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Abstract: We present a model that calculates optical fields reflected and transmitted by a
Fabry-Perot (FP) etalon composed of interfaces with non-planar surface topography. The model
uses the Rayleigh-Rice theory, which predicts the fields reflected and transmitted by a single
interface, to account for the non-planar surface topography of each interface. The Rayleigh-Rice
theory is evaluated iteratively to account for all round trips that light can take within the FP etalon.
The model predictions can then be used to compute Interferometer transfer function (ITF)s, by
performing wavelength or angle resolved simulations enabling predictions of the bandwidth, peak
transmissivity, and sensitivity of FP etalons. The model was validated against the Pseudospectral
time-domain (PSTD) method, which resulted in good agreement. Since the model accuracy is
expected to reduce as the Root mean square (RMS) of the topographic map increases, the error in
the model’s predictions was studied as a function of topographic map RMS. Finally, application
of the model was exemplified by predicting the impact of roughness on ITFs and computing the
changes in FP etalon transmissivity as cavity thickness is modulated by an ultrasonic wave.
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1. Introduction

A Fabry-Perot (FP) etalon is an optical cavity formed between two mirrors [1] and is mainly
used as a wavelength filter [2] or as a sensor [3,4]. If designed with a high Q-factor (i.e. high
mirror reflectivity), an FP etalon is reflective throughout most of its spectral range and becomes
transparent in a very narrow range where the optical cavity thickness closely matches an integer
number of wavelengths. Under this condition, light is in resonance inside the cavity and the
wavelength is typically called the resonance wavelength. The rapid change in transmissivity
and reflectivity associated with this resonance is commonly used for sensing by designing FP
etalons with a cavity thickness modulated by a perturbation (such as an ultrasonic wave). This
cavity thickness modulation leads to a shift in the resonance wavelength, thus modulating the
reflectivity and transmissivity near the original resonance wavelength [5]. The performance
of FP etalons is generally characterised by a wavelength resolved reflectivity or transmissivity
measurement, typically called an Interferometer transfer function (ITF). The ITF predicts, for
example, the transmission spectral bandwidth, the peak transmissivity and the sensitivity (which
is related to the maximum ITF derivative) of an FP etalon.

FP etalons are usually modelled as planar layered structures, i.e., as a succession of planar
and parallel layers. Assuming plane wave illumination, FP etalons are simulated using the Airy
function which predicts the reflectivity and transmissivity of the FP etalon [6]. However, the
Airy function is not valid if the FP etalon is illuminated by a focused beam. In such cases, the
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angular Airy function can be used to compute the reflected and transmitted beams assuming an
arbitrary illumination beam [7–9]. Both models simulate the FP etalon solely based on its mirror
reflectivities, optical cavity thickness and illumination beam. Alternatively, FP etalons can be
simulated based on the dielectric stack forming the FP etalon [10]. In this case, the simulation is
performed based on the refractive index and thickness of all layers forming the FP etalon. The
latter FP etalon description simulates its physical structure, and thus all optical effects, including
the changes in the light phase and absorption, are intrinsically accounted for in the simulations
[10].

However, treating the FP etalon as a planar layered structure does not allow for the modelling
of small variations in the surface topography of the interfaces between layers, which are often
present in FP etalons. For example, when used for sensing, the cavity thickness is typically locally
modulated up to a few nanometers by a perturbation, such as an ultrasonic wave or temperature
change [11]. Including the modulation of the interfaces’ surface topography by the perturbation
is important to understand the relationship between the optical beam spot size and the sensing
element size. This relation depends on complex physical phenomena including beam divergence
inside the cavity, beam wavefront, and the number of round trips that light undergoes inside
the cavity. Additionally, the interfaces of FP etalons can have a surface topography exhibiting
rough profiles. Studying such rough FP etalons is particularly important for FP etalons with a
cavity made of a polymer [12] which might exhibit some degree of roughness [13]. Simulating
these FP etalons could quantify the impact of roughness on bandwidth, transmissivity peak, and
sensitivity whilst allowing for computing optimal designs and manufacturing tolerances.

To study such examples, a model able to simulate FP etalons made of interfaces with non-planar
topography, on the order of a few nanometers, is needed. In principle, models assuming a
discretized three-dimensional volume with arbitrary refractive index distribution, such as Finite-
difference time-domain (FDTD) [14] or Pseudospectral time-domain (PSTD) [15] methods, can
perform these simulations. However, in practice, such models are unsuitable for the current
application. This is because sampling three-dimensional space with a sampling period below
1 nm would result in an unfeasible number of sample points and computation time.

In the remainder of this paper, we introduce our model of FP etalons made of interfaces with
spatially varying surface topography illuminated with arbitrary beams. We then validate this new
model against PSTD simulations and study its range of validity. Finally, we present exemplar
applications including the computation of an ITF for a FP etalon with rough interfaces, and the
computation of changes in the transmissivity due to modulation of the cavity thickness by an
ultrasonic plane wave.

2. Model

The model is composed of two principle steps. The first step calculates the fields transmitted
and reflected by a single interface with arbitrary surface topography. Then, in the second step,
the model iteratively evaluates light propagation back and forth between the multiple interfaces
forming the FP etalon. The second step allows for all of the round trips generated inside the FP
etalon, and the interference between them, to be computed.

2.1. Fields reflected and transmitted by an interface

We define an interface as the infinitely thin surface separating two layers, with refractive indices
n1 and n2, as illustrated in Fig. 1. The topographic map is defined as a function ϵ(x, y) which
describes the offset along the z-axis between the non-planar interface and an xy-plane through the
interface. The aim of this section is to define the reflection (R) and transmission (T ) functions
[16] for a single interface. These functions relate the angular spectrum of the fields reflected
(Êr) and transmitted (Êt) by the interface with the angular spectrum of the illumination field (Êi),
respectively.
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Fig. 1. Schematic of light scattering by an interface with a non-planar surface topography.

2.1.1. Rayleigh-Rice theory

To model a single interface with surface topography the model uses the Rayleigh-Rice theory.
This theory calculates the reflected and transmitted fields assuming an incident plane wave with
complex amplitude as Êi as [17]:

Êt(k′x, k′y) =

{︄
Êi(kx, ky)tu(kx, ky) + Êi(kx, ky)ts(kx, ky, k′x, k′y), kx = k′x ∧ ky = k′y
Êi(kx, ky)ts(kx, ky, k′x, k′y), kx ≠ k′x ∨ ky ≠ k′y

(1)

Êr(k′x, k′y) =

{︄
Êi(kx, ky)ru(kx, ky) + Êi(kx, ky)rs(kx, ky, k′x, k′y), kx = k′x ∧ ky = k′y
Êi(kx, ky)rs(kx, ky, k′x, k′y), kx ≠ k′x ∨ ky ≠ k′y,

(2)

where: kx and ky are the spatial frequencies of the illumination plane wave; k′x and k′y are the
spatial frequencies of the reflected and transmitted plane waves; ru and tu are the reflection
and transmission Fresnel coefficients for a planar dielectric interface; and rs and ts are the
coefficients relating the illumination and scattered plane wave component amplitudes given by
the Rayleigh-Rice theory.

The Rayleigh-Rice theory calculates the coefficients rs and ts analytically by assuming that
light fields evolve linearly near the interface and that fields are continuous across the interface
[17]. The solution is derived by expanding the field into a Taylor series around an xy-plane
through the interface and retaining only the zeroth and first order derivative terms. Due to the
linearity assumption, this solution is only valid if the magnitude of the topographic map is much
smaller than the wavelength in both media forming the interface. The closed-forms expressions
of the coefficients rs and ts are given as [18,19]:

ts(kx, ky, k′x, k′y) = −
ik2

0
2kz2(k′x, k′y)

(n2
2 − n2

1)ξ(k
′
x − kx, k′y − ky)

(1 + ru(kx, ky))(1 − ru(k′x, k′y)),
(3)

rs(kx, ky, k′x, k′y) = −
ik2

0
2kz1(k′x, k′y)

(n2
2 − n2

1)ξ(k
′
x − kx, k′y − ky)

(1 + ru(kx, ky))(1 + ru(k′x, k′y)),
(4)

where:
ru(kx, ky) =

kz1(kx, ky) − kz2(kx, ky)

kz1(kx, ky) + kz2(kx, ky)
; (5)

tu(kx, ky) =
2kz1(kx, ky)

kz1(kx, ky) + kz2(kx, ky)
; (6)

kz(kx, ky) =
√︂

k2 − k2
x − k2

y ; (7)
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ξ(kx, ky) =
1

4π

∬
ϵ(x, y) exp(i(xkx + yky))dxdy; (8)

ki is the wave number given as 2πni/λ; ni is the refractive index of the medium (where i is 1 or
2); λ is the wavelength in a vacuum; and k0 is the wave number in a vacuum.

2.1.2. Rayleigh-Rice theory for arbitrary fields

The Rayleigh-Rice theory was extended in this paper to treat arbitrary illuminations by combining
the angular spectrum formalism with the Rayleigh-Rice theory. In the angular spectrum formalism,
an arbitrary field is described as a sum of plane waves propagating with specific complex amplitude
and direction of propagation [20]. This formalism allows us to use the Rayleigh-Rice theory
to predict how each plane wave component of the incident angular spectrum is reflected and
transmitted by an interface [21]. Thus, by applying the Rayleigh-Rice theory to all plane wave
components forming the incident angular spectrum, the reflected and transmitted fields can be
calculated as:

Êt(k′x, k′y) = T Êi(kx, ky) = Êi(k′x, k′y)tu(k′x, k′y) +
∬

Êi(kx, ky)ts(kx, ky, k′x, k′y)dkxdky, (9)

Êr(k′x, k′y) = RÊi(kx, ky) = Êi(k′x, k′y)ru(k′x, k′y) +
∬

Êi(kx, ky)rs(kx, ky, k′x, k′y)dkxdky, (10)

2.1.3. Reducing computational time with fast Fourier transforms

Equations (9) and (10) are relatively time consuming functions to evaluate due them being a
convolution. The computational time can be reduced using the convolution theorem to re-write
Eqs. (9) and (10) based on the Fast Fourier transform (FFT) as:

Êt(k′x, k′y) = G(k′x, k′y)
∬

Êi(kx, ky)H(kx, ky)ξ(k′x − kx, k′y − ky)dkxdky

= G F −1{F {Êi H} F {ξ}},
(11)

Êr(k′x, k′y) = I(k′x, k′y)
∬

Êi(kx, ky)J(kx, ky)ξ(k′x − kx, k′y − ky)dkxdky

= I F −1{F {Êi J} F {ξ}},
(12)

where:

G(k′x, k′y) = −
ik2

0
2kz2
(n2

2 − n2
1)(1 − ru(k′x, k′y)); (13)

H(kx, ky) = (1 + ru(kx, ky)); (14)

I(k′x, k′y) = −
ik2

0
2kz1
(n2

2 − n2
1)(1 + ru(k′x, k′y)); (15)

J(kx, ky) = (1 + ru(kx, ky)); (16)

and F and F −1 are the fast Fourier and inverse Fourier transforms, respectively.

2.2. Fields reflected and transmitted by a series of interfaces

We define a dielectric stack as a succession of A−1 different layers, each with refractive index
na and thickness ha, where the surface topography of each interface is given by a topographic
map ϵa, as depicted in Fig. 2(a). To calculate the fields transmitted and reflected by the dielectric
stack, light must be propagated throughout the entire structure in a manner that considers all of
the paths that light can take within the dielectric stack.
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Fig. 2. a) Schematic of all sections of a dielectric stack with interfaces and nomenclature.
b) Schematic of the fields transformation in one iteration.

We proceed by dividing the dielectric stack into sections with boundaries defined by each

interface, as illustrated in Fig. 2(a). In each section a, the fields propagating backward (
←

Êa) and

forward (
→

Êa) are stored as a function of (kx, ky). In the first model iteration, all fields inside each

layer are null, excluding the field incident upon the structure (
→

Ê0), which is the illumination field.
The algorithm progresses by iteratively calculating the contribution to the field in a particular

section due to the fields originating from interfaces connected to that section. In particular,

at each iteration, the field
→

Êa−1 incident upon the interface a contributes to the field
→

Êa upon

transmission, whilst the reflected field contributes to
←

Êa−1 upon reflection, as shown in Fig. 2(b).
Thus, the iterative algorithm progresses as:

→

Êa = Ta(
→

Ê′a−1 exp(iha−1

√︂
k2

a−1 − k2
x − k2

y )) + Ra(
←

Ê′a exp(iha

√︂
k2

a − k2
x − k2

y )) (17)

←

Êa = Ta(
←

Ê′a+1 exp(iha+1

√︂
k2

a+1 − k2
x − k2

y )) + Ra(
→

Ê′a exp(iha

√︂
k2

a − k2
x − k2

y )) (18)

where the prime symbol ′ refers to the beams in the previous iteration, Ta and Ra are the
reflection and transmission functions of the interface a and the exponential term accounts for
beam propagation inside the layers. By iteratively evaluating this algorithm until the field
intensity inside all of the internal sections (from 1 to A−1) is close to null, the fields reflected
(
←

E0) and transmitted (
→

EA) by the dielectric stack are calculated. This algorithm calculates the
fields after each round trip of the multi-layered system as is commonly used to model multi-cavity
FP etalons [22]. However, this algorithm uses the associative property of the reflection and

transmission functions (i.e. T1T2R3T2

→

Ê1 +T1R2

→

Ê1 = T1(T2R3T2

→

Ê1 +R2

→

Ê1)) to reduce the model
computational time and memory requirement.

The model uses a scalar field representation and thus neglects the polarization of light. However,
a vectorial version of our model could be developed assuming the vectorial properties of light
[18–20]. Since FP etalons are typically illuminated with low numerical aperture (NA) beams,
the scalar approximation is accurate and the vectorial proprieties can be neglected. Considering
also that a vectorial model would take considerably longer to compute, we decided to employ a
scalar representation for our model.
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2.3. Model validation

We validated the model by simulating an optical structure which operates as a transparent
dielectric stack if the interfaces are planar. This structure, labelled as A, is shown in Fig. 3(a) and
is nearly transparent at a wavelength of 1550 nm, because the optical thickness of its layers is
half of the wavelength. Structure B is similar to structure A but its layers in the upper half have
different thicknesses, as illustrated in Fig. 3(b). Thus, the transmissivity of structure B varies
locally due to the change in the thickness of its layers.
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Fig. 3. Comparison of predictions from the dielectric stack model and PSTD simulations.
a) Schematic of the structure with planar interfaces. b) Schematic of the structure formed by
interfaces with a non-planar topography. For both structures, an illumination Gaussian beam
with beam waist of 10 µm was assumed. c) Wavelength resolved reflectivity of structures A
and B. The colormaps inside the graph show the beams intensity in space over a 30 µm×30 µm
region predicted by the different models.

The wavelength resolved reflectivities of structures A and B were computed to validate the
model presented in this paper. Both simulations used a sampling of kx and ky from −0.68k0 to
0.70k0 with a step size of 0.022k0 (64 points). The convergence of the iterative algorithm was
considered to be achieved when light intensity inside the internal layers was less than 10−6 of the
illumination beam intensity. For the structure B, the topographic map of the interfaces was given
as:

ϵ(x, y) = (−1)a 5
(︃

arctan(−x × 10−2)

π
+ 0.5

)︃
nm, (19)

where x is in nanometers and a is the interface number. The simulation time was around 0.1 s per
wavelength for both structures.

For reference, structure B was also simulated using the PSTD method [23]. In a PSTD
simulation, an arbitrary refractive index distribution is discretised into voxels (typically called a
Yee cell) to solve Maxwell’s equations for the fields reflected and transmitted by the structure. To
simulate the structure B, the structure was discretised into voxels with size 1.86 µm × 3.75 µm ×
0.005 µm resulting in a total grid of size 160 × 80 × 310 voxels. For the voxels intersecting an
interface, the refractive index of the voxel was set by the average refractive index, weighted by
the proportion of each material occupying the voxel. The 11 wavelength points were computed
in approximately 5 days using a single broadband PSTD simulation [23].

Wavelength resolved reflectivities of both structures computed using both models are plotted
in Fig. 3(c). The reflectivity was computed by integrating the intensity of the reflected beam as:

I ∝

∫ ∞
−∞

∫ ∞
−∞

|︁|︁Êr(kx, ky)
|︁|︁2 dkxdky∫ ∞

−∞

∫ ∞
−∞

|︁|︁Êi(kx, ky)
|︁|︁2 dkxdky

, (20)
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where Êi is the beam illuminating the structure and Êr is the beam reflected by the structure. The
denominator is used for normalisation. The predictions from both models are in agreement for
the reflectivity of structure B and differ considerably from the reflectivity of structure A. Thus,
based on these simulation, the model presented in this paper is able to account for the impact of
variations in the surface topography of the interfaces forming a dielectric stack.

3. Range of validity

This section explores the validity of the FP etalon model. The model is based on the Rayleigh-Rice
theory which is know to be valid to model interfaces with surface topography with magnitude
much smaller than the optical wavelength. Thus, it is expected that the FP etalon model will be
valid in the same circumstances, and that the model accuracy reduces as the height of the surface
topography increases [24]. This occurs because, to model interfaces with arbitrary surface
topography, the Rayleigh-Rice theory assumes the field to evolve linearly between the xy-plane
of the interface and the surface topographic map. As the accuracy of the field linearization
decreases with the surface topography, the range of validity was studied as the surface topography
increases.

To explore the model range of validity, ITFs predicted by the model were compared against
a well-validated reference method. This would ideally be done for a range of different surface
topographies. However, there is currently no reference method able to predict the ITFs from FP
etalons with arbitrary surface topography. We overcame this challenged by testing the model
using a subset of possible surface topographies for which the ground truth can be computed. In
particular, we simulated FP etalons in which the topographic map had the same value across
x and y (i.e. ϵ(x, y) = C). While the objective of this model is to simulate FP etalon with
non-planar surface topography, constant surface topographies were used to change the thickness
of the layers forming the FP etalon. Even when simulating constant surface topographies, the
field linearization between the xy-plane of the interface and the topographic map occurs meaning
that the predictions are impacted by the range of validity of the Rayleigh-Rice theory. Thus, an
indication of the model’s range of validity was created by comparing simulations of FP etalons
with constant topographic maps (ϵ(x, y) = C) against FP etalons without topographic maps
(ϵ(x, y) = 0).

The range of validity study was performed by simulating an FP etalon formed by two dielectric
mirrors separated by a quartz cavity, illuminated by a Gaussian beam with waist (ω) of 70 µm
(full width at 1/exp(2) of the intensity profile). The mirrors of the FP etalon were formed by
five di-layers of sodium hexafluoroaluminate (Na3AlF6) and zinc sulfide (ZnS) with nominal
optical thickness of λdes/4 where λdes, the design wavelength of the mirror, was 1500 nm. This
mirror design has a reflectivity of 98% at 1550 nm. The ground truth was computed with an
traditional planar FP etalon model [10], by simulating an FP etalon with cavity thickness 100 µm,
as schematised in Fig. 4(a). To quantify the model accuracy as the constant topographic map
increases, a range of FP etalons with cavity thicknesses of 100 µm−C were simulated. In the latter
case, all layers forming the second mirror of the FP etalon had a topography map of ϵ(x, y) = C,
resulting in a total cavity thickness (when accounting with the topographic map) of 100 µm, as
illustrated in Fig. 4(b). ITFs with C varying from −15 nm to 15 nm were computed and plotted in
Fig. 4(c) along with the ground truth.

As expected, as C increases, the ITFs calculated using our model differ more strongly from the
ground truth. For the range considered, the maximum transmissivity of ITFs calculated using the
our model tends to increase, relative to the ground truth, by a scaling factor that depends on the
magnitude of C. To aid analysis, a scaling error α was defined as:

α =
max(ITF1)

max(ITF2)
, (21)
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difference between the wavelength with maximum transmissivity (∆λr) as a function of C.

where ITF1 and ITF2 correspond to the ITF from FP etalons with constant non-zero and zero
topographic maps, respectively. The scaling error was computed as a function of C and is plotted
in Fig. 4(d). As expected, the scaling error is minimum when C is close to zero and increases
up to 300% when C is approximately 15 nm. For values of C up to 5 nm, the scaling error is
approximately 110%, but rapidly increases to around 150% for values of C around 10 nm. For
values of C above 10 nm, α increases more rapidly with increasing C, implying that the model is
grossly inaccurate in this region. The increase in the peak intensity of the ITF as C increases is
because energy conservation is violated due to the field linearization approximation.

The Rayleigh-Rice approximation also calculates resonant wavelengths inaccurately, as depicted
by the horizontal arrows shown in Fig. 4(c). A metric describing the difference between the
resonant wavelengths calculated using the two models was defined as:

∆λr = argmaxλ(ITF1) − argmaxλ(ITF2), (22)

The difference in the resonance wavelengths was computed and plotted in Fig. 4(d). As is
visible in Fig. 4(d), within the range of C considered, the accuracy of the resonant wavelength is
linearly dependent on C. The plot in Fig. 4(d) shows that the resonant wavelength predicted is
inaccurate by 0.08 nm, 0.15 nm, and 0.23 nm for values of C around 5 nm, 10 nm, and 15 nm,
respectively.

The errors presented are only indicative of the accuracy of Rayleigh-Rice theory since
simulation of FP etalons with spatially varying topographic maps (the intended application of
this model) were not considered. Additionally, the errors determined in this section depend
on the specific FP etalon simulated. For example, reducing the mirror reflectivities of the FP
etalon would increase the model accuracy. This is because, as the mirror reflectivities decrease,
the number of round trips to be computed also decreases, leading to an overall reduction in
accumulated error.

4. Example applications

4.1. Rough Fabry-Perot etalon

Two examples were considered to exemplify application of the model. In the first example
application, we used the model to predict the ITF from FP etalons in which the surface topography
of its interfaces exhibit roughness, as illustrated in Fig. 5(a). For comparison, the ITFs for the
same FP etalon, but without roughness, were computed.
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Fig. 5. a) Schematic illustrating the FP etalon with rough interfaces. The design of the FP
etalon is the same as in section 3 b) Topographic maps of two interfaces. The Gaussian
illumination beam was centred at the point (0 µm, 0 µm). c) Example ITFs computed for
an FP etalon with rough mirrors, along with the ITF of the ideal FP etalon with non-rough
mirrors. The sensitivity values were computed based on the maximum absolute derivative
of the ITF.

The topographic maps were generated computationally using a Fourier based method. In
particular, the amplitude of the spectral components of the topographic map were assumed to be
given by an ABC model [25]:

ϵ̂(kx, ky) =

⌜⃓⃓⃓⃓⎷ 6 × 108(︃
1 + 1.23 × 108

√︂
k2

x + k2
y

)︃−1 nm. (23)

Then, the phase of each spectral component was randomized allowing the topographic map
to be calculated using the inverse Fourier transform. The phase randomization was restricted
such that the complex amplitude of the spectral components was an even symmetric function (i.e.
ϵ̂(kx, ky) = ϵ̂(−kx,−ky)) leading to a real valued topographic map. The topographic maps of all
interfaces were assumed to be uncorrelated, as shown in Fig. 5(b). The RMS of the topographic
maps was around 2.69 nm. To maximise the model accuracy, the topographic map generated was
imported into the model with a mean of 0 nm. From section 3, the scaling error α for a constant
offset of 2.69 nm has a value of 103%, which serves as a indication of the model accuracy. Two
ITFs were calculated by simulating two FP etalons, each with independently generated roughness
maps.

The computed ITFs are plotted in Fig. 5(c), along with the ITF of the non-rough FP etalon.
The resonance wavelength for these simulations is accurately predicted because the mean of the
topographic maps is 0 nm. The plots in Fig. 5(c) show that roughness can affect the ITF in a
variety of ways. One of the ITFs associated with a rough FP etalon has an increased transmissivity
peak and a decreased Full width half maximum (FWHM), relative to the non-rough FP etalon.
The opposite behaviour is seen in the other rough FP etalon simulation where the transmissivity
peak decreases and the FWHM increases.

The ITFs plotted in Fig. 5(c) do not allow us to draw conclusions regarding the impact of
roughness on the FP etalon performance. There are two reasons for this. Firstly, the roughness
profiles were randomly generated, but since a statistical study was not performed, the results are
not statistically significant. Secondly, we have not investigated whether the topographic maps
used accurately represent the roughness found in actual FP etalons. To draw conclusions about
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the impact of roughness, a more in-depth study is required which is beyond the scope of this
paper.

4.2. Modulation of the cavity thickness by an ultrasonic wave

In this second example, the model is used to predict the changes in the transmissivity as the cavity
thickness is modulated by an ultrasonic plane wave. The topographic map of the layers forming
the FP etalon follows the sinusoidal profile of the pressure wave which expands/compresses
the cavity locally, as depicted in Fig. 6(a). The simulation protocol emulates the experimental
protocol typically used to measure ultrasonic waves with an FP etalon [5]. In particular, the
ITF from the FP etalon with an unmodulated cavity was calculated to find the wavelength (λb)
at which the magnitude of ITF’s derivative is maximised, as plotted in Fig. 6(b). Then, the
transmissivity at λb was computed as the cavity was modulated by the ultrasonic wave.
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Fig. 6. a) Schematic representing the cavity thickness modulation by an ultrasonic plane
wave incident upon the FP etalon. b) ITF of the FP etalon with the cavity thickness
unmodulated. c) Variations in the transmissivity at the bias wavelength as the cavity
thickness is modulated by the ultrasonic plane wave. The inset illustrations represent the FP
etalon cavity modulation for a given moment in time.

The cavity modulation was predicted using a simple mechanical model. In particular, the
modulation of the cavity thickness was predicted based on the mechanical properties of the
material forming the FP cavity and the properties of the ultrasonic wave. The topographic map
of all layers forming the first mirror were given as:

ϵ(x, y) =
Ph
2γ

cos
(︃
2π

cos θufux
v

+ 2πfut
)︃
+ m, (24)

and forming the second mirror as:

ϵ(x, y) = −
Ph
2γ

cos
(︃

cos θufux
v

+ 2πfut
)︃
− m, (25)

where: θu is the polar direction of propagation of the ultrasonic wave inside the FP cavity; fu
is the ultrasonic frequency; γ is the Young’s modulus of the material forming the cavity; v is
the ultrasonic speed inside the cavity; h is the cavity thickness; P is the peak pressure of the
ultrasonic wave; and t is time. The constant m is used to reduce the RMS of the topographic map
along the extent of the illumination beam to increase the model accuracy and was calculated as:

m =

∬ Phγ
2 cos

(︂
2π cos θufux

v + 2πfut
)︂

exp
(︂
−4 x2+y2

ω2

)︂
dxdy∬

exp
(︂
−4 x2+y2

ω2

)︂
dxdy

(26)

where ω is the Gaussian beam waist. The constant m did not change the geometry simulated as
the cavity thickness was reduced by 2m (similarly to as in section 3.).
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As an example, the modulation of the cavity by a 100 kPa ultrasonic wave with frequency
of 1 MHz propagating inside the cavity at an angle of 45° was considered. Using the Young’s
modulus of quartz (97.2 GPa) and a cavity thickness of 100 µm, the peak modulation of each
mirror was 51 pm, as illustrated in Fig. 6(a). The modulation of the transmissivity by the
ultrasonic wave was computed and plotted in Fig. 6(c) as a function of time. Due to the cavity
modulation, the transmissivity is modulated sinusoidally according to the profile of the ultrasonic
wave, as expected. For the simulation conditions considered, the constant m reduced the RMS
along the beam extent of the topographic map to values below 3.1 pm (instead of 51 pm) resulting
in a very accurate set of simulations.

This relatively simple example could be extended to perform more in depth studies. For
example, an ultrasonic frequency and directivity study could be performed by computing this
example as a function of the ultrasonic frequency and angle of propagation [26,27]. This is
particularly interesting as multiple illumination beams could be considered, such as Gaussian
[12], Bessel [28], or wavefront-shaped beams [29]. Additionally, more complex models of the
cavity modulation could be incorporated into the simulation. Examples include using acoustic
models [30] to calculate the cavity thickness map, which would serve as an input to the optics
model presented in this paper. However, this optical model cannot account for the localized
modulation of the cavity refractive index which might be limiting for some simulations [31].
Similar approaches could be used for modelling different perturbations such as cavity thickness
modulation by a temperature change.

5. Conclusion

An extension of Rayleigh-Rice theory to model arbitrary optical beam propagation in a dielectric
stack formed of interfaces with non-planar surface topography was presented. The model was
validated against PSTD simulations by comparing wavelength resolved reflectivity simulations.
As the model is based on the Rayleigh-Rice theory, the model accuracy reduces as the RMS of
the topographic map increases. Range of validity tests revealed that when simulating topographic
maps with RMS of approximately 5 nm, the shape of the ITF was predicted with an error
of approximately 9% and the resonant wavelength with an error of 75 pm. We exemplified
application of the model by simulating FP etalons with rough mirrors and an FP etalon with the
cavity thickness modulated by an ultrasound plane wave.

The general way that the surface topography of the interfaces is described enables a wide range
of potential applications of the model which include: (i) quantifying the impact of rough mirrors
on the ITF of FP etalons, (ii) studying the sensing element size of the FP etalon when used
for spatially resolved sensing with various illumination beams, and (iii) simulating FP etalons
with nearly uniform layered structures, such as micro-resonators [32]. However, the narrow
range of validity of the model limits its application and compromises its accuracy. Future work
could be aimed at developing a similar model using the generalized Harvey-Shack theory [33].
This theory, as with the Rayleigh-Rice theory, was used to predict the impact of interfaces with
non-planar surface topography and has the advantage over the Rayleigh-Rice theory of having a
higher range of validity, whilst, however, taking longer to compute [24].

To increase model applicability further, the model was implemented in Jolab, a free and
open-source library of optical models able to simulate complex optical systems [34]. This
implementation can easily be combined with other models from Jolab to simulate complex optical
systems such as rough fibre FP etalons [35], rough FP etalons illuminated through a multi-mode
fibre [36], and rough FP etalons illuminated with a wavefront shaped beam [29].
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