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Abstract. Neovascular age-related macular degeneration (nAMD) is a
common cause of visual impairment, and is currently treated with in-
travitreal anti-vascular endothelial growth factor agents such as afliber-
cept. While these treatments may improve visual acuity (VA) in some
patients, clinicians cannot currently predict who is likely to benefit be-
fore treatment starts. The aim of this study is to explore the effective-
ness of using Deep Learning approaches to train models for predicting
whether a patient’s VA will respond favourably to three months of afliber-
cept therapy, using pre-treatment OCT images and clinical/demographic
variables. We train a number of models using standard machine learn-
ing, Deep Learning transfer learning, and fully trained Deep Learning
approaches in two experiments using outcomes based on the VA at 4-
10 weeks after the final dose. In experiment one, we trained models to
predict whether the VA will be at least 54 Early Treatment Diabetic
Retinopathy Study (ETDRS) letters, while in experiment two we trained
them to predict whether the VA will have increased by 10 or more let-
ters. Model prediction quality was assessed using the Area Under the
Curve (AUC) of the Receiver-Operating-Characteristic (ROC) curves.
We found that all models performed significantly better than chance
in both experiments, except for the fully trained Deep Learning model
using just images in experiment two. The best performing model for ex-
periment one was the Deep Learning transfer model using images and
clinical/demographic variables (AUC=0.901), while in experiment two,
none of the Deep Learning approaches performed better than a random
forest using only clinical/demographic variables (AUC=0.751). Our ex-
periments suggest that different Deep Learning approaches are required
for predicting the second outcome if we want the models to perform
better than those that use clinical/demographic variables alone.

Keywords: Neovascular age-related macular degeneration (nAMD) ·
Optical Coherence Tomography (OCT) · Deep Learning · Anti-VEGF ·
Aflibercept · Treatment Response.

1 Introduction

Neovascular age related macular degeneration (nAMD) remains a common cause
of visual impairment amongst older individuals. The condition is characterised



2 A. Rao et al.

by the onset of macular neovascularisation that can leak fluid and/or blood and
cause distortion of the macular architecture and consequent visual impairment
of varying degrees. It is typically first diagnosed by an optometrist using Optical
Coherence Tomography (OCT) of the eye, before confirmation of the diagnosis
in hospital using OCT/fluorescein angiography.

Currently, nAMD is treated using intravitreal anti-vascular endothelial growth
factor agents, such as aflibercept. While such agents aim to resolve the macular
fluid, this does not necessarily correspond to an improvement in the visual acu-
ity of treated subjects. The standard treatment regimen of aflibercept is to load
with three months of intravitreal injection, before deciding on further treatment
based on how the patient’s macular anatomy and visual acuity have responded.
It would be useful to automatically predict the visual acuity response based on
the patients initial presentation, not only to manage patient expectations but
also because it is a predictor of patient outcomes after 12 months. However, it
remains challenging to perform such a prediction in routine clinical practice.

As a result, a number of investigators have attempted to identify or describe
possible biomarkers for treatment response in patients with nAMD [5, 13, 9, 6,
18]. Some of these biomarkers such as intraretinal cystoid fluid, subretinal fluid
and hyperreflective foci, are present on OCT and may be associated with visual
acuity before and after treatment with intravitreal therapy [18]. However, robust
and accurate segmentation algorithms are required to extract these biomarkers
from OCT if we wish to use them as quantitative features for the prediction of
treatment response.

An alternative to using biomarkers for predictive modelling is to use Deep
Learning methods, whereby image features are extracted by training a Convo-
lutional Neural Network (CNN). Deep Learning has been used in a number of
prediction tasks involving OCT, such as disease classification [14, 3], prediction
of conversion to nAMD [24], and treatment referral [16, 11]. In [23], Deep Learn-
ing was used to predict treatment response of patients with nAMD from OCT
and clinical/demographic variables. Although the trained models achieved high
predictive accuracy, the study design differed from that of this work, and the de-
scribed approach used a patented Neural Network architecture which therefore
has a restricted use.

The aim of this work is to use Deep Learning approaches to try to predict
treatment response of eyes with treatment-naive nAMD using routinely obtained
OCT and clinical/demographic variables acquired just prior to treatment. In the
first approach, transfer learning is used to extract image features from OCT,
which are then combined with the clinical/demographic variables to give the
input features for training machine learning algorithms. In the second approach,
fully trained Deep Learning models are developed using only the OCT images.
In contrast with [23], we use outcome measures based on visual acuity/changes
in visual acuity 4-10 weeks after the last loading phase injection. The models
are developed on a random training sample of data from a multi-site study, and
evaluated on the remaining unseen test sample.
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Section 2 now describes the study data used for analysis before we describe
the methods used for preprocessing and machine learning in section 3. This
is followed by a presentation of the results in section 4 before a concluding
discussion in section 5.

2 Data

The PRECISE study is a multi-site study that looks at imaging markers to
predict treatment response to the loading phase of intravitreal aflibercept ther-
apy, in subjects with treatment naive nAMD. Please see section 5 for the list of
study collaborators. The study design consists of retrospective and prospective
data from four visits, with mandatory Heidelberg OCT obtained at visits one
and four. (Heidelberg OCTA is also optionally obtained but is not used in this
analysis.) All patients undergo a total of three monthly loading injections of in-
travitreal aflibercept therapy over visits one to three, and visit four occurs 4-10
weeks after the third loading injection.

The inclusion criterion for the study were: (1) Adults between 50 and 100
years, (2) Treatment naive nAMD at baseline, (3) Media clarity, pupillary dila-
tion and patient cooperation for adequate imaging. (4) Ability to give informed
consent. The retrospective part of the study had additional inclusion criteria
which essentially ensured that the visit schedule and available data matched
the study design. Note that more than one eye from a patient could be entered
into the study and they were considered separate subjects. The exclusion crite-
ria were: (1) Co-existent ocular disease: Any other ocular condition that, in the
opinion of the investigator, might affect or alter visual acuity during the course
of the study. (2) Any patient who has opted out of their information being used
for research nationally or locally at any site.

A set of 2000 OCT eye volumes from visit one were exported for analysis from
this study. These volumes were from 1865 unique patients. As these volumes were
not always centred on the fovea, a clinical expert marked the fovea using Heyex
software before export, so that it could be determined from the image metadata.
In addition, the following clinical/demographic variables were available: Visual
Acuity (VA) at visits one and four (VA1 and VA4), Age, Gender (Male/Female),
and Ethnicity (White/Black/South Asian/Other Asian/Other). Visual Acuity
was recorded as the number of Early Treatment Diabetic Retinopathy Study
(ETDRS) letters and lies in the range 0–100.

3 Methods

3.1 Image Preprocessing

As the exported OCT volumes were heterogeneous in terms of resolution and
eye coverage, they were standardized to a uniform resolution and coverage before
further analysis. In what follows, the OCT axes are defined as x: patient right
to patient left, y: posterior to anterior and z: inferior to superior. Firstly, the
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foveal x- and z-coordinates within each volume were extracted from the volume
metadata using custom-written software. Then, each b-scan was independently
downsampled using linear interpolation to a resolution of 0.02 mm × 0.008 mm
and laterally cropped to a size of 240 × 240. The lateral cropping was performed
symmetrically about the column index of the a-scan corresponding to the foveal
x-coordinate. The volumes were then downsampled using nearest-neighbour in-
terpolation in the z-direction to a resolution of 0.5 mm, and cropped giving a
new volume consisting of seven b-scans. Nearest neighbour interpolation was
used in the z-direction to prevent smoothing away of image detail due to the
relatively large distance between b-scans [24]. The cropping in the z-direction
was performed symmetrically about the foveal z-coordinate of the OCT vol-
ume. Note that due to heterogeneity in the foveal locations and coverage of the
original OCT volumes, 63 volumes could not be cropped to the standardized
coverage, and so were not included in the analysis. In addition, three volumes
that had been acquired at an angle of greater than 10 degrees tilt to the z-axis
were excluded, in order to ensure approximately uniform orientation of the stan-
dardized volumes. One further volume was excluded due to inconsistencies in
the distances between b-scans at time of acquisition.

The resulting standardized and cropped volumes of any left eyes were then
laterally flipped to minimize variation in the data. Finally, data was discarded
in which the image quality of the b-scan containing the fovea was less than
15. The cutpoint of 15 was chosen because it corresponds to a threshold for
‘medium-quality’ images [2].

3.2 Outcome Variables

Two outcome variables were used to measure the treatment response of each
subject to intravitreal aflibercept therapy. The first outcome variable, yv is based
on the VA at visit four. It is defined as follows:

yvi =

{
−1 : if VA4

i < 54

1 : if VA4
i ≥ 54

(1)

In the above, yvi = −1 is considered a treatment non-responder, and yvi = 1 is
considered a treatment responder. (In what follows, we will use the abbrevia-
tions ‘responder’, and ‘non-responder’ for clarity.) The cutpoint of 54 letters was
chosen because it separates those with severe/moderate visual impairment from
those that have mild visual impairment/driving vision.

While this provides a measure of the visual function at visit four, it does not
directly quantify treatment response because different subjects have different VA
at visit one, i.e., before treatment is started. To give a more direct measure of
treatment response, we use the following outcome variable, yδv based on the
change in VA between the first and fourth visits:

yδvi =

{
−1 : if VA4

i −VA1
i < 10

1 : if VA4
i −VA1

i ≥ 10
(2)
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As before, yδvi = −1 is considered a non-responder, and yδvi = 1 is considered a
responder. An increase in VA of 10 letters was chosen as the cutpoint because it
is considered to represent a clinically meaningful improvement in subjects with
advanced eye disease [12]. This corresponds to an increase in VA of two lines of
the Snellen chart, which is the cutpoint used in [23] for prediction of treatment
response from OCT images and clinical/demographic variables.

3.3 Clinical/Demographic Variables Models

We firstly train models using just the clinical/demographic variables of each
subject for prediction of both outcomes. It is important to evaluate these mod-
els because variables such as VA1 and Age have been previously shown to be
associated with treatment-related gains in VA [18].

Logistic Regression (C) We build a logistic regression model using only clini-
cal/demographic features as the model inputs. The clinical/demographic features
vector ci consists of VA1, Age, Gender (Male/Female), and Ethnicity (collapsed
to Non-White/White). The categorical variables Gender and Ethnicity are both
coded as 0/1, with Male=0, Female=1 and Non-White=0, White=1, respec-
tively. The model parameters β, β0 are then the minimizers of the weighted
logistic loss:

n∑
i=1

wi log
[
e−yi(ĉiβ+β0) + 1

]
(3)

in which n is the size of the training set and ĉi are the clinical/demographic
features vector ci standardized across subjects to zero mean and unit variance.
The target variable y is either yv or yδv, depending on the prediction task. The
weights wi are used to weight the loss of each example and are defined as

wi =
n

2ni
(4)

where ni is the number of training examples from class yi. Such a weighting is
often used to mitigate the effect of class-imbalance on algorithm training.

Random Forest (Cr) Here we build a model using only ci as the model inputs
to a Random Forest classifier [21]. These are ensemble classifiers in which a num-
ber of decision trees are built using bootstrap samples from the training data. At
each node of the tree, a random subset of input features are selected and the node
and splitting threshold which maximises the improvement in Gini Impurity [4]
is chosen. For our purposes, the random forest is trained using class-balancing
sample weights as in equation 4. Random forests have a number of hyperparam-
eters such as the number of trees, the maximum tree depth, max_depth, and
the number of features to be considered at each split, max_features.
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3.4 Transfer Learning Models

The first Deep Learning approach we use in this study is transfer learning. Here,
we utilize the VGG19 Convolutional Neural Network (CNN) model [20] available
as part of the Keras API within TensorFlow (v2.0) [1]. This model has been
shown to achieve competitive image classification performance when trained on
the ImageNet database [7], which is a collection of millions of images with labels
such as cat, dog, aeroplane etc. Since Keras provides the VGG19 model and its
model weights after pre-training on ImageNet, this facilitates the use of transfer
learning to develop a new classifier specific to our task.

Figure 1 shows how transfer learning is operationalized for treatment re-
sponse prediction. Firstly, the VGG19 model, with pre-trained ImageNet weights,
is downloaded using Keras with the option ‘include_top = False’. This option
ensures that the downloaded model does not include the Dense and Softmax
layers at the head of the original model which are specific to classifying the Ima-
geNet data. Instead, we add a Global Average Pooling layer which takes the 512
features from the final block and averages them over the image. We also incor-
porate preprocessing layers to prepare the image inputs for the VGG19 model.
Finally, all layers in the resulting base model are ‘frozen’ as non-trainable layers.

Fig. 1: This figure shows how the base VGG19 model is constructed using Keras.
The base model is then used as a feature extractor for each b-scan.

The resulting base model can then be used as a feature extractor to produce
feature vectors of length 512 for any 2D colour image. As each b-scan consists of
a single channel, we simply replicate the b-scan 3 times to give a pseudo-colour
image that can be input into the base model. Application of the feature extractor
to every b-scan from the ith subject gives the following feature vector xi:

xi ≡ [x
(1)
i , . . . , x

(7)
i ] (5)

Here, x(j)i is the concatenation of the base model outputs x(j)i of the correspond-
ing b-scans B(j)

i . Each feature vector xi is therefore a vector of length 3584
(= 512× 7) which represents the OCT volume for subject i. These features can
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then be used together with the clinical/demographic variables as inputs to stan-
dard machine learning algorithms for learning the relationship between the OCT
volume and/or the clinical/demographic variables, and treatment response. For
our purposes we use the following algorithms for predicting each of the outcome
variables.

Images Only: l2-Regularized Logistic Regression (I) In this model, we
use the image features xi from equation (5) as the model inputs. The model
parameters β, β0 are the minimizers of the penalized weighted logistic loss:

||β||22
2

+ C

n∑
i=1

wi log
[
e−yi(x̂iβ+β0) + 1

]
(6)

where || · ||2 is the l2 norm, x̂i are xi standardized across subjects to zero mean
and unit variance, and C is a hyperparameter which is inversely proportional to
the regularization strength.

Images Only: l2-Regularized Logistic Regression with kernel smooth-
ing (Ik) In this model, the model inputs are kernel-smoothed versions of the
image features xi. The model parameters β, β0 are the minimizers of the weighted
logistic loss:

||β||22
2

+ C

n∑
i=1

wi log
[
e−yi(x̂

S
i β+β0) + 1

]
(7)

where x̂Si are standardized versions of xSi , which are the OCT image features at
the foveal b-scan, x(4)i , after kernel-smoothing in the z-direction:

xSi =

7∑
j=1

e−
(j−4)2

2s2 x
(j)
i (8)

In the above, s is an additional hyperparameter that controls the degree of
smoothing: Small values of s correspond to less smoothing in which xSi ≈ x

(4)
i ,

while large values of s correspond to greater smoothing in which xSi ≈
∑7
j=1 x

(j)
i .

Note that since we use the standardized features x̂Si in equation (7), there is no
explicit normalisation in equation (8).

The motivation for the above approach derives from the fact that the image
features x(j)i are 2D features that potentially capture whether a high-level ab-
straction, such as fluid, occurs in the corresponding b-scan B

(j)
i . Equation (8)

essentially pools this information by forming a weighted average of those features
over the entire OCT volume. Moreover, the weighting scheme encodes the prior
knowledge that the foveal features x(4)i are the most relevant to the classification
task, and so are given the greatest weight, while features for b-scans relatively
far from the foveal b-scan are less relevant, and so are given smaller weights.
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Images & Clinical/Demographic Variables: l2-Regularized Logistic Re-
gression with feature scaling (ICf ) In this model, we utilize both the image
features xi and the clinical/demographic features ci as model inputs. The model
parameters β, β0 are the minimizers of the penalized weighted logistic loss:

||β||22
2

+ C

n∑
i=1

wi log
[
e−yi([x̂i,λĉi]β+β0) + 1

]
(9)

where [x̂i, λĉi] is a concatenation of the standardised image feature vector x̂i
and the standardised clinical/demographic features vector ĉi multiplied by a hy-
perparameter λ > 0. Due to the regularisation term ||β||22

2 , λ effectively controls
the relative importances of the image and clinical/demographics feature vectors
in the objective function. This can be considered as a kind of Multiple Ker-
nel Learning [10], in which the kernel weights are hyperparameters rather than
parameters that are optimised during model training.

Images & Clinical/Demographic Variables: l2-Regularized Logistic Re-
gression with kernel smoothing and feature scaling (ICkf ) The final
transfer learning model utilizes kernel-smoothed versions of the image features
xi and the clinical/demographic features ci as the model inputs. The model
parameters β, β0 are the minimizers of the penalized weighted logistic loss:

||β||22
2

+ C

n∑
i=1

wi log
[
e−yi([x̂

S
i ,λĉi]β+β0) + 1

]
(10)

3.5 Fully Trained Deep Learning Models

In the second Deep Learning approach, we train complete Deep Learning models
from scratch. For this purpose, we construct the CNN model shown in figure 2
using Keras. This model takes as inputs the preprocessed b-scans B(j)

i only. In
the first step, the image values of the seven preprocessed b-scans of a subject are
divided by 255 so that they are in the range 0–1. Each rescaled scan subsequently
passes through two identical blocks consisting of thirty-two 2D Convolutional
filters of size 3×3, a Batch Normalization layer and a MaxPooling layer of size 2×
2. They then pass through an additional block with similar Convolutional/Batch
Normalization layers but with a MaxPooling layer of size 4×4. A Global Average
Pooling layer is then applied followed by a Dense layer consisting of 32 units.
At this point, the seven outputs from the Dense layer are averaged using an
Average layer and passed through a Dropout layer with dropout rate of 0.5, and
a Dense layer with a single unit and sigmoid activation. ‘Relu’ activation and l2
weight-regularization is used in each of the convolutional layers. We refer to this
model as Id.

The CNN architecture shown in figure 2 differs to the typical Deep Learning
architectures used in Ophthalmology for prediction. Usually, 2D CNNs are used
in which the model input is a single b-scan from a subject [3, 23, 16, 17]. Such
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approaches require a way of pooling the model predictions from each b-scan to
give a volume-level prediction. Alternatively, 3D CNNs are used in which an
entire OCT volume (or sub-volume) is the model input [24, 11]. In our approach
we have used a 2D CNN in which there are seven model inputs, B(j)

i , for each
subject rather than one. Model training up to the Average layer amounts to
estimating a single set of weights that is applied to each of the model inputs
independently, until the Average layer ‘pools’ the information across inputs by
taking the mean. The motivation is similar to that for model Ik: We assume that
the layers preceding the Average layer will form a high-level abstraction of each
b-scan that can then be averaged across scans, and used in the following layers
for fitting to the outcome of interest. Our approach, unlike a typical 2D CNN,
therefore uses all the scans of a subject simultaneously during the fitting process
to directly give volume-level model predictions. This is preferable because, while
the signal that distinguishes between a non-responder and a responder may be
present in an OCT volume, it may not be present in all of its constituent b-scans.
Furthermore, our approach does not contain more parameters than a 2D CNN,
unlike approaches that use 3D CNNs. This is advantageous where the training
set size is relatively small, as in our case.

Fig. 2: This figure shows how the fully trained Deep Learning CNN is constructed
using Keras. The model takes seven inputs which are the rescaled versions of the
seven preprocessed b-scans of a subject. Note that, up to the Average layer, a
single set of weights is estimated and independently applied to each of the seven
inputs.

3.6 Evaluation Methodology

The set of 2000 OCT volumes was randomly divided into a training set of size
1333, and a test set of size 667. This was performed while ensuring that volumes
from the same patient appeared in only one of the training or test sets. At
the time of analysis, 1992 of these 2000 baseline OCT volumes were considered
eligible for analysis after clinical grading was performed. The final training and
test sets for prediction of yv were then given by additionally excluding volumes
for reasons described in section 3.1, and for missing clinical/demographic and
outcome variables. This results in a training set of size 1228, from 1142 unique
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patients, and a test set of size 619, from 580 unique patients, for prediction of
yv. For prediction of yδv, we further discard volumes in which VA1 ≥ 91, since it
is not possible for those subjects to increase their VA by 10 letters as VA≤ 100.
This gives a training set of size 1226, from 1140 unique patients, and a test
set of size 619, from 580 unique patients, for prediction of yδv. Table 1 gives
the distribution of clinical/demographic variables and outcomes in the training
and test sets used for prediction of each outcome variable. Note that all model
training and evaluation was performed at the subject level for both outcomes.

(a) yv

Variable Training Test

Number of Subjects 1228 619
Number of Unique Patients 1142 580
VA1 57.9± 14.9 58.6± 14.3
Age 79.4± 7.7 79.4± 7.8
Gender: Male/Female (%) 40.1/59.9 37.2/62.8
Ethnicity: Non-White/White (%) 4.3/95.7 5.0/95.0
VA4 62.4± 14.9 62.8± 15.4
Outcome: Non-Responder/Responder (%) 24.3/75.7 21.3/78.7

(b) yδv

Variable Training Test

Number of Subjects 1226 619
Number of Unique Patients 1140 580
VA1 57.9± 14.9 58.6± 14.3
Age 79.4± 7.7 79.4± 7.8
Gender: Male/Female (%) 40.1/59.9 37.2/62.8
Ethnicity: Non-White/White (%) 4.3/95.7 5.0/95.0
VA4 62.4± 14.9 62.8± 15.4
Outcome: Non-Responder/Responder (%) 70.5/29.5 73.0/27.0

Table 1: This table shows the distribution of clinical/demographic variables and
outcomes in the training and test sets used for prediction of yv and yδv. For
continuous variables, the mean and standard deviation are given. Note that all
statistics are calculated at the subject, rather than patient, level.

Each of the clinical/demographic variables and transfer learning models was
trained using the features and outcome from the training set. Standardization
of features was performed using only the training data and then applied to
the training and test data. The optimum hyperparameters for the models I,
Ik, ICf and ICkf were chosen using a grid-search as those that minimize the
weighted logistic loss in 10-fold cross validation of the training set. The range
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of hyperparameters in the grid were: C = 10r, r ∈ [−5,−4, . . . , 5]; λ = 2r,
r ∈ [−6,−5, . . . , 8]; s = 3√

2
×1.5r, r ∈ [−5,−4, . . . , 5]. The model estimation and

grid-search for each of these models was performed using scikit-learn (v0.23.2)
[15]. Model estimation for model C, which contains no hyperparameters, was
performed using the statsmodels package (v0.12.2) [19]. Once all parameters and
hyperparameters have been estimated using the training data, a test example
with image features xt and clinical features ct is given the following predicted
probability of being a responder:

P (yt = 1) =
1

1 + e−ftβ+β0
(11)

where ft equals ĉt for model C, x̂t for model I, x̂St for model Ik, [x̂t, λĉt] for
model ICf, and [x̂St , λĉt] for model ICkf. The test example is given a binary
prediction of responder if P (yt = 1) > 0.5, and non-responder otherwise. For
model Cr, the number of trees was fixed to 1000, and optimum values for
max_depth and max_features were chosen using a grid-search as those that
maximize the balanced accuracy in 10-fold cross validation of the training set.
The range of hyperparameters in the grid were: max_depth ∈ [1, 2, . . . 11] and
max_features ∈ [2, 3, 4]. Model estimation and grid-search for Cr was per-
formed using scikit-learn. After all hyperparameters have been estimated and
the random forest has been trained, a test example with clinical features ct is
passed through each decision tree in the forest and a probability of being a re-
sponder, P (yt = 1) is calculated. The test example is given a binary prediction
of responder if P (yt = 1) > 0.5, and non-responder otherwise.

The CNN model Id was trained on a stratified sample of 80% of the pre-
processed images from the training set. This was performed using the Adam
optimizer and a weighted logistic loss function with weights given by equation
(4). The model was trained for 300 epochs using a learning rate scheme in which
the initial learning rate was divided by 10 after 10 epochs and then divided
by 10 again after a further 10 epochs. The remaining 20% of the training data
was used as a validation set to determine the optimum values for the l2 weight-
regularization α and the initial learning rate lr using the Area Under the Curve
(AUC) of the Receiver Operator Characteristic (ROC) curves as the validation
metric. This was achieved using early-stopping and a grid-search over the val-
ues α = 5 × 10r, r ∈ [−7,−6, . . . ,−3]; lr = 10r, r ∈ [−5,−4, . . . ,−1]. Note
that the ‘patience’ for the early-stopping was set to infinite, so this procedure
effectively optimizes for the number of training epochs between 1 and 300. A
test example is passed through the optimum model to give it’s probability of
being a responder, P (yt = 1). Since we have used the AUC to choose the best
model, we optimize the probability threshold, T , that is used to give a binary
prediction of non-responder/responder rather than use the default value of 0.5.
We do this by choosing the value that maximizes the geometric mean of sensi-
tivity and specificity on the validation data, with the intention of reducing the
disparity between sensitivity and specificity, while maintaining high values for
each of them. The test example is then given a binary prediction of responder
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if P (yt = 1) > T , and non-responder otherwise. Note that in our experiments,
the optimization of T did not appear necessary for the prediction of yv, as the
evaluated sensitivity and specificity on the validation set were almost identical
to each other. Moreover, the optimization of T increased, rather than decreased,
the difference between sensitivity and specificity for the prediction of yv on the
validation data. In contrast, the optimized T greatly improved the balance of
sensitivity and specificity on the validation data for the prediction of yδv. Nev-
ertheless, we optimize T for both yv and yδv for consistency and reproducibility
of the procedure used for tuning the Deep Learning models used in this work.

Prediction quality was determined using the AUC for each model. In our
experiments, the AUC of a model can be interpreted as the probability that it
predicts a higher probability of responding to treatment for a randomly cho-
sen responder than a randomly chosen non-responder. In addition, confidence
intervals for the AUC are constructed to quantify its uncertainty due to sam-
pling variability. These are determined using an implementation of the percentile
bootstrap based on the scipy [22] package.

We also calculate the sensitivity and specificity of each of the models to pro-
vide further information about their performance. Sensitivity is defined as the
proportion of true responders identified by the model, while specificity is the
proportion of true non-responders identified. Clopper-Pearson confidence inter-
vals for sensitivity and specificity are determined using the ‘proportion_confint’
function available in the statsmodels package.

4 Results

4.1 Prediction of yv

Table 2: Model performance for prediction of yv

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

C 0.891 (0.860–0.919) 0.811 (0.773–0.845) 0.826 (0.750–0.886)
Cr 0.883 (0.849–0.914) 0.821 (0.784–0.854) 0.795 (0.717–0.861)
I 0.787 (0.741–0.829) 0.739 (0.698–0.778) 0.697 (0.611–0.774)
Ik 0.764 (0.715–0.810) 0.737 (0.696–0.776) 0.659 (0.572–0.739)
ICf 0.901 (0.871–0.927) 0.830 (0.793–0.862) 0.803 (0.725–0.867)
ICkf 0.896 (0.865–0.924) 0.828 (0.791–0.860) 0.795 (0.717–0.861)
Id 0.772 (0.727–0.814) 0.801 (0.763–0.835) 0.583 (0.494–0.668)

Table 2 gives the performance of each model for prediction of yv, and figure 3
shows the corresponding ROC curves. Every model has an AUC with a 95%
confidence interval whose lower bound is greater than 0.5. This indicates that
all these models perform better than chance with respect to whether a randomly
chosen responder, yv = 1, is given a higher probability of responding to treatment
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Fig. 3: This figure shows the ROC curves of each model when predicting yv.

than a randomly chosen non-responder, yv = −1. In addition, the sensitivity
and specificity 95% confidence intervals of the majority of models indicate that
they perform better than a model that gives a random binary prediction to
true responders and one that gives a random binary prediction to true non-
responders. Note that the specificity 95% confidence interval of the Id model
includes the value 0.5, and so it does not perform better than a model that
gives a random binary prediction to true non-responders. A post-hoc analysis
shows that this is due to the optimization of the threshold T that produces the
binary predictions: With the default value of 0.5, the sensitivities and specificities
are 0.743 and 0.674 with confidence intervals (0.702–0.782) and (0.587–0.753)
respectively.

If we now consider table 2 in more detail, we see that the models that use
only clinical/demographic features, C and Cr, give AUCs that are 0.096–0.127
higher than those that use only images, I, Ik and Id. This implies that the clini-
cal/demographic features are more useful predictors of dichotomized VA4 than
the information in the images that is used by I, Ik and Id. We can also see that the
best model using only images is the transfer learning model I. Its AUC is 0.023
greater than the transfer learning model using kernel-smoothed image features,
Ik, and 0.015 greater than the fully trained model Id. However, it is interesting to
note that a simple ensemble model given by averaging the probabilities output
by the Id and I models raises the AUC to 0.796. This suggests that the fully
trained model has learned complementary information to the transfer learning
model for prediction of yv. The highest AUCs are given by the models ICf and
ICkf, which give AUCs marginally higher than those of models C and Cr.

Figure 4 shows the role that the clinical/demographic variables play in the
models which use them as input features. In figure 4a we show the parameter
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(a) (b)

Fig. 4: In (a) we show the coefficients of the standardized clinical/demographic
feature parameters in the models C, ICf, and ICkf when predicting yv. 95%
confidence intervals are also shown for each parameter for the model C. In (b)
we show the clinical/demographic feature importances in the model Cr when
predicting yv.

estimates for the standardized clinical/demographic features for models C, ICf,
and ICkf. The 95% confidence intervals, based on the standardized normal dis-
tribution, are shown for the model C, as reported by the statsmodels package.
The parameter estimates indicate positive adjusted associations of VA1, being
Female, and being White, and a negative adjusted association of Age, with di-
chotomized VA4 for all models. For model C, VA1, Age, and being Female have
confidence intervals indicating statistically significant adjusted associations with
yv. The strong positive adjusted association of VA1 is expected, as a higher VA
before treatment would give rise to a higher VA after treatment, even if treat-
ment is ineffective. It should be noted that a variable can be important to a
model’s predictive accuracy even if it is not statistically significant. Figure 4b
shows the feature importances of the random forest model Cr when predicting
yv. These importances are the mean decrease in Gini Impurity brought by each
feature on the training data, normalized to sum to one over all features. We can
see that VA1 and Age are considered to be the most important features for Cr.

Figure 5 shows the saliency maps of the model I for prediction of yv. The
saliency maps show the magnitude of the gradient of the derivative of the predic-
tive function for a given class, with respect to the pixel values in the preprocessed
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(a) Non-responder, yv = −1

(b) Responder, yv = 1

Fig. 5: This figure shows the saliency maps for two subjects when predicting
yv using model I. The maps are overlayed on the preprocessed OCT scans of
the central (foveal) 1mm. These are shown for a non-responder in (a) and a
responder in (b).

OCT scans. We use the implementation of ‘SmoothGrad’ from the tf-keras-vis
package, which produces saliency maps by averaging the gradient magnitudes
of several noisy versions of the preprocessed OCT scans. In figure 5a we show
the saliency map for prediction of a correctly identified non-responder, while
figure 5b shows the corresponding map for a correctly identified responder. Note
that in each case, the saliency map of a particular b-scan is normalized within
its range to ease visual interpretation. If we consider figure 5a, we can see that
the most important voxels in a given b-scan (coloured red) are localized to small
areas which are sometimes within the regions of intra-retinal fluid. In addition,
the voxels of medium importance (coloured green) also overlap with intra-retinal
fluid present in the scans. The saliency map in figure 5b seems to indicate that
areas in the centre of the retina are important to the prediction of this sub-
ject. For comparison, figure 6 shows the saliency maps for a correctly predicted
non-responder and responder using the fully trained model Id. If we consider fig-
ure 6a, we can see that voxels of medium importance in a given b-scan are found
proximal to regions of intra-retinal fluid. They also overlap with some small ar-
eas of hyperintensity. The saliency map in figure 6b indicates areas in the outer
retina and at the internal limiting membrane are of medium importance.
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(a) Non-responder, yv = −1

(b) Responder, yv = 1

Fig. 6: This figure shows the saliency maps for two subjects when predicting
yv using model Id. The maps are overlayed on the preprocessed OCT scans of
the central (foveal) 1mm. These are shown for a non-responder in (a) and a
responder in (b).

4.2 Prediction of yδv

Table 3: Model performance for prediction of yδv

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

C 0.743 (0.703–0.782) 0.623 (0.545–0.696) 0.726 (0.682–0.766)
Cr 0.751 (0.710–0.790) 0.760 (0.688–0.823) 0.602 (0.555–0.647)
I 0.571 (0.518–0.622) 0.443 (0.366–0.522) 0.670 (0.625–0.714)
Ik 0.578 (0.526–0.630) 0.479 (0.401–0.558) 0.664 (0.618–0.707)
ICf 0.746 (0.706–0.784) 0.617 (0.538–0.691) 0.726 (0.682–0.766)
ICkf 0.749 (0.709–0.787) 0.635 (0.557–0.708) 0.728 (0.684–0.768)
Id 0.540 (0.487–0.593) 0.491 (0.413–0.569) 0.588 (0.542–0.634)

Table 3 gives the performance of each model for prediction of yδv, and figure 7
shows the corresponding ROC curves. All models apart from Id have AUCs with
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Fig. 7: This figure shows the ROC curves of each model when predicting yδv.

a 95% confidence interval whose lower bound is greater than 0.5. Hence we have
not demonstrated that Id performs better than chance with respect to whether a
randomly chosen responder, yδv = 1, is given a higher probability of responding
to treatment than a randomly chosen non-responder, yδv = −1. Therefore we
do not consider it to be a useful model for predicting yδv and do not discuss it
further at this stage. It should also be noted that the confidence intervals for the
sensitivity of models I and Ik include 0.5. This indicates that these models do
not perform better than a model that gives a random binary prediction to true
responders.

If we now consider table 3 in more detail, we see that the models that use
clinical/demographic features have AUCs in the range 0.743–0.751. Moreover,
the sensitivities and specificities of each model are very similar, apart from Cr,
which has a higher sensitivity and lower specificity than the other models. In
particular we can say that there is no obvious improvement in model performance
when image-derived features are included with clinical/demographic features
over models that use only clinical/demographic features.

Figure 8 shows the role that the clinical/demographic variables play in the
models which use them as input features. In figure 8a we show the parameter
estimates for the standardized clinical/demographic features for models C, ICf,
and ICkf, and the 95% confidence intervals for model C. The parameter estimates
indicate negative adjusted associations of VA1, and Age, and positive adjusted
associations of being Female, and being White, with dichotomized change in
VA for all models. For model C, only VA1 and Age have confidence intervals
indicating statistically significant associations with yδv. The strong negative ad-
justed association with VA1 is the so-called ‘ceiling effect’, in which subjects
with smaller pre-treatment VA tend to show larger treatment-related improve-
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ments in VA [18]. We would also expect age to be negatively associated with
treatment-related gains in VA based on previous literature [18]. Figure 8b shows
the feature importances of the random forest model Cr when predicting yδv. We
can see that VA1 and Age are considered to be the most important features for
this model.

(a) (b)

Fig. 8: In (a) we show the coefficients of the standardized clinical/demographic
feature parameters in the models C, ICf, and ICkf when predicting yδv. 95%
confidence intervals are also shown for each parameter for the model C. In (b)
we show the clinical/demographic feature importances in the model Cr when
predicting yδv.

Figure 9 shows the saliency maps of the model Ik for prediction of yδv. In
figure 9a we show the saliency map for prediction of a correctly identified non-
responder, while figure 9b shows the corresponding map for a correctly identified
responder. As before, the saliency map of a particular b-scan is normalized within
its range to ease visual interpretation. If we consider figure 9a, we can see that
the the voxels of medium importance (coloured green) overlap with some of the
pigment epithelial detachment present in the scans. The saliency map in figure 9b
shows high (red) and medium importance voxels overlapping with intra-retinal
and sub-retinal fluid.
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(a) Non-responder, yδv = −1

(b) Responder, yδv = 1

Fig. 9: This figure shows the saliency maps for two subjects when predicting
yδv using model Ik. The maps are overlayed on the preprocessed OCT scans
of the central (foveal) 1mm. These are shown for a non-responder in (a) and a
responder in (b).

5 Discussion

In this work we have used Deep Learning based approaches to predict the re-
sponse of subjects with treatment-naive nAMD to three monthly doses of in-
travitreal aflibercept therapy, using OCT and clinical/demographic variables ac-
quired shortly before treatment commenced. When predicting the dichotomized
VA 4-10 weeks after the final dose, yv, all the transfer learning models and the
fully trained Deep Learning model were able to perform better than chance on
an unseen test set with respect to the AUC. The transfer learning model that
used only image features gave an AUC of 0.787, whereas the logistic regres-
sion model using only clinical/demographic features gave an AUC of 0.891. The
highest AUC was given by the transfer learning model which used image fea-
tures and clinical/demographic features, which gave an AUC of 0.901. When
predicting the dichotomized change in VA, yδv, only the models that used just
clinical/demographic variables and the transfer learning models were able to per-
form better than chance. The transfer learning model that used kernel-smoothed
image features gave an AUC of 0.578, while the transfer learning model that used
kernel-smoothed image features and clinical/demographic features gave an AUC
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of 0.749. However, the best performing model for this outcome was the random
forest model using only clinical/demographic features, which gave an AUC of
0.751.

Given that the models that use only images are the worst performing models
for both outcomes, it is interesting to consider if the images are contributing
complementary information to the clinical/demographic features in the model
predictions. In order to test this, we use a procedure described in [8], which
works as follows. Firstly, we fit the outcome of interest using just the clini-
cal/demographic features c as predictors over the test data, and calculate the
log-likelihood of the model fit. We then repeat this fit using c and the output of,
e.g., the model I on the test data as predictors. These steps can be easily per-
formed using the statsmodels package. A likelihood ratio test of the two model
fits then establishes whether the predictions of model I contain different infor-
mation to the clinical/demographic features c about the outcome. If we do this
for outcome yv, we find evidence that the predictions of the models I, Ik, Id are
providing different information about yv than the clinical/demographic features
alone. Thus we have shown it is possible to train Deep Learning Transfer Learn-
ing and Fully Trained Deep Learning models using just images that not only per-
form better than chance for prediction of yv, but also use different information
from the clinical variables for its prediction. However, performing the analogous
tests for outcome yδv, does not provide evidence that the predictions of any of
the models I, Ik, Id contain different information to the clinical/demographic
features alone. Although I and Ik both performed better than chance for predic-
tion of yδv, this suggests that different modelling approaches should be explored
in order to develop predictive models that do not use essentially the same in-
formation as that provided by the clinical/demographic variables. Indeed, the
best performing model for prediction of yδv, Cr , used only clinical/demographic
variables, which further highlights the need for different modelling approaches.

The analysis presented is limited in a number of ways. From a model devel-
opment perspective, we did not try combining images and clinical/demographic
variables in a fully trained model. In [23], they trained such a network to predict
an outcome corresponding to yδv using OCT images and clinical/demographic
variables consisting of best-corrected visual acuity at visit one, age and gender.
Although they achieved high accuracy, their study design was markedly differ-
ent to PRECISE. They aimed to predict a change in VA of more than two lines
over a period of a year rather than three months, and some patients in their
study were not treatment-naive, unlike the PRECISE study. In future work, we
could explore training such models using data that has been acquired with a
study design similar to that of PRECISE. We could also consider explicitly in-
cluding the transfer learning image features in the model to possibly improve
model performance. Additional improvements in performance may arise from a
careful use of data augmentation of the OCT images when training the Deep
Learning models [3, 11]. In experiments we performed using just the training
data, we did not find any benefit to incorporating data augmentations based on
affine transformations of the OCT images. However, it could be that the use of
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more flexible elastic transformations, such as those utilized in [24], may improve
the predictive performance of the resulting Deep Learning models. Finally, our
analysis is limited because the validation was performed with an unseen test set
that is a random sample of the complete available data. Although this provides
a measure of model performance, it is still considered to be an internal valida-
tion. If an independent dataset became available, it could be used to evaluate
the models after retraining using the complete PRECISE dataset. This would
provide a better assessment of how well these models are likely to perform in a
clinical setting.
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