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Abstract.

Objective: Develop an anatomical model based on the statistics of the population

data and evaluate the model for anatomical robust optimisation in head and neck

(H&N) cancer proton therapy.

Approach: Deformable Image Registration (DIR) was used to build the probability

model (PM) that captured the major deformation from patient population data and

quantified the probability of each deformation. A cohort of 20 nasopharynx patients

was included in this retrospective study. Each patient had a planning CT and 6 weekly

CTs during radiotherapy. We applied the model to 5 test patients. Each test patient

used the remaining 19 training patients to build the PM and estimate the likelihood

of a certain anatomical deformation to happen. For each test patient, a spot scanning

proton plan was created. The PM was evaluated using proton spot location deviation

and dose distribution.

Main results:Using the proton spot range, the PM can simulate small non-rigid

variations in the first treatment week within 0.21 ±0.13 mm. For overall anatomical

uncertainty prediction, the PM can reduce anatomical uncertainty from 4.47±1.23mm

(no model) to 1.49±1.08 mm at week 6. The 95% confidence interval (CI) of dose

metric variations caused by actual anatomical deformations in the first week is -0.59

∼ -0.31 % for low-risk CT D95, and 0.84 ∼ 3.04Gy for parotid Dmean. On the other

hand, the 95% CI of dose metric variations simulated by the PM at the first week is

-0.52 ∼ -0.34% for low-risk CTV D95, and 0.58 ∼ 2.22Gy for parotid Dmean.

Significance: The PM improves the estimation accuracy of anatomical uncertainty

compared to the previous models and does not depend on the acquisition of the weekly

CTs during the treatment. We also provided a solution to quantify the probability of an

anatomical deformation. The potential of the model for anatomical robust optimisation

is discussed.
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1. Introduction

Intensity modulated proton therapy (IMPT) has advantages in delivering a conformal

dose distribution to the target while minimizing the dose to the adjacent normal tissue

[1, 2, 3, 4], exploiting the steep falloff of the Bragg peak. However, this precise delivery

technique has inherent sensitivity to uncertainties, which are especially common in the

head and neck (H&N) cancer treatment. Uncertainties may degrade the quality of

treatment. To help design the congruous mitigation methods, uncertainty needs to be

systematically explored.

Current research in H&N proton therapy delivery focuses on the mitigation of

anatomical changes[5, 6]. For H&N cancer patients, the anatomical changes can be

divided into two types: small non-rigid variations (sNRVs) and progression. For sNRVs,

nasal filling, jaw movement, neck folds, spine flexion and shoulder position changes are

common during treatment [7, 5]. sNRVs occur randomly. The dosimetric influence of

these changes was revealed by Zhang et al.[8]. For progression changes, Tan et al. [9]

reported an average tumor volume shrinkage of 36.5% (20% ∼ 60%.) in a cohort of

20 nasopharynx cancer patients. Bhide et al. [10] showed that for 20 H&N patients,

the parotid volume decreased with a reduction rate between 21.3% and 42%, with an

average medial shift of the parotid centre of mass of 2.3 mm (as measured at week 4)

Anatomical robust optimisation (aRO) is a recently proposed technique to design

robust plans of resilience to anatomical changes. In aRO, multiple CTs acquired

during the treatment are included in the optimisation[11, 12]. However, it either

requires multiple scanning before planning[11] or needs the images acquired during

the treatment[12]. While multiple scanning gives the extra imaging dose to the H&N

patient and affects the efficiency of a busy proton therapy practice, the dependence of

images acquired during the treatment also compromises the benefits of reducing the

rate of replanning. Anatomical models that simulate the possible geometric variations

from a population of patient data remove the requirement of multiple scanning and the

dependence of CT images acquired during the treatment by taking the predicted images

into aRO. Several mathematical models have been proposed to account for anatomical

changes[13, 14, 15, 16]. Yu et al. used an anatomical model for deformable image

registration (DIR) evaluation. Zhang et al. used a predictive model in head and neck

patients in offline adaptive proton therapy [15, 16].

The previous models proposed by Yu et al.[14] and Zhang et al.[15] mainly predict

the patient-specific progressive changes during the treatment. They required weekly

CTs during the treatment to build or update the model, which limited the benefits of

creating a robust plan against anatomical changes at the planning stage. In reality,

a CT is only a snapshot of the anatomy, it cannot fully represent the anatomical

changes that happened to the patients during the treatment. Small non-rigid anatomical

changes always exist. Apart from that, the influences of acute toxicities from cancer

treatment on H&N patients’ eating during the treatment also determine the weekly

anatomical changes. Considering that accurately predicting anatomical changes during



4

the treatment at the beginning is challenging, an alternative way is to build a probability

model that generates the predicted images based on the statistics of the population data.

To be more specific, the model generates plausible deformations instead of one specific

deformation. To capture the major deformations in a population, we investigated the

use of principal component analysis (PCA). PCA finds the best orthogonal basis, the

principal components (PCs), whose variance of the projections of the data are ranked

from the greatest to the smallest. Thus, it is possible to restore information using

a limited number of PCs that describe the majority of anatomical deformations. The

basics of PCA were detailed in Lever et al. [17]. However, the assumption that generated

deformations would happen with equal probability is not reasonable. To date, it is still

challenging to quantify the probability of a certain type of anatomical deformation to

arise during the treatment course. In this paper, we exploited the orthogonality of PC

to do the quantification. The calculated probability can assist to assess the anatomical

uncertainty for a patient cohort. Also, the predicted images with higher possibilities

can be chosen for aRO and the corresponding possibility can be used to design robust

optimisation objectives in aRO.

In this work, we aim to: 1) Develop a probability model (PM) based on PCA

to model major deformations in patients. 2) Quantify the probability of each type of

anatomical deformation based on population data. 3) Validate the feasibility of the PM

to measure anatomical uncertainty based on range and dose distribution.

2. Method and material

2.1. Patient data

Twenty nasopharyngeal carcinoma patients were recruited retrospectively. Each patient

underwent a planning CT (pCT) and a weekly repeat CT (rCTt), where t (t=0,1,2,3,...)

represents the week of CT scanning. CT images were all acquired using a Brilliance

Big Bore CT simulator (Philips, Inc, Cleveland, OH, USA). The details are listed in

Table 1. Contours in the planning CT and weekly CTs were manually delineated by an

oncologist. The leave-one-out strategy was applied for 5 test patients. Each test patient

used the 19 training patients to build the model.

Table 1: CT image acquisition details

Tube voltage Reconstruction diameter Slince thickness Pixel Spacing Data Collection Diameter

120kVp 500 mm 3 mm 0.98 mm 600 mm

For all 5 test patients, an original (nominal) IMPT treatment plan with three beam

fields (60◦, 180◦, 300◦) was generated using the Eclipse version 16.1.0 (Varian Medical

Systems, Palo Alto, CA). All plans generated throughout this study were robustly

optimised with ±3mm setup and ±3.5% range uncertainty for CTVs and critical organs

at risk (OARs). A relative biological effectiveness (RBE) of 1.1 for proton beams was
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used. The dosimetric goals and priorities for all plans in this study are summarised in

Table 2. A plan was deemed acceptable if the goals set for the CTV and serial organs

are fulfilled in the nominal scenario (the error free distribution) as well as all 12 dose

distributions (3mm orthogonal shifts combined with the ±3.5% range error) in a robust

evaluation. More clinical characteristics of the patients can be found in the paper of

Tan et al. [9, 18].

Table 2: Dosimetric goals of the treatment plans created in this study

.
Structure Goal under uncertainty

High-risk-CTV D95(The minimum dose to 95% of target volume) > 95% of prescription dose (72.6Gy(RBE), 33 fractions)

Low-risk-CTV D95 > 95% of prescription dose (63Gy(RBE), 33 fractions)

CTV D2 (The minimum dose to the hottest 2% volume ) < 107% of prescription dose

Spinal cord Dmax (The maximum dose in the volume) < 45 Gy(RBE)

Brainstem Dmax <55 Gy(RBE)

Chiasm Dmax <55 Gy(RBE)

Structure Goal in Nominal

Parotid glands Dmean (The mean dose in the volume) <26 Gy(RBE)

Oral cavity Dmean <40 Gy(RBE)

Larynx Dmean <40 Gy(RBE)

Proton planning information: MFO planning; spot spacing size: 5mm; energy range: 70 MeV – 250MeV; range shifter: 5cm

dose calculation algorithm: Pencil beam scanning (PBS); optimisation algorithm: Nonlinear Universal Proton Optimiser.

2.2. Methods

2.2.1. Deformable image registration We chose to use the diffeomorphic image

registration implemented in NiftyReg [19] to identify anatomical changes between two

images. It is invertible, differentiable and whose inverse is also differentiable [20, 21].

The deformation vector fields (DVFs) (ϕϕϕ) are expressed as:

ϕ = exp(v), (1)

where v is the stationary velocity field (SVFs) of the diffeomorphic image registration

[21] used in this project.

The inverse transformation ϕ−1 can be calculated as

ϕ = exp(v) ⇒ ϕ−1(x) = exp(−v). (2)

To obtain inter-fraction DVFs of patients, rigid registration was done before DIR

using Niftyreg. In DIR, pCT was the reference geometry, each rCTt was registered to

its respective pCT to produce transformation vp→t, where p stands for pCT.

The generated vp→t is applied to the rCTs and its contours to generate dCTs

and propagated contours. The nominal plan is applied to the dCTs to calculate the

dose distributions respectively. In an ideal algorithm, dCTs should be the same as the

pCT. Therefore, dCTs should have the same dose distribution as the planning dose

distribution. The DIR algorithm was fully evaluated by the 3-dimensional mean surface

distance (MSD) between propagated contours and planning contours, and the 3D gamma
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index (2%/2mm) between accumulated dose distribution of dCTs and the planning dose

distribution.

The maximum value of MSD was below 3 mm (slice thickness) for all structures.

The gamma index between accumulated dose using dCTs and planning dose is above

97.73%. An illustration of the DIR based on the contour of the spinal cord is shown in

Appendix A.

2.2.2. Probability model In the clinic, the magnitude of uncertainty is estimated from

population data [22, 23, 24, 25]. In this paper, we used the PM to statistically model

the anatomical changes of population based on PCA. The procedure of building the PM

was divided into the following steps and repeated for each treatment week t.

(i) To ensure that the inter-fraction DVFs of patients were in the same space and had

the same resolution, we projected the DVFs into the atlas space using:

va,p→t = R−1
a→p ◦ vp→t ◦Ra→p. (3)

where Ra→p presents the SVF from pCT to altas CT.

(ii) The average SVF for week t in the atlas space was calculated as the expectation

value E of the deformation va,p→t of the training dataset

E(va,p→t) =
1

Np

∑
pi

vpi
a,p→t, (4)

where Np is the number of patients used in this model and pi is the patient index.

(iii) The random deformation of each patient at week t in the atlas space can be

calculated as following:

vvvrand,pia,p→t = vvvpia,p→t − E(vvva,p→t). (5)

(iv) The random deformations of all training patients at week t were composed to a

random deformation matrix in the atlas space, referred to as vvvranda,p→t, which was

represented approximately using

vvvranda,p→t = (vvvrand,1a,p→t , vvv
rand,2
a,p→t , · · · , vvv

rand,Np

a,p→t ) ≈

[ α1,1 α1,2 · · · α1,L

α2,1 α2,2 · · · α2,L

...
...

. . .
...

αNp,1 αNp,2 · · · αNp,L

][VVV 1

VVV 2

...

VVV L

]
. (6)

VVV l is the PC vector, also called eigenvector. αi,l is the coefficient of the l-th

eigenvector belonging to the i-th training set. L is the number of eigenvectors

used to build the model. L was chosen to be able to represent 90% of population

variations. Each column of the α matrix represents the coefficients of one

eigenvector.
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(v) The probability density function (PDF) of α of an eigenvector was annealed using

kernel density estimation [26]. The estimation used

pl(α) =
1

Np · σl

√
2π

Np∑
i=1

exp−(α−αi,l)
2/2σ2

l , (7)

σl =
1.06

Np
0.2

√√√√∑Np

i (αi,l − 1
Np

∑Np

i αi,l)2

Np − 1
, (8)

where pl is the probability distribution of the coefficients of the l-th eigenvector. The

comparison between real distribution of a column of α and the annealed distribution

is shown in figure 1.

Figure 1: The comparison between real distribution of a column of α and the annealed

distribution.

(vi) The sampled numbers from pl formed the l-th column of the α̃ matrix. Because

the distribution was estimated from a limited training dataset, sampling extended

the coefficients to capture all the possible random anatomical changes resulting in

ṽ̃ṽvranda,p→t = (ṽ̃ṽvrand,1a,p→t , ṽ̃ṽv
rand,2
a,p→t , · · · , ṽ̃ṽv

rand,Ns
a,p→t ) ≈

[ α̃1,1 α̃1,2 · · · α̃1,L

α̃2,1 α̃2,2 · · · α̃2,L

...
...

. . .
...

α̃Ns,1 α̃Ns,2 · · · α̃Ns,L

][VVV 1

VVV 2

...

VVV L

]
. (9)

Each row of the predictive matrix α̃iα̃iα̃i = (α̃i,1, α̃i,2, · · · , α̃i,L) in equation 9 was

multiplied with VVV to form a predicted random deformation for week t, represented

by ṽ̃ṽvrand,ia,p→t. i is the index of the predicted random deformations. Ns is the number

of samples.
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(vii) A deformation of the PM for week t is:

vvvPM,i
a,p→t = E(vvva,p→t) + ṽ̃ṽvrand,ia,p→t, i∀(1 ∼ Ns). (10)

(viii) Each deformation vvvPM,i
a,p→t was transformed into the space of an individual patient

using

vvvPM,i
p→t = RRR−1

a→p ◦ vvv
PM,i
a,p→t ◦RRRa→p. (11)

(ix) To warp the pCT, the transformation must be directed from the predicted anatomy

to the pCT. The deformation vvvPM,i
t→p needs to be reversed using:

vvvPM,i
t→p = −vvvPM,i

p→t . (12)

(x) The warped images CTPM,i
t were acquired using:

ϕϕϕPM,i
t→p = exp(vvvPM,i

t→p ), (13)

CTPM,i
t = ϕϕϕPM,i

t→p (pCT), (14)

where CTPM,i
t is the i-th predicted image of week t. ϕϕϕPM,i

t→p is also applied to contours

of planning CT to get the deformed contours on CTPM,i
t .

We can now obtain Ns predicted images for week t. Considering that eigenvectors

are orthogonal, the probability distribution of their coefficients are independent.

Therefore, the probability of predicted images with specific αiαiαi can be calculated by

the joint probability

P (α̃iα̃iα̃i) = p1(α̃i,1) · p2(α̃i,2) · ... · pL(α̃i,L),
Ns∑
i

P (α̃iα̃iα̃i) = 1. (15)

2.3. Model evaluation

In this section, we evaluated the PM in terms of estimating anatomical uncertainty

based on weighted spot location deviation (WSLD) and dose distribution.

2.3.1. Model evaluation based on weighted spot location deviation. WSLDmeasured the

uncertainty based on range changes. We used the spot positions and weights, derived

from the treatment plan file as both the spot positions and weights [27] affect the dose

distribution. The method to determine the spot location is described in Appendix B.

The WSLD is presented in equation 16:

WSLD =
∑
r

|runcertainty − rreference| · wr,
∑

wr = 1, (16)

where r is a spot position in the CT. rreference is the spot location in the reference frame

(pCT). runcertainty is the spot location under an anatomical variation (predicted CTPM).

The spot weight wr is normalized to 1.
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The WSLD is calculated for each of the CTPMs. The total WSLD that combines

the WSLD of CTPM,i
t and its estimated probability from the extended population was

calculated using

WSLDPM
t =

Ns∑
i=1

(WSLDCTPM,i
t · P (αiαiαi)). (17)

WSLDCTPM,i
t is the WSLD from the predicted image CTPM,i

t at week t. P (αiαiαi) is the

probability of the predicted image CTPM,i
t . Ns is the number of samples produced by

the PM.

The WSLDPM is used to estimate the anatomical uncertainty from three

aspects: small non-rigid variations (sNRVs), total anatomical uncertainty, and residual

anatomical uncertainty from the PM, as follows:

• The small non-rigid positioning anatomical uncertainty and total anatomical

uncertainty simulated by the PM. The PM statistically summarized the probability

of anatomical changes for each week. Progressive changes induced by the radiation

in the first week are not significant [9]. Therefore, the WSLD estimated by the PM

in the first week of treatment represented the influence from sNRVs such as tongue

movement, shoulder positioning or small rotations. The WSLD from later fractions

was the combined influence of sNRVs and progressive changes (total anatomical

uncertainty).

• The residual anatomical uncertainty from the PM - The difference between the

estimated anatomical uncertainty from the PM and actual anatomical uncertainty

was used to evaluate the accuracy of the PM. We referred to it as the residual

anatomical uncertainty (∆WSLDres), see equation 18,

∆WSLDres
t = WSLDreal

t −WSLDPM
t , (18)

where WSLDreal
t is the actual anatomical uncertainty calculated by the WSLD

between rCTt and pCT, which is also corresponding to the residual anatomical

uncertainty of no model. WSLDPM
t is the anatomical uncertainty at week t

estimated by the PM. Ideally, the model should approach a ∆WSLD of 0 for each

treatment week t.

2.3.2. Model evaluation based on dose distribution. Anatomical deformations lead to

dose variations. We recalculated the dose on the deformed images using the original

IMPT plan. Then we compared 1) the actual dose variations from the training dataset,

and 2) the dose variations simulated by the PM. The deformations of an exemplary

patient in the first week were chosen to demonstrate the dosimetric influence from small

non-rigid variations.

1) To obtain the actual dose variations, we applied the actual deformations of 20

patients in the first week to the planning CT of the exemplary patient to obtain 20
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actual sNRVs. The original IMPT plan of this exemplary patient was applied to the

20 actual sNRVs to calculate the dose variations. These variations can be illustrated

as dose volume histogram (DVH) bands in the nominal DVHs of organs, referred to as

actual DVH bands. We also calculated perturbed dose metrics for each considered dose

metric Dx (e.g. D95). The perturbed dose metrics subtract the nominal dose metrics to

obtain the dose metric discrepancy ∆Dx.

2) To obtain the dose variations simulated by the PM, 20 CTPM
1 (CT of the PM in

the first week) were selected following the joint probability distribution of the PM for

the exemplary patient. The same IMPT plan was also applied to the 20 CTPM
1 to create

DVH bands, referred to as the simulated DVH bands from the PM. The dose metric

discrepancy simulated by the PM was referred to as ∆Dx’.

3. Results

The exemplary patient’s slice images from the rCT1, rCT6 and 2 predicted CTs of the

PM in the first week and the sixth week are shown in figure 2.

3.1. Model evaluation based on weighted spot location deviation.

The WSLD of the anatomical uncertainty is estimated from the PM. The result is

shown in average WSLD with 95% confidence interval (CI) (see figure 3). The estimated

anatomical uncertainty from small non-rigid anatomical changes accounted for a range

uncertainty of 2.18±0.19 mm. The estimated total anatomical uncertainty (from sNRVs

and progressive changes) can reach 3.09±0.26 mm at week 6.

The residual anatomical uncertainty from no model and the PM(Ns = 100) were

compared in figure 4. In no model, predicted images were replaced by the planning

CT. When the anatomical uncertainty estimated from the predicted images of the PM

was considered, the residual anatomical uncertainty was reduced from 4.47±1.23 mm

(no model) to 1.49±1.08 mm (PM) at week 6, achieving a significant improvement as

compared to no model.

The comparison of individual cases between the actual WSLD (using rCTs) and

the estimated WSLD from the PM are listed in Table 3.

Table 3: WSLD caused by actual anatomical deformations (using rCTs) and WSLD

estimated by the PM in each test patient and week.

Week
Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

rCT(mm) PM(mm) rCT(mm) PM(mm) rCT(mm) PM(mm) rCT(mm) PM(mm) rCT(mm) PM(mm)

1 1.72 2.12 1.96 1.88 2.57 2.53 2.32 2.14 1.89 2.27

2 2.52 2.42 2.07 2.18 1.99 2.71 2.30 3.11 2.54 2.55

3 3.43 2.75 2.15 2.30 2.59 3.23 2.57 3.20 3.49 2.72

4 4.93 2.65 2.78 2.65 2.94 3.62 3.44 3.14 4.69 3.10

5 5.62 2.97 2.73 2.30 4.02 3.53 2.91 3.15 5.57 3.20

6 5.23 2.78 3.12 3.07 5.13 3.63 2.62 2.89 6.27 3.10



11

(a) (b) (c)

(d) (e) (f)

Figure 2: The exemplary patient’s slice images from the rCT1, rCT6 and 2 predicted

CT of the PM in the first week and the sixth week. (a) shows a slice image from the

rCT1 of the exemplary patient. (b)-(c) show slice images from 2 predicted CTs of the

PM in the first week. (d) shows the same slice image from the rCT6 of the exemplary

patient. (e)-(f) show slice images from 2 predicted CTs of the PM in the sixth week.

3.2. Model evaluation based on dose distribution.

For the exemplary patient, the actual DVH bands in the first week and the simulated

DVH bands from the PM in the first week is shown in figure 5. Supporting the rationality

of the PM, the simulated DVH bands of the PM demonstrate similar variations as the

actual DVH bands.

The DVH bands are intuitive but only demonstrate the worst cases. The statistics

of dose metrics need to be summarised to reveal the true ability of the PM. We listed

the maximum, minimum, mean value (µ), and margin of error (E) (used to form 95%

CI) of the ∆Dx from the actual sNRVs and the ∆Dx’ from the simulated sNRVs of the

PM in Table 4.

The 95% CI of dose metric variations caused by actual anatomical deformations in

the first week is from -0.59 % to -0.31 % (low-risk CTV D95), from 0.84Gy to 3.04Gy

(parotid glands Dmean) and from -0.96Gy to 1.90Gy (spinal cord D2) for low-risk CTV

D95, parotid glands Dmean and spinal cord D2, respectively. While the range of dose
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Figure 3: The anatomical uncertainty

estimated from the PM in WSLD for

each week. The result is estimated in

average WSLD with 95% CI across the

5 test cases. The WSLD in the first

week presents the uncertainty from non-

rigid positioning. The WSLD in the

following weeks evaluates the combined

effect of anatomical uncertainty from

non-rigid positioning and progressive

anatomical changes (total anatomical

uncertainty).

Figure 4: The residual anatomical

uncertainty in WSLD. The residual

anatomical uncertainty comes from no

model,in which predicted images were

replaced by planning CT, and the

PM(Ns = 100) were compared. The

result indicates the average difference

with 95% CI between the estimated

WSLD from the PM and the actual

WSLD across the 5 test dataset.

(a)

‘

(b)

Figure 5: Evaluation of the PM based on dose distribution. a) shows the bandwidth

from actual DVH band in the first week. b) shows the bandwidth simulated from the

PM in the first week.

metric variations simulated by the PM is from -0.52% to -0.34% (low-risk CTV D95),

from 0.58Gy to 2.22Gy (parotid glands Dmean) and from -1.65Gy to 1.35Gy (spinal
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Table 4: Dose metrics discrepancy (perturbed dose metrics - nominal dose metric) from

the actual sNRVs (∆Dx) and the simulated sNRVs from the PM (∆Dx’) are listed in

the maximum, minimum, mean value (µ) and margin of error (E) of 95% confidence

interval.

Low-risk CTV (∆D95(%)) High-risk CTV(∆D95(%)) Parotid Glands(∆Dmean(Gy)) Brainstem(∆D2(Gy)) Spinal(∆D2(Gy))

Actual Simulated Actual Simulated Actual Simulated Actual Simulated Actual Simulated

Maximum -0.05 0 -0.19 0 6.83 5.81 8.91 4.98 12.59 12.03

Minimum -1.46 -0.97 -3.12 -5.83 -2.15 -2.35 -5.08 -5.12 -3.98 -3.04

µ -0.45 -0.43 -1.02 -0.88 1.95 1.4 -0.08 0.04 0.47 -0.15

E 0.14 0.09 0.40 0.38 1.10 0.82 1.09 1.1 1.43 1.50

cord D2) for low-risk CTV D95, parotid glands Dmean and spinal cord D2, respectively.

4. Discussion

In this paper, an anatomical model was developed based on the statistics of the

population data. We quantified the probability of an anatomical deformation to arise

during the treatment. The model accuracy was evaluated based on WSLD and dose

distribution.

Zhang et al. [15] showed that the effect of anatomical progressions in the first week

of treatment was not significant. Therefore, we can use the PM of the first treatment

week to evaluate the uncertainty from small non-rigid anatomical changes. The PM can

simulate the small non-rigid variations in the first treatment week within 0.21 ±0.13

mm. For overall anatomical uncertainty prediction, the PM can reduce anatomical

uncertainty from 4.47±1.23mm (no model) to 1.49±1.08 mm at week 6 (see figure 4).

Compared to the anatomical uncertainty estimated by the previous AM/RIM model

[15], the PM further improves the estimation accuracy by 1.24 mm at week 3 and 0.4

mm at week 6 on average. Besides, the PM model does not rely on the acquisition of

the weekly CT during the treatment, making it more suitable to estimate anatomical

uncertainty.

For the dose metrics in Table 4, the 95% CI of the simulated dose metric of the

PM in the first week is basically within the 95% CI of actual anatomical deformations,

supporting that the PM is feasible to simulate the anatomical variations.

The inclusion of more scenarios in the training dataset can improve the probability

estimation. In probabilistic treatment planning or robust optimisation, uncertainty

scenarios are often described using uniform distribution [28] or normal distribution [29]

in the cost function. However, it is difficult to correspond one uncertainty scenario

with a probability. This work exploited the independence between PCs to calculate the

probability for each predicted CT. This can be used to design the cost functions of aRO.

The possibility of using cone-beam CT (CBCT) to build the model has been dis-

cussed in [15]. In a very recent study, plan robustness against anatomical changes was

investigated by aRO. Meśıas et al. [11] and Yang et al. [12] both concluded that this

method improved plan robustness toward anatomical changes and reduced the number
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of plan adaptations for H&N patients. However, Meśıas et al. [11] required multiple

scanning to produce extra CT images before treatment for robust optimisation. It will

add burden to a busy clinic. Yang et al. [12] used the images from the first plan adap-

tion to include progressive anatomical changes into the second adaptive plan. However,

it limits the creation of a robust plan at the early planning stage. To overcome these

limitations, the PM was developed based on the population data to capture systematic

progressions and comprehensive random deformations of H&N patients, making it pos-

sible to include anatomical changes before treatment without extra burden[28]. Online

adaption is an aspirational technique intended for same-day application. However, their

results were based on static images, acquired several minutes (median reported adaption

time: 12 minutes) before treatment application[30]. To consider the possibility of small

patient movements during the waiting time, non-rigid positional changes can in the fu-

ture be included in robust optimisation for current online adaption techniques. Such

changes can, for example, be inferred from the here suggested PM in the first treatment

week.

aRO often comes at the cost of increasing the integral dose[30]. Since the PM is

developed at each time-point, aRO using the PM can be explored to find the best way

of balancing plan robustness and integral dose increase. The potential strategies are

using: 1) the PM of different weeks, 2) the systematic progressive changes of different

weeks plus the small non-rigid variation of the first week. Future studies using different

strategies for aRO are underway.

5. Conclusion

The novelty of the paper is present in two aspects: 1) Instead of producing one predicted

CT at each time point, we produce predicted CTs based on the statistics of the

population each week, which is more close to reality. 2) we give a solution to calculate

the probability of a certain type of anatomical change. The probability improves the

accuracy of estimating the anatomical uncertainty and can be used to design the cost

function of aRO. Future studies validating the potential clinical application, such as

aRO, are underway.
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[6] Mislav Bobić, Arthur Lalonde, Gregory C Sharp, Clemens Grassberger, Joost M Verburg, Brian A

Winey, Antony John Lomax, and Harald Paganetti. Comparison of weekly and daily online

adaptation for head and neck intensity-modulated proton therapy. Physics in Medicine &

Biology, 66:055023, 2021.

[7] Eric K Hansen, M Kara Bucci, Jeanne M Quivey, Vivian Weinberg, and Ping Xia. Repeat CT

imaging and replanning during the course of IMRT for head-and-neck cancer. International

Journal of Radiation Oncology Biology Physics, 64(2):355–362, 2006.

[8] Ying Zhang, Jailan Alshaikhi, Richard A. Amos, Wenyong Tan, Virginia Marin Anaya, Yaru Pang,

Gary Royle, and Esther Bär. Pre-treatment analysis of non-rigid variations can assist robust

IMPT plan selection for head and neck patients. Medical Physics, pages 1–11, 9 2022.

[9] Wenyong Tan, Yanping Li, and Guang Han. Target volume and position variations during

intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma. OncoTargets

and therapy, 6:1719, 2013.

[10] Shreerang A. Bhide, Mark Davies, Kevin Burke, Helen A. McNair, Vibeke Hansen, Y. Barbachano,

I. A. El-Hariry, Kate Newbold, Kevin J. Harrington, and Christopher M. Nutting. Weekly

Volume and Dosimetric Changes During Chemoradiotherapy With Intensity-Modulated

Radiation Therapy for Head and Neck Cancer: A Prospective Observational Study.

International Journal of Radiation Oncology Biology Physics, pages 1360–1368, 2010.
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Appendix A. An illustration of the deformable image registration

The contours of rCTs are propagated to the planning CT using DVFs. In an ideal

situation (ideal DIR algorithm and no delineation bias between different images). The

propagated contours should be exactly the same as the planning contour. An example

of the propagated contour of the spinal cord of a rCT3 is shown on the planning CT

with its corresponding planning contour.

Figure A1: The propagated contour of the spinal cord of a rCT3 is compared with its

original planning contour on planning CT. The pink area represents the propagated

contour of the spinal cord. The blue area represents the planning contour of the spinal

cord.

Appendix B. Acquiring spot location

For each of the 5 test patients, the treatment plans were exported from the Varian

treatment planning system. Information of the spot positions (X,Y) and energy/layer

(Z) were extracted from the plan files. (X, Y ) are recorded relative to the isocenter (the

center of the target). (X, Y ) with the beam angle can specify the beam’s path. The

beam energy (Z) determines the depth of the spot along the path by calculating the

WEPL using equation B.1.

WEPL =
∑

i,j,k∈S

RSPi,j,k · di,j,k, (B.1)

where S is a set of voxels which contain the beam path, di,j,k is the path length of

the beam inside the voxel (i, j, k). RSPi,j,k is the voxel-wise relative stopping power
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estimated from CT numbers using a clinical calibration curve. We assumed parallel

beams. A ray tracing algorithm [31] was used to calculate the length in each voxel

passed by the beam.
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