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A B S T R A C T   

Background: Road traffic noise is a serious public health problem globally as it has adverse psychological and 
physiologic effects (i.e., sleep). Since previous studies mainly focused on individual levels, we aim to examine 
associations between road traffic noise and sleep deprivation on a large scale; namely, the US at county level. 
Methods: Information from a large-scale sleep survey and national traffic noise map, both obtained from gov-
ernment’s open data, were utilized and processed with Geographic Information System (GIS) techniques. To 
examine the associations between traffic noise and sleep deprivation, we used a hierarchical Bayesian spatial 
modelling framework to simultaneously adjust for multiple socioeconomic factors while accounting for spatial 
correlation. 
Findings: With 62.90% of people not getting enough sleep, a 10 dBA increase in average sound-pressure level 
(SPL) or Ls10 (SPL of the relatively noisy area) in a county, was associated with a 49% (OR: 1.49; 95% 
CrIs:1.19–1.86) or 8% (1.08; 1.00–1.16) increase in the odds of a person in a particular county not getting 
enough sleep. No significant association was observed for Ls90 (SPL of the relatively quiet area). A 10% increase 
in noise exposure area or population ratio was associated with a 3% (1.03; 1.01–1.06) or 4% (1.04; 1.02–1.06) 
increase in the odds of a person within a county not getting enough sleep. 
Interpretation: Traffic noise can contribute to variations in sleep deprivation among counties. This study suggests 
that policymakers could set up different noise-management strategies for relatively quiet and noisy areas and 
incorporate geospatial noise indicators, such as exposure population or area ratio. Furthermore, urban planners 
should consider urban sprawl patterns differently in terms of noise-induced sleep problems.   

1. Introduction 

Road traffic noise is a serious public health concern and environ-
mental nuisance. According to the World Health Organization (WHO), 
at least one million healthy life-years are lost annually because of traffic- 
related noise in Western Europe (World Health Organization, 2011). To 
reduce the adverse impacts of noise on human health, a series of policies 
and actions have been implemented by various organisations, such as 
the WHO Environmental noise guidelines (World Health Organization, 
2018), the Environmental Noise Directive in Europe (European Union, 

2002), the Environmental Protection Act in Canada (Government of 
Canada, 2019). In the US, after the adoption of the National Environ-
mental Policy Act in 1969, the Office of Noise Abatement and Control 
made considerable efforts on the development of noise policies which 
are largely ineffective due to the lack of funding (Andrews, 1976; Kang 
et al., 2001). Among these policies, administrative levels, such as cities, 
regions, even the whole country are regarded as significant subjects 
when policies are created and implemented. Therefore, understanding 
the association between noise and human health at the large-scale 
administrative level is important from policy and planning perspectives. 
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Road traffic noise has adverse health effects including hearing loss, 
sleep deprivation, and cardiovascular disease (e.g., Basner et al., 2014; 
Dratva et al., 2012; Héritier et al., 2018; Kang et al., 2023; Kryter, 1972; 
Münzel et al., 2021; Pirrera et al., 2010; Von Lindern et al., 2016; Tong 
et al., 2021). There is a growing body of evidence concerning the health 
consequences of traffic noise. We searched PubMed from database 
inception up to May 1, 2022 for articles published in English, with 
combinations of the search terms “sleep”, “traffic noise”, and “public 
health”. A total of 283 papers have been published, while 79 studies 
were found to investigate the impacts of road traffic on sleep. These 
studies, mainly from laboratory or field experiments, found that the 
sleep quality and quantity for individuals can be compromised by road 
traffic noise. However, we did not find any ecological study especially at 
a large scale to quantify associations between sleep and geospatial traffic 
noise indicators. Also, no study considered characteristics of urban 
sprawl patterns or spatial variations. Large-scale ecological research at 
administrative levels is still lacking, which is the fundamentals for 
public policymaking and implementation. In addition, in the era of big 
data, such research has become possible. While big data from multiple 
sources have been combined and studied in the environmental health 
setting previously, such as air quality and thermal environment (e.g., 
Kuo et al., 2018; Li et al., 2019), less attention has been given to studying 
the impacts of sound environment on health. 

Therefore, the aim of this study is first to visualise the spatial vari-
ations of sleep deprivation at the administrative level, then estimate its 
association with traffic noise indicators. We will also discuss which kind 
of urban sprawl pattern had a higher risk of noise-induced sleep prob-
lems, and consider whether other unexplanatory factors still exist. To 
answer these questions, multiple geospatial noise indicators were 
calculated at the US county level based on the nationwide noise map and 
connected to sleep deprivation data obtained from the largest health 
survey system. Hierarchical Bayesian spatial regression models were 
used to quantify the associations of interest while accounting for spatial 
correlation in the data. Finally, significant indicators were identified and 
more effective noise-management strategies were explored. It is ex-
pected that our findings can inform policymakers and urban planners to 
protect people from noise nuisance and build a healthier city. 

2. Methods 

2.1. Data sources 

We conducted the large-scale ecological study by investigating 
counties from the 48 contiguous states in the US. Open-sourced big data 
(including noise maps, sleep deprivation, and social-economic data) 
were obtained and aggregated to the county level. 

This study used the self-reported sleep data, which was obtained 
from the Behavioral Risk Factor Surveillance System (BRFSS) developed 
by the Centers for Disease Control and Prevention (CDC, 2021). BRFSS 
from 2010, as the latest sleep data that has county code information, was 
used in this study (CDC, 2021). Sleep deprivation, measured as sleep 
insufficiency in this study, is based on the question from the survey: 
“How many days did you not get enough sleep in past 30 days?”. The 
answers include “Number of days”, “None”, “Don’t know/Not sure”, 

“Refused”, and “Not asked or Missing”. Using this information, we 
created a binary sleep deprivation outcome variable for each respondent 
in order to estimate the deprivation at the county level; sleep depriva-
tion (i.e., >0 days of not enough sleep) vs. no sleep deprivation (i.e., 
0 days of not enough sleep). In the dataset, each respondent has been 
labelled by county code. The individual sleep data were aggregated to 
the county level based on county code labels. In total, 451,075 people 
were interviewed. Of these, 9085 persons were excluded since they did 
not respond to this question. 

Noise levels were obtained from the noise maps which is an efficient 
tool in the environmental plan and provide a visual presentation of the 
distribution of sound-pressure levels (European Environment Agency, 
2014). The US national noise map was produced by the US Department 
of Transportation using an A-weighted 24-h equivalent SPL metric based 
on the Federal Highway Administration Traffic Noise Model version 2.5 
(Bureau of Transportation Statistics, 2017). The national noise map is 
only available and feasible to process in the big data era with high 
computational capability. The available map dates to 2014, which is 
used in this study, since the changes in road network could be negligible 
between 2010 and 2014 in the US, a developed country (Barrington--
Leigh and Millard-Ball, 2020; Rodrigue et al., 2016). The road traffic 
noise map in Tag Image File Format was imported in ArcGIS Pro 2.7 and 
converted to a raster file of 30 m grid resolution, which is the finest 
available spatial resolution. The value of pixels from the raster map 
presents the value of SPLs. There are more than ten billion pixels in total. 
To make the data processing feasible and fast, the whole map was 
divided into smaller maps then processed separately. Meanwhile, the 
accuracy of SPL is reduced to 1 dBA from 0.001 dBA. Subsequently, we 
developed a Python program and applied spatial statistics function in 
ArcGIS Pro 2.7 to calculate geospatial noise indicators. Based on pre-
vious studies, geospatial noise indicators were widely used in the field of 
urban sound environment (Cai et al., 2019; Casey et al., 2017; Lam and 
Chung, 2012; Xie and Kang, 2009). Studying the health effects of noise 
from a spatial and macro perspective, can help with managing and 
allocating resources towards more effective urban planning layouts and 
noise management strategies. Through a literature review, seven in-
dicators were extracted to describe the county traffic noise, as shown in 
Table 1. 

Since previous studies have indicated that the impacts of noise on 
health are related to social-economic status, we extracted data on 19 
county-level descriptors from the American Community Survey as con-
trol variables; including population, sex ratio, median age, percentage of 
Black or African American, unemployment rate, old-age dependency 
ratio, mean travel time to work (in minutes), percentage of married- 
couple family households, average household size, median income, 
percentage of people with bachelor’s degree, graduate or professional 
degree, percentage of renter-occupied housing units, median number of 
rooms, median housing value, percentage of households with no vehicle, 
percentage of detached or attached houses, percentage of households 
below 149 percent of the poverty level, and population density. Due to 
high correlation between the variables, a principal components analysis 
was conducted to extract less correlated combined components that 
explained a large proportion of the original variability. These factor 
scores were then used in the regression modelling. 

Table 1 
County-level traffic noise indicator descriptions.  

Indicators Descriptions 

Lave (dBA) Average sound-pressure levels 
Ls10 (dBA) Sound-pressure levels of relatively noisy area in a county (sound-pressure levels exceeded for 10% of the county) 
Ls90 (dBA) Sound-pressure levels of relatively quiet area in a county (sound-pressure levels exceeded for 90% of the county) 
Exposure area (km2) Area exposed to traffic noise 
Exposure area ratio (%) The percentage of area exposed to traffic noise 
Exposure population (thousand people) Population exposed to road noise 
Exposure population ratio (%) The percentage of population exposed to road noise  
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2.2. Statistical analysis 

We model the probability that an individual living in a specific 
county did not get enough sleep at some point in the past 30 days as a 
function of county-level road traffic noise, socioeconomic factors, and 
spatially correlated random effects using a hierarchical Bayesian spatial 
logistic regression framework. The statistical model is given as 

Yk|pk ∼ Binomial(nk, pk), k= 1,…, n;  

logit(pk)= β0 + β1*noisek +
∑m

j=1
fsjk*γj + φk  

where Yk is the observed number of people not getting enough sleep in 
county k out of the nk people who were surveyed in the county; n is the 
total number of counties included in the study; pk is the probability that 
a person in the county does not get enough sleep; noisek is the measure of 
road traffic noise in the county (multiple metrics were tested in separate 
models due to high correlation between them); fsjk is the factor loading 
from the jth principal component in the county (m = 6, six total factors 
were retained); and φk is the spatially correlated random effect specific 
to the county. 

The spatially correlated random effects account for unexplained 
spatial variability in the data and help to ensure that statistical inference 
for the primary noise associations is accurate. Failing to account for 
spatial correlation can potentially lead to different conclusions from the 
model and may need further investigations (Bravo et al., 2022; Guna-
sekera et al., 2020; Warren et al., 2022). To model this correlation, we 
used the Leroux version of the conditional autoregressive model (Leroux 
et al., 2000) where the prior mean for a county-specific random effect is 
a weighted average of its neighbours’ random effect values with a 
variance that depends on the number of neighbours. Specifically, the 
model is given as 

φk

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

φ− k, ρ, τ2 ∼ N

⎛
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⎞

⎟
⎟
⎠

where φ− k is a vector of all random effects other than the one from 

county k; ρ ∈ [0,1) describes the level of spatial correlation in the 
random effects with values near zero suggestive of spatial independence 
and values near one suggestive of strong spatial correlation; τ2 is the 
variance parameter for the effects; and wkj is a binary variable describing 
whether counties k and j are neighbours (i.e., touching borders). By 
definition, a county is not a neighbour of itself so that wkk = 0 for all k. 

To complete the model specification, we assigned weakly informa-
tive prior distributions to the introduced model parameters, allowing the 
data to drive the inference rather than our prior beliefs. Specifically, all 
regression parameters were assigned N(0,100,000) distributions, 
ρ ∼ Uniform(0,1), and τ2 ∼ Inverse Gamma(1, 0.01). All models were 
adopted in the Bayesian setting using Markov chain Monte Carlo 
(MCMC) sampling algorithms within R statistical software (R Core 
Team, 2020) using the “CARleroux” function within the “CARBayes” 
package (Lee et al., 2018). We discarded 100,000 samples prior to 
convergence of the algorithm. The total number of MCMC samples 
collected post-convergence of the model was 1,000,000. We thinned 
these samples by a factor of 100, resulting in 10,000 less correlated 
posterior samples with which to make statistical inference. Convergence 
for each model was assessed through visual inspection of trace plots and 
calculation of Geweke’s convergence diagnostic for all model 
parameters. 

3. Results 

In the US, 62.90% of people reported that they did not get enough 
sleep to different extents. On average, they did not get enough sleep for 
7.66 days in last 30 days. The spatial distribution of the modelled per-
centages of people not getting enough sleep across every county is 
shown in Fig. 1, based on the model that used Lave as the noise covariate. 
In counties without observed survey data, the statistical model allowed 
us to estimate these percentages based on county covariate values and 
spatial correlation. It can be seen the percentage of people not getting 
enough sleep varied considerably over counties. 

The results from the statistical modelling are presented in Table 2, 
which shows the estimated associations on the odds ratio (OR) scale (i. 
e., posterior medians and 95% equal tailed quantile based credible in-
tervals (CrIs)) between the probability of not getting enough sleep and 
substantial noise indicators. We highlighted results for those variables 

Fig. 1. The modelled percentage of people not getting enough sleep at the county level based on the statistical model using Lave as the noise covariate.  
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with 95% CrIs that exclude 1.00 in bold. Overall, considerable positive 
relationships were observed. A 10 dBA increase in Lave at the US county 
level resulted in a 49% increase in the odds of a person in that county not 
getting enough sleep (OR: 1.49; 95% CrIs: 1.19–1.86). Furthermore, 
Ls10 and Ls90 indicating spatial percentile SPLs were examined. The 
results showed that a 10 dBA increase in county-level Ls10 was associ-
ated with an 8% increase in the odds of a person not getting enough 
sleep (1.08; 1.00–1.16) while the CrIs for Ls90 were not statistically 
significant. Also, for absolute exposure area and exposure population, no 
significant association was observed. However, when we examined the 
exposure area ratio and exposure population ratio, they were positively 
associated with sleep deprivation. Specifically, a 10% increase in 
exposure area ratio was associated with a 3% increase in the odds of a 
person not getting enough sleep (1.03; 1.01–1.06). A 10% increase in 
exposure population ratio has a correlation with a 4% higher probability 
of a person not getting enough sleep (1.04; 1.02–1.06). 

A choropleth map of the random effect (φk) estimates from the model 
which associated Lave and sleep deprivation is shown in Fig. 2. Maps of 
estimates from other regression models show similar patterns. It can be 
seen that several areas (e.g., counties in Michigan) continued to have 
high residual risk of people not getting enough sleep even after adjust-
ment for noise and socioeconomic factors. This suggests that the cova-
riates are not perfectly describing risk in these areas and there is 

unexplained variation remaining in the data. The results also suggest 
that the unexplained variability in the data was primarily driven by 
strong spatial correlation instead of non-spatial random variation, as 
indicated by the estimate of ρ (0.98; 0.94–1.00). From the map, it can be 
seen that the counties with positive residual values are mainly clustered 
in the northeast and northwest of the US (e.g., Michigan & Montana). 
This suggests that the risk of sleep deprivation in these counties tends to 
be elevated after adjustment of predictors in the model. The counties 
with negative values are located at the southwest and southeast, which 
means that the remaining risk is lower after adjustment of predictors. 

4. Discussions 

Based on the multi-sourced data analysis and spatial visualisation, 
considerable people (62.90%) are suffering from sleep deprivation in the 
US, and they are not distributed evenly at the county level. The problem 
seems to have been reduced slightly, compared with 69.4% of adults 
experiencing lack of sleep in 2009 based on the same survey (Liu et al., 
2013). We used the Bayesian spatial model to predict percentage of 
people not getting enough sleep in the counties without observed survey 
data. The results can be used to identify which areas have more serious 
sleep deprivation issues in the US and allocate more resources when 
dealing with such issues. 

With the Bayesian spatial regression modelling, it can be concluded 
that substantial noise indicators can contribute to variations in sleep 
deprivation among counties in the US, however, the noise management 
strategies have not received the US government’s significant attention. 
Overall, the risk of not getting enough sleep would be higher when there 
is an increase in the average SPL of a county. While this finding is 
excepted and in keeping with previous studies where it has been shown 
that both quality and quantity of sleep can be compromised for in-
dividuals (Kim et al., 2012; Lee et al., 2018). It is interesting to note that 
among different spatially referenced noise indicators (Ls10 and Ls90), 
only SPL of the relatively noisy area (Ls10) can increase the risk of sleep 
deprivation. Ls90, as SPL of relatively quiet area, was not correlated with 
sleep significantly. Hence, environment noise policymakers should 
consider the spatial variations within a county (i.e., difference between 
relatively noisy and quiet areas) that current policies failed to consider. 

Table 2 
Odd ratio and 95% credible interval (CrI) for sleep deprivation associated with 
overall indicators for noise.  

Indicators Odd Ratio 

Posterior Median 95% CrI (Posterior 
Quantiles) 

2.5% 97.5% 

Lave (10 dBA) 1.49 1.19 1.86 
Ls10 (10 dBA) 1.08 1.00 1.16 
Ls90 (10 dBA) 1.46 0.80 2.65 
Exposure area (km2) 1.00 1.00 1.00 
Exposure area ratio (10%) 1.03 1.01 1.06 
Exposure population (thousand people) 1.00 1.00 1.00 
Exposure population ratio (%) 1.04 1.02 1.06  

Fig. 2. Posterior means of the spatial random effects from the regression model for Lave. Large positive random effect values represent elevated risk of sleep 
deprivation after adjustment of predictors in the model. Large negative values indicate the opposite. 
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It is suggested that in the relatively noisy areas and quiet areas, the 
noise-management strategies could be different rather than uniform (e. 
g., setting up different limiting SPLs). Furthermore, it is worth protecting 
‘Quiet Areas’ for population health. In Europe, the definitions, economic 
effects, and evaluation methods for quiet areas have been widely dis-
cussed, and there are guidelines published and practice conducted 
among Member States of European Union (European Environment 
Agency, 2014). In the US, Quiet Communities Act was developed by the 
US Environmental Protection Agency and introduced in the US 
Congress, but it was essentially unfunded (Environmental Protection 
Agency, 2021). Compared to Europe, noise policy implementation and 
environment noise research in the US are not well studied. Indeed, the 
US has advantages in ‘Quiet Areas’ protection since the well-established 
national noise map used in this study can also be applied to identify and 
evaluate the ‘Quiet Areas’. 

This study also found that exposure area ratio and exposure popu-
lation ratio are related to sleep deprivation. The finding of exposure area 
ratio suggested that the risk of sleep deprivation is higher in a highly 
urbanised city. Beyond exposure area ratio, the exposure population 
ratio as a crucial factor considering the high-precision distribution of 
population in the county can also increase the risk of sleep deprivation. 
The exposure population ratio can reflect how population density is 
distributed spatially, which indicates the urban sprawl patterns (John-
son, 2001; Masum et al., 2021; OECD, 2018). A higher exposure popu-
lation ratio means that human settlements are located around the 
transportation network, which is a typical urban sprawl pattern 
(Marshall and Gong, 2009). Therefore, the result indicates that such 
cities could confront a higher risk of sleep deprivation. It is noticeable 
that exposure population ratio has a higher odd ratio compared to the 
exposure area ratio. This means that urban sprawl patterns play a more 
important role in noise-induced sleep issues than the magnitude of ur-
banisation. To some extent, the results are in line with the research of 
Margaritis and Kang (2016) and Tong and Kang (2021), which showed 
that in highly urbanised cities, the negative impacts of noise on residents 
is more serious. Previous studies focused more on physically acoustical 
indicators such as SPL, however, did not fully take administrative level 
geospatial indicators into investigation, which can be used to describe 
both urban sprawl patterns and sound environment. With the open big 
data largely available, it is feasible to access these datasets and calculate 
county-level indicators. Especially in the US, these geospatial indicators 
can be calculated in a convenient way since the national noise map has 
been established across the whole country. Big data also makes it 
possible to conduct research at larger scale and broader coverage, for 
example, at the European Union and the US level. Finally, it is suggested 
that large-scale noise indicators could be incorporated when formu-
lating noise policies, and different urban sprawl patterns should be 
treated strategically rather than uniformly. 

This study suggests a number of possibilities for future research. 
First, previous research has shown that subjective perception of noise 
varies in different countries (Yang and Kang, 2005), while this study 
only examined noise-induced sleep problems in the US. From this 
perspective, it would also be useful to investigate other countries and 
compare them with the US. Second, consideration has also been given to 
soundscape, defined as the acoustic environment perceived or experi-
enced and/or understood by a person or people (International Organi-
zation for Standardization, 2014). This study just discussed sleep 
deprivation from noise, namely the adverse health effects from the 
sound. With soundscapes attracting research attention, the positive ef-
fects of sound on health are worth to be discussed. Third, this study used 
noise maps in 2014. Although, the change in noise maps could be 
negligible between 2010 and 2014 in the US, it would be better to use 
the noise map in 2010 for the analysis if the data was available. Finally, 
we found that the variations in sleep deprivation among counties are 
also driven by spatial correlation, namely the neighbourhood effects, 
apart from noise and socio-economic factors. It indicated that the sleep 
deprivation was affected by adjacent county characteristics. Hence, it is 

worth exploring additional reasons, such as noise policy and building 
regulation. Correspondingly, discussion forums and collective actions 
are needed to deal with environmental health issues and implement 
related policies across counties in the US, especially the geographical 
proximity counties. 

5. Conclusions 

In conclusion, in the US, a large group of people were suffering from 
sleep deprivation and variations in sleep deprivation among counties 
were found. We conducted an ecological analysis to explain patterns in 
this variability across the US based on hierarchical Bayesian spatial lo-
gistic regression models. Overall, a number of noise indicators can 
significantly contribute to variations in sleep deprivation among 
counties in the US, while the noise management strategies have not 
received considerable attention from the US government. Among the 
geospatial noise indicators, only Ls10 (SPL of relatively noisy area in a 
county) can increase the risk of sleep deprivation, while Ls90 (SPL of 
relatively quiet area) cannot. In terms of other large-scale noise in-
dicators, the increase in noise exposure area or population ratio in a 
county was associated with an increase in the odds of a person within a 
county not getting enough sleep. This study fills the gap in public health 
and noise issues at the large scale and promotes noise-related health 
research in the US and beyond. This study points out the importance of 
the ‘Quiet Areas’ protection and suggests that policymakers set up 
different noise-management strategies for quiet and noisy areas (e.g., 
different limiting SPLs). Moreover, when formulating noise policies, 
large scale geospatial noise indicators, such as exposure population or 
area ratio, can be incorporated, which are easy to calculate based on the 
well-established national noise map. Furthermore, urban planners can 
pay more attention to different urban sprawl patterns. In future studies, 
it is worth exploring additional reasons for remaining unexplained 
variations which are driven by spatial correlation. 
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