for the relative
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error can also be found, i.e.,

E
(
J p
t (x̃true,t ) − Jt (x̃true,t )

)

E
(
Jt (x̃true,t ))

≤
cond(R)L2

(
c

logd N∗
)2/L

E
(||H̃t (x̃true,t )||2

R̃
−1)

2(dim(x̃) + dim(ỹ))
. (59)

Furthermore, in the case where the target NNs is fixed and we have infinite local training
data for the polynomial surrogate model,

E
(
J p
t (x̃true,t ) − Jt (x̃true,t )

) N∗→+∞−−−−−→ 0. (60)

This result obtained is consistent with the Stone-Weierstrass theorem which reveals the fact
that every continuous function defined on a closed interval can be approximated as closely as
desired by a polynomial function [49]. The proof in this section is made by assuming all the
activation functions are ReLu in the NNs. This analysis can be extended to other activation
functions, such as sigmoid, based on the recent results in [37].

4 Results: ROM and RNN Approaches

In this section, we describe the test case of an oil-water two-phase flowCFD simulation, used
for numerical comparison of different ML surrogate models and LA approaches.

4.1 CFDModelling

Liquid-liquid two-phase flows are widely encountered in many industrial sectors, including
petroleum, chemical and biochemical engineering, food technology, pharmaceutics, and so
on. In crude-oil pipelines or oil recovery equipment, both dispersed and separated oil-water
flows can be observed, and the transition between these flow patterns can impact the operating
cost and safety. Therefore, fundamental understanding of the oil-water flow behavior in
pipelines has been tackled for a long termwith various efforts from theoretical, experimental,
and simulating perspectives. However, it is not fully solved yet due to the complexity of the
multiphase flow characteristics. Even for a very simple case of the separating process of oil
droplets in water in a horizontal pipeline, it is still challenging to predict the separation length
and layer height distribution. Although there are a lot of experimental data, the prediction
of such kind of flow regime transition is still poor due to the limited understanding of the
underlying physics.

The experiment in this study is conducted in the flow rig developed by [50]. The flow pipe
consists of a front and a back leg with equal length of 4 m and a uniform diameter of 26 mm
as shown in Fig. 4. The two legs are connected by a U-bend. Measurements are conducted
in the front leg only, and High-speed imaging, combined with Particle Image Velocimetry
and Laser Induced Fluorescence experiments are carried out to study the drop evolution,
velocity profiles and flow patterns. As shown in Table 2, the two test cases explored in this
work have initial mixture velocity of 0.52 m/s and 1.04 m/s respectively. The average oil
inlet volume fraction of both simulations is set to 30%. The first simulation (i.e., the one with
Um = 0.52 m/s) is used to train the surrogate model while the second one is used latter to test
the performance of ROMs. The simulations are validated against experimental data of the
concentration profiles and layer heights. The simulations adopt the same physical properties
and operating parameters as those in the experiment. The related parameters are shown in
Tables 1 and 2.
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Fig. 4 Dimension and parameters of the pipe and the two-phase flow

Table 1 Physical properties of the experimental system

Liquid Phase ρ (kg m−3) μ (Pa s) σ (N m−1)

Water Aqueous 998 0.89 × 10−3 ∼ 0.0329

Exxsol D140 Organic 828 5.5 × 10−3

Table 2 Operating parameters of the experiment

αo h+
C0 = hC0/D hO0

+ = hO0/D hP0
+ = hP0/D d320 (mm) Um(m s−1)

0.3 0.405 0.997 0.76 3.41 0.52

0.3 0.189 0.997 0.92 1.27 1.04

Fig. 5 CFD modelling of the two-phase flow

The CFD simulation (as illustrated in Fig. 5) aims to study the flow separation characteris-
tics. The two-phase flow of silicone oil and water in a pipe with a length of 4m and a diameter
of 26 mm is studied. Eulerian–Eulerian simulations are performed through the opensource
CFD platform of OpenFOAM (version 8.0), and population balance models [51] are used to
model the droplet size and coalescence behaviour. The governing equations of the Eulerian
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framework are given as below:

∂
∂t (αkρk) + ∇ · (αkρkUk) = 0, (61)

∂
∂t (αkρkUk) + ∇ · (αkρkUkUk) = −αk∇ p + ∇ · (αkτ k) + αkρk g + Mk, (62)

where the subscript of k represents the phases of water and oil respectively, and τ is the stress
tensor expressed as

τ k = μeff

[
∇Uk + (∇Uk)

T − 2

3
(∇ · Uk) I

]
. (63)

A structured mesh with 180000 nodes is generated by the utility of blockMesh, and the
volume concentration at the inlet boundary is prescribed by the patchmanipulation (the utility
of createPatch in OpenFOAM.). In all cases, the mixture k−ε model and wall functions are
used to model turbulence equations. In order to obtain a steady flow pattern, the flow time
is set to 10 s. The time step is 0.005 s for all the cases, which ensures the convergence at
the current mesh resolution. The running time is 40 h on a four-nodes parallel computing
mode. The computing nodes harness an Intel� Xeon(R) CPU E5-2620 (2.00 GHz, RAM 64
GB). Finally, snapshots of oil concentration αt and velocities Vx,t ,Vy,t ,Vz,t in the x, y, z
axes respectively (i.e., Uk,t = [Vx,t , Vy,t , Vz,t ]) can be generated from the CFD model to
describe the two-phase flow dynamics. In this study, we are interested in building a machine
learning surrogate model for predicting the evolution of αt along the test section. The training
of autoencoders and LSTM is based on 1000 snapshots (i.e., every 0.01 s) as described in
Sect. 4.2.

4.2 Numerical Results of Latent Surrogate Modelling

In this section, we compare different latent surrogate modelling techniques, including both
ROM and RNN approaches in the CFD application described in Sect. 4.1.

4.2.1 ROM Reconstruction

We first compare the performance of the different autoencoding approaches introduced in
Sect. 2.1. The single-trajectory simulation data of 1000 snapshots in total are split into a train-
ing (including validation) dataset with 80% of snapshots and a test dataset with the remaining
20% snapshots. Following the setup in [7], the data split is performed homogeneously where
the four snapshots between two consecutive test snapshots are used for training. In other
words, the test dataset contains the snapshots {α4,α9,α14, . . . ,α999}. Since we are dealing
with cylindrical meshes and the length of the pipe (4 m) is much larger than its diameter (26
mm), we decide to first flatten the snapshots to 1D vectors before auto-encoding as shown in
Fig. 6.

POD The distribution of the eigenvalues respectively for α, normalised Vx , normalised Vy

and normalisedVz is shown in Fig. 7 while the compression accuracy γ and rate ρ, as defined
in Eq. (8), are displayed in Table 3 for the truncation paramater q = 30. In this application,
POD exhibits a high compression accuracy with an extremely low compression rate on the
training data set issued from one CFD simulation. The performance on the test dataset will
be further examined in Sect. 4.2.1.

1D CAE Since the meshes have an unsquared structure and the pipe’s length is much larger
than the diameter, we decide to proceed with 1D CAE. As pointed out by [52], the ordering
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Fig. 6 Encoder–decoder modelling for the two-phase flow in the pipe

Fig. 7 Eigenvalues for α,Vx ,Vy and Vz on the training set, issued from one simulation

Table 3 Compression accuracy γ

and rate ρ with truncation
parameter q = 30 for α,Vx ,Vy
and Vz

Field α Vx Vy Vz

γ 99.76% 99.99% 99.81% 96.40%

ρ 1.66×10−5 1.66×10−5 1.66×10−5 1.66×10−5

of points is crucial in CNN algorithms especially for problems with non-square meshes.
Denoting Z = {z1, z2, ..znz } the ensemble of nodes in the mesh structure, their links can be
represented by the Adjacency matrix Az defined as

Az
i, j =

{
1 if zi is connected to z j
0 otherwise.

(64)

In this study, when we flatten the 3D meshes to a 1D vector, the corresponding adjacency
matrix contains many non-zero values outside the diagonal band as shown in Fig. 8a. In other
words, when applying 1D CNN, the edges Az

i, j represented by the non-zero values in the
adjacency matrix can not be included in the same convolutional window thus the information
of these links will be lost during the encoding. This is a common problem when dealing
with unstructured or non-square meshes [17, 19]. Much effort has been devoted to finding
the optimum ordering of sparse matrices for reducing the matrix band [53, 54]. In this work,
we make use of the Cuthill-McKee algorithm [55] based on ideas from graph theory, which
is proved to be efficient for dealing with symmetric sparse matrices. The adjacency matrix
for the reordered nodes is shown in Fig. 8b where all non-zero elements are included in the
diagonal band of width 10. We then perform the 1D CNN based on these reordered nodes.
The exact NNs structure of this 1D CAE can be found in Table 4.
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(a) (b)

Fig. 8 Adjacency matrices before (a) and after (b) mesh reordering

Table 4 NN structure of the CAE
with ordered meshes

Layer (type) Output shape Activation

Encoder

Input (180000, 1)

Conv 1D (8) (180000, 4) ReLu

Droppout (0.2) (180000, 4)

MaxPooling 1D (5) (36000, 4)

Conv 1D (8) (36000, 4) ReLu

Droppout (0.2) (36000, 4)

MaxPooling 1D (5) (7200, 4)

Conv 1D (8) (7200, 1) LeakyReLu (0.2)

AveragePooling 1D (5) (1440, 1)

Flatten 720

Dense (30) 30 ReLu

Decoder

Input 30

Flatten (720) 720

Conv 1D (8) (720, 1) ReLu

Upsampling (10) (7200, 1)

Conv 1D (8) (7200, 4) ReLu

Upsampling (5) (36000, 4)

Conv 1D (8) (36000, 4) LeakyReLu (0.2)

Upsampling (5) (180000, 1)
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Table 5 NN structure of the POD
AE

Layer (type) Output shape Activation

Encoder

Input 799

Dense (128) 128 LeakyReLu(0.3)

Dense (30) 30 LeakyReLu(0.3)

Decoder

Input 30

Dense 128 128 LeakyReLu(0.3)

Dense 799 799 LeakyReLu(0.3)

(a) (b) (c)

Fig. 9 Comparison of reconstruction errors of oil concentration α using different auto-encoder approaches.
Figures a, b are evaluated on the simulation data of Um = 0.52 (i.e., the first row of Table 2) while figure c is
evaluated on the simulation data of Um = 0.52 (i.e., the second row of Table 2)

POD AE We first apply the POD operators to obtain the full set of PCs of α,Vx ,Vy and Vz

respectively as described in Sect. 2.1.1. Since 20% of the snapshots are used for testing, we
obtain 799 PCs for each variable. Then the auto-encoding of α,Vx ,Vy andVz to compressed
latent variables α̃, Ṽx , Ṽy and Ṽz is performed individually with the same NNs structure as
displayed in Table 5. The training is very efficient for POD AE so much that it can be easily
performed on a laptop CPU in less than 15 min. On the other hand, 1D CAE training takes
several hours if training with the full set of snapshots.

Numerical comparison The relative mean square error (RMSE) for the oil concentration α

of different ROM reconstructions is illustrated in Fig. 9 on the CFD simulations. The first
simulation (Fig. 9a, b) includes both training (80%) and test (20%) data while the second
simulation (Fig. 9c) consists of purely unseen test data. In order to further inspect the ROM
accuracy against the dimension of the latent space (i.e., the truncation parameter), we show
in Fig. 9 the performance for both q = 5 (a) and q = 30 (b,c). It can be clearly observed that
the POD and 1D CAE (with reordered nodes) are out-performed by PODAE in terms of both
average accuracy and temporal robustness for the first CFD simulation data. For all ROM
approaches, a higher dimension of the latent space (5 −→ 30) can significantly enhance the
reconstruction. In the case of POD AE, the RMSE has been reduced from around 10% to
around 3%. We thus choose to use the POD AE approach for computing the latent surrogate
model in this work. As expected, the RMSE evaluated on the second simulation dataset is
larger than the first one. In Fig. 9c, the POD and POD AE show a better generalizability
compared to the 1D CAE, which confirms our choice of POD AE in this application.
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4.2.2 LSTM Surrogate Model

In this study, instead of classical many-to-one LSTM setting (e.g., [1, 7]), we make use of
a sequence-to-sequence LSTM structure to speed up the evaluation of the surrogate model.
More precisely, in lieu of a single time output, the LSTM predicts a time series of latent
variables with an internal connection according to the time steps. For more details about
sequence-to-sequence LSTM, interested readers are referred to the work of [56]. The recent
work of [57] shows that incremental LSTM which forecasts the difference between output
and input variables can significantly improve the accuracy and efficiency of the learning
procedure, especially for multiscale and multivariate systems. Therefore, we have adapted
the incremental LSTM in the sequence-to-sequence learning with

• LSTM input: uinput = [x̃t , x̃t+1, . . . , x̃t+linput−1],
• LSTMoutput:uoutput = [x̃t+linput−x̃t+linput−1, x̃t+linput+1−x̃t+linput , . . . , x̃t+linput+loutput−1−

x̃t+linput+loutput−2],
where linput and loutput denote the length of the input and the output sequences respectively. x̃t
represents the latent vector encoded via the PODAE approach at time step t . The training data
is generated from the simulation snapshots by shifting the beginning of the input sequence
as shown in Fig. 10. Similar to the setup of AEs, 80% of input and output sequences are used
as training data while the remaining 20% are divided into the test dataset. In this work, we
implement two LSTM models where the first one includes only the encoded concentration
(i.e., α̃) and the second one uses both concentration and velocity variables (i.e., α̃, Ṽx , Ṽy, Ṽz)
as illustrated in Fig. 10. We set lintput = loutput = 30 for the joint LSTM model (i.e., the one
including the velocity data), meaning that 33 iterative applications of LSTM are required to
predict the whole CFD model. On the other hand, the single concentration model is trained
using a LSTM 10to10 (i.e., lintput = loutput = 10) since the instability of the single model
doesn’t support long range predictions, which will be demonstrated later in this section. For
clarity, in the rest of this paper, single and joint models refer to

• Single model: LSTM 10to10 predictive model based on encoded concentration α̃

• Jointmodel: LSTM30to30 predictivemodel based on encoded concentration and velocity
variables α̃, Ṽx , Ṽy, Ṽz

The exact NNs structure of the joint LSTMmodel is shown in table 7 where the sequence-
to-sequence learning is performed. On the other hand, the single conceration model is
implemented thanks to the RepeatVector layer. The reconstructed principle components via
LSTM prediction (i.e.,D′

x(x̃
predict
t ) following the notation in Sect. 2.1.3) against compressed

ground truth (i.e., LT
x (x)) are shown in Figs. 11 and 12. As observed in Fig. 12, the latent

prediction is accurate until around 200 time steps (2 s) for all eigenvalues. However, a signif-
icant divergence can be observed just after t = 2 s for most principal components due to the
accumulation of prediction error. On the other hand, the joint LSTMmodel with similar NNs
structures exhibits a much more robust prediction performance despite that some temporal
gap can still be observed. The reconstructed prediction of oil concentration α at t = 7 s
(i.e. D′

x(x̃
predict
t=700 )), together with the CFD simulation of αt=700 are illustrated in Fig. 13. The

joint LSTMmodel predicts reasonably well the CFD simulation with a slight delay of the oil
dynamic while the prediction of the single LSTMmodel diverges at t = 7 s. These results are
coherent with our analysis of Figs. 11 and 12. In summary, although the objective here is to
build a surrogate model for simulating the oil concentration, it is demonstrated numerically
that more physics information can improve the prediction performance. The computational
time of both LSTM surrogate models (on a Laptop CPU) and CFD (with parallel computing
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Fig. 10 LSTM training in the latent space for a joint model of concentration and velocity

(b) (c)

(d) (e) (f)

(a)

Fig. 11 The LSTM prediction of reconstructed POD coefficients (i.e.,D′
x(x̃

predict
t )) with joint LSTM 30to30

surrogate model

mode) approaches for the entire simulation is illustrated in table 6. For both LSTM models
the online prediction takes place from t=1s (100th time step) until t = 10 s (1000th time step)
where the first 100 time steps of exact encoded latent variables are provided to ’warm up’ the
prediction system. From table 6, one observes that the online computational time of LSTM
surrogate models is around 1000 times shorter compared to the CFD. Table 6 also reveals
the fact that a longer prediction sequence in sequence-to-sequence LSTM can significantly
reduce the online prediction complexity. As shown in Table 6, the offline computation of
both approaches is also very fast thanks to the training efficiency of POD AE (Table 7).
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(b)(a) (c)

(d) (e) (f)

Fig. 12 The LSTM prediction of reconstructed POD coefficients (i.e.,D′
x(x̃

predict
t )) with single LSTM 10to10

surrogate model

Table 6 Computational time of
LSTM surrogate models and
CFD modelling

LSTM 10to10 (s) LSTM 30to30(s) CFD

Offline time 1426 1597

Online time 175 124 ≈ 40 h

Table 7 LSTM structure in PODAE latent space for the single model (only concentration) and the joint model
(concentration and velocity)

Layer (type) Output shape single model Output shape joint model Activation

Input (30, 30) (30, 120)

LSTM 50 200 Sigmoid

RepeatVector (30, 50) (30, 200)

LSTM (30, 100) (30, 200) ReLu

Dense (30, 200) (30, 200) ReLu

Time distributed (30, 30) (30, 120) LeakyReLu

5 Results: GLA Approach

In this section, we test the performance of the novel generalised latent assimilation algorithm
on the CFD test case of oil-water two-phase flow. The strength of the new approach proposed
in this paper compared to existing LA methods, is that DA can be performed with heteroge-
neous latent spaces for state and observation data. In this section, we evaluate the algorithm
performance using randomly generated observation function H in the full space.
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(a) (b) (c)

Fig. 13 The original CFD simulation against LSTM predictions at t = 7 s

5.1 Non-linear Observation Operators

In order to evaluate the performance of the novel approach, we work with different syn-
thetically generated non-linear observation vectors for LA. Since we would like to remain
as general as possible, we prefer not to set a particular form of the observation operator,
which could promote some space-filling properties. For this purpose, we decide to model
the observation operator with a random matrix H acting as a binomial selection operator.
The full-space transformation operatorH consists of the selection operatorH and a marginal
non-linear function fH. Each observation will be constructed as the sum of a few true state
variables randomly collected over the subdomain. In order to do so, we introduce the notation
for a subset sample

{
x∗
t (i)

}
i=1...nsub

randomly but homogeneously chosen (with replacement)
with probability P among the available data set {xt (k)}k=1...n=180000. The evaluations of the
fH function on the subsets (i.e., fH(x∗

t )) are summed up and the process is re-iterated
m ∈ {10000, 30000} times in order to construct the observations:

yt ( j) =
n j∑
i=1

fH(x∗
t (i)), for j = 1, . . . ,m, (65)

where the size n j (invariant with time) of the collected sample used for each j th observation
data point yt ( j) is random and by construction follows a binomial distribution B(n, P). As
for the entire observation vector,

yt =

⎡
⎢⎢⎢⎣

yt (0)
yt (1)

...

yt (m − 1)

⎤
⎥⎥⎥⎦ = H(xt ) = H fH(xt ) =

⎡
⎢⎣

H0,0, . . .H0,n−1
...

Hm−1,0, . . .Hm−1,n−1

⎤
⎥⎦

⎡
⎢⎢⎢⎣

fH(xt (0))
fH(xt (1))

...

fH(xt (n − 1))

⎤
⎥⎥⎥⎦

with Hi, j =
{

0 with probability 1 − P
1 with probability P

. (66)

Using randomly generated selection operator for generating observation values is commonly
used for testing the performance of DA algorithms (e.g., [58, 59]). In this work we choose a
sparse representation with P = 0.1%. OnceH is randomly chosen, it is kept fixed for all the
numerical experiments in this work. Two marginal non-linear functions fH are employed in
this study:

• quadratic function: fH(x) = x2

• reciprocal function: fH(x) = 1/(x + 0.5).

After the observation data is generated based on Eq. (66), we apply the POD AE approach to
build an observation latent space of dimension 30with associated encoder Ey and decoderDy .
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(a) (b)

Fig. 14 Logarithm of RMSE in the test dataset (evaluated on 1000 points) and the training time in seconds

In this application, the dimension of the observation latent space is chosen as 30 arbitrarily.
In general, there is no need to keep the same dimension of the latent state space and the latent
observation space. Following Eqs. (27) and (66), the state variables x̃t and the observations
ỹt in LA can be linked as:

ỹt = H̃(x̃t ) = Ey ◦ H ◦ fH ◦ Dx(x̃t ). (67)

5.2 Numerical Validation and Parameter Tuning

Local polynomial surrogate functions are then used to approximate the transformation oper-
ator H̃ = Ey ◦ H ◦ fH ◦ Dx in Latent Assimilation. In order to investigate the PR accuracy
and perform the hyper-parameters tuning, we start by computing the local surrogate func-
tion at a fixed time step t = 3 s with (x̃300, ỹ300). Two LHS ensembles {x̃qtrain}q=1..1000

and {x̃qtest}q=1..1000, each of 1000 sample vectors, are generated for training and validating
local PR respectively. As mentioned previously in Sect. 3.2, the polynomial degree d p and
the LHS range rs are two important hyper-parameters which impacts the surrogate func-
tion accuracy. rs also determines the expectation of the range of prediction errors in the GLA
algorithm. For hyper-parameters tuning, we evaluate the root-mean-square-error (RMSE) (of
{x̃qtest}q=1..1000) and the computational time of local PR with a range of different parameters,
i.e.,

{x̃qtrain}q=1..1000/{x̃qtest}q=1..1000 = LHS Sampling{d p,rs ,1000}(x̃t=300)

for d p ∈ {1, . . . , 5} and rs ∈ {10%, . . . , 90%}. (68)

The results are presented in Fig. 14 with a logarithmic scale for both RMSE and com-
putational time (in seconds). Here the quadratic function is chosen as the transformation
operator to perform the tests. Figure 14a reveals that there is a steady rise of RMSE against
LHS rangers . This fact shows the difficulties of PR predictions when the input vector is
far from the LHS center (i.e., x̃300) due to the high non-linearity of NNs functions. The PR
performance for d p = 2, 3, 4 on the test dataset {x̃qtest}q=1..1000 is more robust compared to
linear predictions (i.e., d p = 1), especially when the LHS range grows. However, a phe-
nomenon of overfitting can be noticed when d p ≥ 5 where an increase of prediction error
is noticed. One has to make a tradeoff between prediction accuracy and application range
when choosing the value of rs . In general, PR presents a good performance with a relative
low RMSE (with an upper bound of e3 = 20.08) given that ||x̃t=300||2 = 113.07. As for the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 15 Latent variable prediction results in the training (a–d) and test (e–l) datasets against the true values
with the polynomial degree d p = 4. The LHS sampling range is rs = 30% for a–h and rs = 60% for i–l

computational time of a local PR, it stays in the same order of magnitude for different set
of parameters (from e5.2 ≈ 181 s to e5.5 ≈ 244 s) where the cases of d p = 1, 2, 3, 4 are
extremely close. Considering the numerical results shown in Fig. 14 and further experiments
in Latent Assimilation, we fix the parameters as d p = 4 and rs = 0.3 in this application. The
PR prediction results against the compressed truth in the latent space are shown in Fig. 15
for 4 different latent observations. What can be clearly seen is that the local PR can fit very
well the H̃ function in the training dataset (Fig. 15a–d) while also provides a good prediction
of unseen data (Fig. 15e–h), which is consistent with our conclusion in Fig. 14. When the
sampling range increases in the test dataset (Fig. 15i–l), it is clear that the prediction start
to perform less well. This represents the case where we have under-estimated the prediction
error by 100% (i.e., rs = 30% for training and rs = 60% for testing). The required number
of samples (i.e., ns = 1000) is obtained by offline experiments performed at (x300, y300). For
different polynomial degrees dp ∈ {1, 2, 3, 4, 5}, no significant improvement in terms of pre-
diction accuracy on the test dataset can be observed when the number of samples ns > 1000.
We have also performed other experiments at different time steps (other than t = 3 s) and
obtained similar results qualitatively.

5.3 Generalised Latent Assimilation

In this section, we illustrate the experimental results of performing variational Generalised
LA with the POD AE reduced-order-modelling and the LSTM surrogate model. The loss
functions in the variational methods are computed thanks to the local polynomial surro-
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gate functions. The obtained results are compared with CFD simulations both in the low
dimensional basis and the full physical space.

5.3.1 GLA with a Quadratic Operator Function

Following the setup in Sect. 5.1, the full-space observation operator is computed with a
binomial random selection matrixH and quadratic marginal equation fH(x) = x2 as shown
in Eq. (66). Separate POD AEs (i.e., Ey and Dy) are trained for encoding the observation
data. The prediction of the LSTM surrogate model start at t = 3 s, i.e., the 300th time
step. Since the prediction of the joint model is made using a 30 to 30 LSTM, the LA takes
place every 1.5 s starting from 5.7 s for 30 consecutive time steps each time. In other words,
the LA takes place at time steps 570 to 599, 720 to 749 and 870 to 899, resulting in 90
steps of assimilations among 700 prediction steps. As for the 10to10 single concentration
LSTMmodel, since the prediction accuracy is relatively mediocre as shown in Fig. 12, more
assimilation steps are required. In this case the LA takes place every 0.6 s starting from 5 s
for 10 consecutive time steps each time, leading to 180 in total. For the minimization of the
cost function in the variational LA (Eq. (33)), Algorithm 2 is performed with the maximum
number of iterations kmax = 50 and the tolerance ε = 0.05 in each assimilation window.
Identifying the error covariances in the latent space is challenging. Current LAmethods either
make use of diagonal matrices [7, 60] or perform ensemble-type [8, 25, 61] data assimilation
to estimate B̃ and R̃. The latter can be computationally difficult for complex and highly non-
linear transformation functions. Thus in this test case, identity matrices are chosen as latent
covariance matrices. To increase the importance of observation data, the error covariance
matrices in Algorithm 1 are fixed as:

B̃ = I30 and R̃ = 0.1 × I30, (69)

where I30 denotes the identity matrix of dimension 30. In this particular test, no artificial
error has been added to synthetic observations. However, encoding observation data from the
full space to the latent space will inevitably create compression errors. These noises can be
included in the DA process through the modelling of the R matrix [62, 63].

The Latent assimilation of reconstructed principle components (i.e., D′
x(x̃

predict
t )) against

the compressed ground truth is illustrated in Figs. 16 and 17 for the joint and single LSTM
surrogate model respectively. The red curves include both prediction and assimilation results
starting at t = 3 s (i.e., 300th time step). What can be clearly observed is that, compared to
pure LSTMpredictions shown in Figs. 11 and 12, themismatch between predicted curves and
the ground truth (CFD simulation) can be considerably reduced by the novel generalised LA
technique, especially for the single LSTM model. As for the joint LSTM surrogate model
(Fig. 16), the improvement is significant for D′

x(x̃
predict
t )4,D′

x(x̃
predict
t )5, and D′

x(x̃
predict
t )6.

These results show that the novel approach can well incorporate real-time observation data
with partial and non-linear transformation operators that the state-of-the-art LA can not
handle. Prediction/assimilation mismatch in the full physical space will be discussed later in
Sect. 5.3.3.

5.3.2 GLA with a Reciprocal Operator Function

Here we keep the same assimilation setup as in Sect. 5.3.1 in terms of assimilation accuracy
and error covariances specification. Instead of a quadratic function, the observation data are
generated using the reciprocal function fH(x) = 1/(x + 0.5) in the full space as described

123



   11 Page 30 of 37 Journal of Scientific Computing            (2023) 94:11 

(a) (b) (c)

(d) (e) (f)

Fig. 16 The LA of reconstructed POD coefficients (i.e., D′
x(x̃

predict
t )) with joint LSTM 30to30 surrogate

model and quadratic observation function. Results of the same experiment without GLA is shown in Fig. 11

(a) (b) (c)

(d) (e) (f)

Fig. 17 The LA of reconstructed POD coefficients (i.e., D′
x(x̃

predict
t )) with single LSTM 10to10 surrogate

model and quadratic observation function. Results of the same experiment without GLA is shown in Fig. 12

123



Journal of Scientific Computing            (2023) 94:11 Page 31 of 37    11 

(a) (b) (c)

(d) (e) (f)

Fig. 18 The LA of reconstructed POD coefficients (i.e., D′
x(x̃

predict
t )) with joint LSTM 30to30 surrogate

model and reciprocal observation function

in Sect. 5.1. Therefore, new autoencoders are trained to compress the observation data for
αt ,Vx,t ,Vy,t ,Vz,t to latent spaces of dimension 30. The results of predicted/assimilated

POD coefficientsD′
x(x̃

predict
t ) are shown in Figs. 18 and 19. Similar conclusion can be drawn

as in Sect. 5.3.1, that is, the generalised LA approach manages to correctly update the LSTM
predictions (for both joint and single models) on a consistent basis. Some non-physical
oscillatory behaviours can be observed in Figs. 16, 17, 18 and 19. This is due to the application
of LA which modified the dynamics in the latent space. Comparing the assimilated curves
using quadratic and reciprocal observation functions, the latter is slightly more chaotic due
to the fact that reciprocal functions, when combined with DL encoder–decoders (as shown
in Fig. 3) can be more difficult to learn for local polynomial surrogate functions.

5.3.3 Prediction Error in the Latent and the Full Space

In this section, we illustrate the evolution of the global prediction/assimilation errors and the
forecasting of the global physical field based on the results obtained in Sects. 5.3.1 and 5.3.2.
The relative L2 error in the space of the principle components and the full space of the
concentration, i.e.,

||LT
x αt − D′

x(x̃
predict
t )||2

||LT
x αt ||2

and
||αt − LxD′

x(x̃
predict
t )||2

||αt ||2 , (70)

for both joint and single models is shown in Fig. 20. The evolution of the relative error in the
global space is consistent with our analysis in Figs. 16, 17, 18 and 19 for decoded POD coef-
ficients. The LA with quadratic (in red) and reciprocal (in green) observation operators can
significantly reduce the relative error as compared to the original LSTMmodel (in blue).More
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(a) (b) (c)

(d) (e) (f)

Fig. 19 The LA of reconstructed POD coefficients (i.e., D′
x(x̃

predict
t )) with single LSTM 10to10 surrogate

model and reciprocal observation function

importantly, the DA does not only impact the estimation of current time steps, it improves
also future predictions after assimilation, thus demonstrating the stability of the proposed
approach. The prediction error in the latent space and the full physical space share very sim-
ilar shapes for both single and joint models, showing that the ROM reconstruction errors are
dominated by the LSTM prediction error. The reconstructed model prediction/assimilation
in the full space at t = 7 s is shown in Fig. 21. Compared to Fig. 13, the prediction of the
single LSTMmodel (Fig. 21a, b) can be greatly improved with an output much more realistic
and closer to the CFD simulation (Fig. 13a). As for the joint model, the initial delay of the
oil dynamic can also be well corrected thanks to the variational LA approach despite some
noises can still be observed. In summary, the novel LA technique with local polynomial
surrogate function manages to improve the current assimilation reconstruction, and more
importantly future predictions of latent LSTM. The averaged computational time of GLA on
a laptop CPU for one time step is presented in Table 8. Little difference can be found between
quadratic and reciprocal marginal functions. The optimization of Eq. (33) is implemented
using the ADAO [64] package where the maximum number of iterations and the stopping
tolerance of the BFGS algorithm are fixed as 50 and 0.01, respectively.

6 Conclusion and FutureWork

Performing DAwith simulation and observation data encoded in heterogeneous latent spaces
is an important challenge since background and observation quantities are often different in
realDAscenarios.On the other hand, it is extremely difficult, if not infeasible, to apply directly
classical variational DA approaches due to the complexity and non-smoothness of the NNs
function which links different latent spaces. In this paper, we introduce a novel algorithm,
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(a) (b)

(c) (d)

Fig. 20 Prediction relative error in the space of the principle component and the full space

named generalised Latent Assimilation, which makes use of a polynomial surrogate function
to approximate the NNs transformation operator in a neighbourhood of the background
state. Variational DA can then be performed by computing an observation loss using this
local polynomial function. This new method promotes a much more flexible use of LA with
machine learning surrogate models. A theoretical analysis is also given in the present study,
where an upper bound of the approximation error of the DA cost function (evaluated on the
true state) is specified. Future work can further focus on the minimization error related to the
surrogate loss function in GLA. The numerical tests in the high-dimensional CFD application
show that the proposed approach can ensure both the efficiency of the ROMs and the accuracy
of the assimilation/prediction. In this study, the training and the validation for both ROM
and LSTM are performed using a single CFD simulation with well separated training and
testing datasets. Future work will investigate to build robust models for both autoencding
and machine learning prediction using multiple CFD simulations as training data. However,
building such training dataset can be time-consuming due to the complexity of the CFD
code. The local polynomial surroagate function is computed relying on LHS samplings in
this work. Other sampling strategies, such as Gaussian perturbations, can also be considered.
Representing model or observation error (originally in the full space) in the latent space is
challenging due to the non-linearity of ROMs. Future work can also be considered to enhance
the error covariance specification in the latent space by investigating, for instance, uncertainty
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(a) (b)

(c) (d)

Fig. 21 Prediction in the full CFD space after LA with quadratic (a, c) and reciprocal (b, d) observation
functions

Table 8 Averaged computational
time of GLA for one time step

Single model Joint model
Quadratic Reciprocal Quadratic Reciprocal

57.62s 61.42s 51.33s 56.10s

propagation from the full physical space to the latent space, posterior error covariance tuning
(e.g., [58, 65, 66]) or Ensemble-type [67] DA approaches.
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