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Improvements to seismicity 
forecasting based on a Bayesian 
spatio‑temporal ETAS model
Hossein Ebrahimian 1*, Fatemeh Jalayer 1,2, Behnam Maleki Asayesh 3,4,5, Sebastian Hainzl 4 & 
Hamid Zafarani 5

The epidemic‑type aftershock sequence (ETAS) model provides an effective tool for predicting 
the spatio‑temporal evolution of aftershock clustering in short‑term. Based on this model, a fully 
probabilistic procedure was previously proposed by the first two authors for providing spatio‑temporal 
predictions of aftershock occurrence in a prescribed forecasting time interval. This procedure exploited 
the versatility of the Bayesian inference to adaptively update the forecasts based on the incoming 
information provided by the ongoing seismic sequence. In this work, this Bayesian procedure is 
improved: (1) the likelihood function for the sequence has been modified to properly consider the 
piecewise stationary integration of the seismicity rate; (2) the spatial integral of seismicity rate over 
the whole aftershock zone is calculated analytically; (3) background seismicity is explicitly considered 
within the forecasting procedure; (4) an adaptive Markov Chain Monte Carlo simulation procedure 
is adopted; (5) leveraging the stochastic sequences generated by the procedure in the forecasting 
interval, the N‑test and the S‑test are adopted to verify the forecasts. This framework is demonstrated 
and verified through retrospective early forecasting of seismicity associated with the 2017–2019 
Kermanshah seismic sequence activities in western Iran in two distinct phases following the main 
events with Mw7.3 and Mw6.3, respectively.

Within the first days elapsed after the occurrence of an earthquake and in the presence of an ongoing seis-
mic sequence, emergency decision-making can benefit enormously from the short-term operational seismicity 
 forecasts1–10. The Epidemic Type Aftershock Sequence (ETAS) model is a widely used stochastic model to describe 
earthquake  temporal11 and spatio-temporal12 occurrence and clustering of seismicity within a seismic sequence 
(see  also13–15). It is an epidemic-type stochastic point  process16 in which every earthquake within the sequence 
is a potential triggering event for subsequent earthquakes by generating its own aftershocks based on a Modified 
Omori  (MO17) decay. According to the study  by18, the ETAS model is the best model for describing short-term 
seismicity. The ETAS model performed quite well in retrospectively forecasting the seismicity within various 
operational frameworks in California, Greece, Italy, Japan, Spain, New Zealand, and  Iceland6,19–34. It has been 
employed for time-dependent seismic  hazard8,25,33,35,36, and risk and loss  forecasting8,35,37–40.

Ogata11 employed the maximum likelihood (ML) criterion parameter estimation (which serves currently as 
the most well-established and widespread method) for the temporal ETAS model. The method was extended 
also for the spatio-temporal ETAS  model12–14. Several attempts were made for developing improved algorithms 
to attain ML estimates of ETAS  parameters41,42. Algorithms based on numerical optimization methods for ML 
estimation may not be very efficient for seismicity forecasting within an ongoing seismic sequence for the fol-
lowing reasons: (a) they are computationally demanding and may encounter convergence problems (especially 
when the log-likelihood function is extremely flat or multimodal); (b) some algorithm parameters need to be 
tuned; something that sounds difficult to do automatically. Thus, the model parameters are usually calibrated a 
priori. New algorithms based on Simulated Annealing optimization technique that allows for a more automatic 
ML estimation of model parameters were  developed43,44; however, even this procedure is not totally autonomous 
and proper choice of tuning parameters is warranted. In case of providing early forecasts immediately after a large 
earthquake (e.g., using incomplete catalogues), ML estimation of the ETAS model parameters may include large 
estimation  errors45. This may cause bias in ETAS parameters that arises from missing  data46,47.
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Bayesian parameter estimation coupled with efficient simulation procedures, such as Markov Chain Monte 
Carlo Simulation, has the advantage of adaptively tuning into the ongoing sequence. This procedure can provide 
both joint probability distributions for the ETAS model parameters and the predicted spatio-temporal seismicity 
evolution. This is particularly important for early forecasts based on incomplete datasets. Bayesian parameter 
estimation has been employed in different aftershock models (MO model and spatio-temporal MO model both 
for L’Aquila 2009 seismic sequence in  Italy24,37; temporal ETAS model for L’Aquila 2009 seismic  sequence26, for 
38 aftershock sequences in Japan from 1990–201445, for 2016 Kumamoto earthquake sequence in  Japan48, for 
2019 Ridgecrest California seismic  sequence49; spatio-temporal ETAS model for 2010–2019 southern California 
 dataset50). It is to note that ETAS-based seismicity rate forecasts can be improved by incorporating additional 
main shock information including the rupture geometry and the coulomb stress  changes51 or other stress scalars 
such as maximum shear and von-mises  stress52, which might be available within minutes to hours after the events.

Ebrahimian and  Jalayer28 proposed a fully simulation-based framework for both Bayesian updating of spatio-
temporal ETAS model parameters as well as a robust estimate of spatial distribution of events in a prescribed 
forecasting time interval after the main event. The procedure was applied for retrospective forecasting of early 
seismicity associated with the 2016 Amatrice seismic sequence in central Italy. The forecasting is robust  (see53,54 
for robust reliability assessment), since both the uncertainty in the ETAS model parameters and the uncertainty in 
the sequence of events that is going to occur during the forecasting interval is considered. This simulation-based 
framework consists of two parts: (a) Bayesian updating to learn the ETAS model parameters conditioned on the 
events that have already taken place (registered) in the ongoing seismic sequence. Markov Chain Monte Carlo 
(MCMC) simulation  scheme54 is used to sample directly from the conditional posterior probability distribution 
for ETAS model parameters (see  also26,45,48 for the use of MCMC in ETAS parameter estimation). (b) Adaptively 
generate plausible sequences of events during the forecasting interval. For a given forecasting interval, this leads 
to spatial distribution of the forecasted events and probability distribution of the number of events. The outcomes 
of this robust seismicity forecasting are directly applicable in adaptive daily aftershock hazard (e.g.,24,33,55,56) and 
risk assessment procedures (see e.g.,35,37,39).

This work strives to improve different aspects of the fully probabilistic seismicity forecasting framework 
proposed  in28. These improvements are: (1) the likelihood function for Bayesian updating has been modified to 
adopt the piece-wise continuous formulation for a marked point  process57, whereas the previous work assumed 
magnitude and interarrival time to be jointly Poissonian. (2) The spatial integral of the conditional seismicity 
rate over the aftershock zone is calculated analytically (previously it was assumed to be equal to unity). (3) An 
adaptive MCMC simulation procedure for Bayesian updating of the ETAS model parameters have been employed 
by using the concept of multi-dimensional kernel sampling density function (which decreases the computational 
time; previously we have considered a simple component-wise MCMC procedure). (4) The background seismic-
ity has been incorporated within the robust seismicity forecasting framework (previously, we have considered 
the background seismicity as an added rate to the forecasted rate of seismicity). (5) The stochastic process for 
generating sequences, i.e. part (b) described above, within the forecasting interval has been adjusted to the 
updated likelihood function and to the exact integral over the areal extent of the aftershock zone. (6) Leverag-
ing the stochastic sequences generated by the procedure in the forecasting interval, the N-test and the S-test 
 (see58,59) are adopted to verify the forecasts. It is noted that this framework can automatically “tune-in” into the 
sequence of observed events and model updating, and forecasting are carried out without human interference 
and use of expert judgement. It is very efficient for early forecasts and in the presence of incomplete data. The 
refined framework is applied retrospectively to the Kermanshah seismic sequence 2017–2019 (see subsequent 
“The Kermanshah 2017–2019 seismic sequence” section) to provide early seismicity forecasting for two distinct 
phases of the sequence. The paper is organized as following: “The Kermanshah 2017–2019 seismic sequence” 
section provides an overview of the 2017–2019 Kermanshah seismic sequence. “Results” section shows the results 
of the seismicity forecasting for two important seismic sub-sequences including the Azgeleh mainshock (the 
main event with  Mw7.3 and its early triggered aftershocks, Phase 1), and the Sarpol-e Zahab event (the second 
main event with  Mw6.3 and its early triggered aftershocks, Phase 3). We have also investigated the sensitivity of 
the forecasts to some possible variations in the proposed workflow, which include: comparing two different spa-
tial kernel density functions in the ETAS model; not considering the background seismicity; approximating the 
spatial integral of the conditional seismicity rate over the aftershock zone; and finally estimating the productivity 
coefficient of the ETAS model by two different approaches. “Discussion and conclusions” section is the general 
discussion and conclusions, and finally “Methods” section describes the proposed improved methodology for 
seismicity forecasting.

The Kermanshah 2017–2019 seismic sequence. Iranian plateau is a seismically active region whose 
active tectonic is dominated by the convergence of Arabian and Eurasian plates (~ 20 to 30 mm/year, see the 
inset map in Fig. 1). Approximately one third of this overall convergence rate is accommodated by the “Zagros” 
range as a central part of Alpine-Himalayan orogenic belt in southwestern Iran (see the inset map in Fig. 1)60. 
The Zagros orogen is one of the youngest, and most tectonically active intracontinental belts in the world at the 
leading edge of the Arabian-Eurasian continental collision  zone61,62. On 12 November 2017 (18:18 UTC), an 
earthquake with  Mw7.3 struck the Zagros fold-and-thrust belt (ZFTB) in the Western Iran near the Iraq border 
in the area where large earthquakes had not been documented for several centuries. This severe earthquake 
occurred near the two small cities of Azgeleh and Sarpol-e Zahab (Az and SZ, see Fig. 1). This event which is 
called herein “Azgeleh” main shock (Azgeleh MS) inflicted around 630 casualties and caused immense buildings’ 
damages and economic  losses63. Based on the comprehensive study performed  in64, this event is an oblique-slip 
thrust with a considerable dextral component (Strike 354°, Dip 16°, and Rake 137°). They proposed a listric fault 
geometry for characterizing the Azgeleh MS (see the corresponding fault “AzF” Listric in Fig. 1), with a shallow 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20970  | https://doi.org/10.1038/s41598-022-24080-1

www.nature.com/scientificreports/

angle plane (eastern plane) dipping ~ 3°, a ramp dipping ~ 16° (central plane), and a steeper ramp dipping 25° 
(western plane). This MS triggered intense seismicity within the aftershock zone shown in Fig. 1 (the position 
of this area within the map of Iran is shown in the inset). From 12/11/2017 up to 18/04/2020 (i.e., in the time 
interval of around 2.5 years after the Azgeleh MS), about 9000 seismic events were recorded based on the catalog 
of Iranian Seismological Center (IRSC) issued by the Institute of Geophysics of the University of Tehran (IGUT 
seismic network) in the area shown in Fig. 1. From this pool of seismicity, 2318 events have  Mw ≥ 2.5. In addition 
to the Azgeleh MS, 19 events with  Mw ≥ 5.0 (one event, which will be discussed later, has  Mw ≥ 6.0), and more 

Figure 1.  Main tectonic features of Iranian plateau; epicentral and depth distribution of the main events of 
Kermanshah seismic sequence 2017–2019 including Azgeleh, Tazehabad, and Sarpol-e Zahab earthquakes with 
black stars, and the distribution of seismic events (circles and green stars) with  Mw ≥ 2.5 registered by IRSC 
from 12/11/2017 up to 12/01/2019. The green stars show the events with  Mw ≥ 5. The color of stars and circles 
are based on the evolution of events. The black bitch balls show the focal mechanism of main events (based on 
the observations  in64). The big green squares show the main cities and small squares illustrate the small cities 
and towns nearby the epicentral area of the mains events (Az: Azgeleh, TA: Tazehabad, SZ: Sarpol-e Zahab, and 
QS: Qasr-e Shirin). The red solid and dashed lines show the surface projection of causative faults of the main 
events (AzF Listric: Azgeleh Listric slip model, TAF: Tazehabad fault, and SPF: Sarpol –e Zahab fault). The black 
solid lines in the map and the inset map show the main active faults in the area and the Iranian plateau (MFF: 
Main Front Fault, HZF: High Zagros Fault, and KhF: Khanaqin Fault); black triangles are the IRSC stations. The 
histogram in the right lower part illustrates the depth distribution of the seismic events.
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than 125 events with magnitude larger than 4 and less than 5 (4 ≤  Mw < 5) were recorded within this sequence. 
Since this sequence has initiated in the Kermanshah province of Iran, it is called herein “Kermanshah seismic 
sequence”. Figure 1 illustrates Kermanshah seismic sequence 2017–2019 in the time span of 12/11/2017 up to 
12/01/2019, where events with  Mw ≥ 2.5 are colored according to their occurrence time. The data is extracted 
from IRSC catalog issued by IGUT. The  Mw7.3 Azgeleh MS initiated “Phase 1” of Kermanshah seismic sequence. 
About 9 months after Azgeleh MS, on 25 August 2018 (22:13 UTC), an earthquake with  Mw5.9 occurred 45 km 
to the east of the epicenter of Azgeleh MS, close to the town Tazehabad (TA, see Fig. 1) with three casualties. 
At first glance, this new event was considered as an aftershock of the Azgeleh MS or a triggered event on the 
known faults of the study area (i.e., HZF or MFF faults shown in Fig. 1); however, reported focal mechanism 
from national and international seismological agencies and interferometric observation revealed that this event 
was associated to a previously unknown fault. The non-linear and linear inversion of the down-sampled data 
 by64 showed a triggered east–west trending fault (Strike 267°, Dip 78°, and Rake 2°) with dip to the north for this 
event. The event is called “Tazehabad” earthquake, and the corresponding left-lateral strike slip fault is called 
“TAF” in Fig. 1). The  Mw5.9 Tazehabad earthquake initiated “Phase 2” of this seismic sequence. About 3 months 
after the Tazehabab event and one year after the Azgeleh MS, on 25 November 2018 (16:37 UTC) another earth-
quake with  Mw6.3 struck near the Sarpol-e Zahab and Qasr-e Shirin cities (SZ and QS in Fig. 1). This event 
is called “Sarpol-e Zahab” earthquake, which started “Phase 3” of the Kermanshah seismic sequence. Fathian 
et al.64 showed that the best-fitting inversion on the coseismic surface deformations of the Sarpol-e Zahab event 
agrees well with a single fault plane with a NE trend dipping to the southeast (Strike 34°, Dip 63°, and Rake 170°, 
see right-lateral strike slip fault “SPF” in Fig. 1). As a result of the characterized main events, Kermanshah seis-
mic sequence 2017–2019 is composed of three main sub-sequences. These sub-sequences can be seen within the 
evolution of seismic activities in Fig. 1, where the events are colored according to their occurrence time.

Results
Daily forecasts of seismicity for the first days after the event Mw7.3 of 12/11/2017 (Phase 
1). In this section, we strive to perform robust forecasts for the spatio-temporal evolution of the events in 
specific time intervals within phase 1 of the complex seismic sequence started by the Azgeleh MS of  Mw7.3, 
which took place in November 12, 2017, at 18:18 (UTC). Figure 2 (top) shows the evolution of events within the 
catalog characterized by their magnitude within the aftershock (AS) zone in phase 1 starting from 01/11/2017 
up to 30/12/2017. The AS zone (A, see “The epidemic-type aftershock sequence (ETAS) model for space–time 
clustering of aftershocks” section in “Methods”) is selected to be smaller than the whole zone shown in Fig. 1 in 
the latitudinal range of [32.50–35.50] and longitudinal range of [45–47]. Figure 2 (bottom) shows the evolution 
of the number of events within the AS zone in phase 1 with magnitude M ≥ 3.0 (orange circles) and M ≥ 3.3 (red 
squares) within a 24-h interval starting from 6:00 UTC each day (also reported at 6:00 UTC each day). The time 
origin To (the reference time) is set to 6:00 UTC of 01/11/2017 (i.e., 11 days before the main event). The seismic-
ity after the occurrence of the mainshock increases considerably up to 15 November (afterwards, less than 20 
events with M ≥ 3.0 within a day have occurred). The occurrence of two triggered events of  Mw5.0 at 20/11/2017 
and  Mw5.5 at 11/12/2017 (with very close epicenters) did not significantly increase the seismicity of the site. We 
examine the proposed improved ETAS framework for the following time windows [Tstart, Tend]: (a) [12/11/2017–
21:00UTC, 13/11/2017–06:00UTC] (i.e., 9  h forecasting with Tstart at 2  h and 42  min after the main event); 
(b) [13/11/2017–00:00UTC, 13/11/2017–06:00UTC] (i.e., 6 h forecasting with Tstart at 5 h and 42 min after the 
main event); (c) [13/11/2017–06:00UTC, 14/11/2017–06:00UTC]; (d) [14/11/2017–06:00UTC, 15/11/2017–
06:00UTC]; (e) [15/11/2017–06:00UTC, 16/11/2017–06:00UTC]. The latter three are one-day (24 h) forecasting 
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intervals issued at 06:00 UTC each day. For each forecasting time window [Tstart, Tend], the observation history, 
seq, comprises all the events in the interval [To, Tstart] with magnitude greater than lower magnitude ( Ml ), set 
herein to be equal to the completeness magnitude Mc (i.e., Ml = Mc).

Estimating the magnitude of completeness Mc for each forecasting interval. Mc Is estimated for each of the five 
forecasting intervals (see Supplementary Information Section SI-3-Results for description of three different 
strategies for estimation of Mc ). Figure 3 illustrates the three Mc estimation procedures for the first forecast-
ing interval (a) described above. Figure 3a shows a frequency-magnitude semi-logarithmic plot, which shows 
a value of Mc = 3.40 (the first method introduced in Section SI-3-Results). Figure 3b illustrates the mode (i.e. 
posterior maximum likelihood estimate) of the posterior probability distribution βML estimated through Bayes-
ian inference as a function of magnitude thresholds ml (the second method introduced in Section SI-3-Results). 
It shows that the maximum value βML = 1.64 leads to Mc = 3.40 . Figure 3c (the third method discussed in 
SI-3-Results) is merely a visual check to see if the observation history seq is complete at the time of issuing the 
forecast by setting Mc = 3.40 (i.e., 2 h and 42 min elapsed after the main event). Mc estimations based on the 
three methods for time intervals (b) to (e) are illustrated in Section SI-3-Results. In summary, we set Mc = 3.40 
for the first (early) forecasting interval (a), Mc = 3.30 for the two subsequent forecasting intervals (b, and c), and 
Mc = 3.0 for the ultimate two forecasting intervals (d, and e). Based on the background seismicity data provided 
in Supplementary Information (Section SI-4-Results, Figure SI-5b), the long-term background seismicity slope 
β for M ≥ 4.50 is equal to 1.67.

Bayesian Inference for θ. The first step towards providing seismicity forecasts (Eq.  9) is sampling from the 
distribution of model parameters θ based on posterior (target) probability distribution p(θ|seq,Ml) (“Sampling 
θ from the distribution p(θ|seq,  Ml)” section in “Methods”). The vector θ = [β, α, c, p, d, q,  γ], considering 
magnitude-dependent spatial kernel density (see “The epidemic-type aftershock sequence (ETAS) model for 
space–time clustering of aftershocks” section in “Methods”) is updated for each forecasting interval mentioned 
before based on the data provided (observed) within seq by applying the Bayesian updating routine illustrated 
in Eq. (18). It is considered that parameters K (Eq. 17), Kt (Eq. 3 as a function of c and p), Kr (Eq. 5 as a function 
of d, q and γ) are derived as functions of other parameters within vector θ. It is to mention that K is calculated 
as described in “Calculating K” section using Eq. (17) and is not learned directly through the Bayesian updat-
ing. Samples for θ are generated using an adaptive MCMC procedure from p(θ|seq,Ml), as noted in “Sampling θ 
from the distribution p(θ|seq,  Ml))” section (see also Section SI-1-Method) with 6 chains (simulation levels). p 
and q values equal to or smaller than one are rejected according to Eqs. (3) and (4) and the constraints are p > 1 
(making sure that the temporal process is asymptotically described by a long-term Gutenberg Richter seismicity 
model) and q > 1 (making sure that the spatial kernel integral is asymptotically equal to unity).

The first simulation level, for which a component-wise updating approach is employed, contains 520 original 
seeds (Nseed = 520). To bypass the initial transient effect of the Markov chain, the first 20 samples are discarded 
and Nseed = 500 is used for the first simulation level. For the next simulation levels (i.e., chains 2 to 6) we have 
employed the adaptive kernel estimate (Section SI-1-Method) ) with Nseed = 1000, by performing MCMC updat-
ing in a block-wise manner. The Nd ≤ Nseed shows the number of distinct Markov chain samples generated 
within the last (the 6th) simulation level. The background seismicity is also considered within the likelihood 
estimation as addressed in “Calculating the likelihood of the observed sequence p(seq|θ,  Ml)” section (according 
to background seismicity data provided in Section SI-4-Results). Table 1 illustrates the histograms of marginal 
posterior PDFs for the model parameters θ = [β, α, c, p, d, q, γ] (shown with bar plots) together with their prior 
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PDFs (illustrated with dashed-orange lines); in addition, the histogram of parameter K derived based on Eq. (17) 
is shown in the last column. The statistics of the samples including mean and [2%-98%] confidence interval (CI) 
of the posterior of model parameters {θ = [β, α, c, p, d, q, γ], K} are also shown on the corresponding marginal 
distribution in Table 1. The last row of Table 1 reports the statistics for the prior marginal PDFs of θ. To capture 
the outliers of K, we have set the upper limit of the horizontal axis to be around 98th percentile of K. Since all 
ETAS parameters are positive, we assigned a multivariate lognormal distribution as prior to the model param-
eters θ (see Eq. 19; zero correlations are considered at the prior level) with a coefficient of variation (COV) equal 
to 0.5 for all the parameters (high COV is assumed to avoid using an over-informative prior distribution). The 
prior median values for both β and α are set to 1.0× ln10 = 2.3026 . This selection was done deliberately to allow 
the Bayesian updating algorithm to infer these two parameters. It can be observed in Table 1 that α < β holds 
for all generated samples based on MCMC simulation. This is interesting investigation as we did not put any 
restriction on these two parameters while performing the Bayesian updating ( α < β is a necessary condition for 
a stable “subcritical”  process65). Prior median value c = 10−1.53 ≈ 0.03 (day) is set based on the value provided 
by the MO Italian generic model  parameters66, which is close to the California generic model (= 0.05;  see67,68), 
and equal to the New Zealand generic model (= 0.03;  see69). Prior median values assigned to [p, d, q] are equal 
to [1.1, 1.0, 1.5], which were used  in28. The prior median for γ = 0.20 is selected based  on70. With reference 
to Table 1, the mean value of parameter β matches quite well the values obtained based on βML (see Fig. 3 for 
the first forecasting interval and also figures in Section SI-3-Results for the subsequent forecasting intervals). 
The mean values of Parameter α ∼= 1.05− 1.12 are quite invariant as the sequence evolves. The mean value of 
parameter c ∼= 0.05 (day) seems to be invariable in the first few days after the main event, which is reasonable as 
it measures the time offset. Parameters p and d gradually decrease as the observed data in seq accumulates, while 
q increases. Finally, the mean of the magnitude-dependent coefficient of the kernel density γ ∼= 0.31− 0.39 . It 
is to note that as the sequence evolves and observed data in seq accumulates, the variation in the posterior of 
model parameters reduces. The temporal evolution of ETAS model parameters for both phases 1 and 3 of the 
seismic sequence is shown in Fig. 8 and will be discussed later in “Daily forecasts of seismicity after the event 
Mw6.3 of 25/11/2018 (Phase 3)” section.

Discussion on the correlations between pairs of model parameters θ in Phase 1. Figure 4 illustrates the con-
tour lines showing the correlation structure between each of the sample marginal posteriors [β, α, c, p, d, q, γ] 

Table 1.  Distribution of the ETAS model parameters including marginal PDFs of posterior (shown as 
histograms) and lognormal PDFs of prior (shown with dashed orange lines), and the statistics of posterior 
(including mean and [2%-98%] confidence interval (CI) for providing early seismicity forecasts after  Mw7.3 at 
12-November 2017.
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shown in the first row of Table 1 for the first forecasting interval (a). The correlation coefficient ρ is reported 
above each figure. We have reported the complete correlation matrix of the ETAS parameters θ = [ β, K, α, c, p, 
d, q, γ] in the left side of the contour plots in Fig. 4. It is revealed that β has almost no correlation or small cor-
relation (up to the order of around 10%) with other ETAS parameters, as expected from the functional form of 
the seismicity rate λETAS in Eqs. (1) and (2). Parameter K reveals small correlations with all ETAS parameters. 
Indeed, K is related to other ETAS parameters through Eq. (17). Parameter α shows correlation with temporal 
parameters (c and p) and even more significant correlation with the parameters of the spatial kernel density (d, 
q, γ). There is correlation between the temporal parameters (c, p), significant negative correlation between the 
spatial parameters (d, γ), and significant positive correlation between (q, γ). However, parameters (d, q) show no 
dependence. The correlation structure for ETAS parameters for the subsequent forecasting intervals (b) to (e) 
are shown in Supplementary Information (Section SI-5-Results). As the sequence evolves, parameter K tends to 
show more correlation with p. The correlations between α and temporal/spatial parameters hold more-or-less at 
the same amount. On the same page, the absolute values of correlations between (c, p) and (d, γ) increase, while 
the correlation between (q, γ) decreases.

Representing the robust forecasting results. Given that θ and seq are known, sequences of events taking place 
during the forecasting interval, denoted as seqg, are generated according to “Generating sequences according to 
p(seqg|θ, seq,  Ml)” section (“Methods”). Based on the description provided in Section SI-4-Results, Mmax = 7.5 
is considered for generating seqg for all the forecasting intervals within Phase 1 (“Daily forecasts of seismicity 
for the first days after the event Mw7.3 of 12/11/2017 (Phase 1)” section) and Phase 3 (“Daily forecasts of seis-
micity after the event Mw6.3 of 25/11/2018 (Phase 3)” section). Based on samples generated for θ and seqg in 
Eq. (9), the robust estimate for the number of events with M ≥ m in a spatial cell units centered at (x,y) within the 
aftershock zone is obtained. This robust estimate is calculated as the expected number of events considering the 
uncertainties in the spatio-temporal distribution of the sequence of events.

 = -0.03

0.43 1.48 2.53

0.86

2.115

3.37

c [day]

 = -0.05

0.01 0.075 0.14

0.86

2.115

3.37

p

 = 0.04

1.04 1.835 2.63

0.86

2.115

3.37

d [km]

 = 0.03

0.45 2.39 4.33

0.86

2.115

3.37

q

 = 0.02

1.06 2.25 3.44

0.86

2.115

3.37

 = -0.01

0.08 0.37 0.66

0.86

2.115

3.37

 = 0.06

0.01 0.075 0.14

0.43

1.48

2.53

 = -0.13

1.04 1.835 2.63

0.43

1.48

2.53

 = -0.23

0.45 2.39 4.33

0.43

1.48

2.53

 = 0.31

1.06 2.25 3.44

0.43

1.48

2.53

 = 0.36

0.08 0.37 0.66

0.43

1.48

2.53

c 
[d

a
y

]

 = 0.16

1.04 1.835 2.63

0.01

0.075

0.14

 = -0.09

0.45 2.39 4.33

0.01

0.075

0.14

 = -0.00

1.06 2.25 3.44

0.01

0.075

0.14

 = 0.07

0.08 0.37 0.66

0.01

0.075

0.14

p

 = 0.01

0.45 2.39 4.33

1.04

1.835

2.63

 = -0.09

1.06 2.25 3.44

1.04

1.835

2.63

 = -0.05

0.08 0.37 0.66

1.04

1.835

2.63

d 
[k

m
]

 = 0.03

1.06 2.25 3.44

0.45

2.39

4.33

 = -0.54

0.08 0.37 0.66

0.45

2.39

4.33

q

 = 0.56

0.08 0.37 0.66
1.06

2.25

3.44

Correlation Matrix, [Tstart =12/11-21:00, Tend =13/11-06:00] 

-0.02 -0.03 -0.05 0.04 0.03 0.02 -0.01 

 -0.15 0.03 -0.08 -0.01 -0.16 -0.11 

  0.06 -0.13 -0.23 0.31 0.36 

   0.16 -0.09 0.00 0.07 

    0.01 -0.09 -0.05 

     0.03 -0.54 

      0.56 

Figure 4.  Contour lines representing the correlation between pairs of the posterior marginal samples of θ = [β, 
α, c, p, d, q, γ] for the first forecasting interval (1st row in Table 1) and the corresponding correlation matrix.
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Figure 5a shows the forecasted seismicity maps for the number of events with M ≥ Ml = 3.40 issued for 
the first forecasting time window (a) in Phase 1 (as shown in Table 1) within each spatial cell unit (latitude/
longitude cells of a 0.01° × 0.01° grid). The maps illustrate the expected number of events in each cell unit 
( E[N(x, y,M ≥ Ml|seq,Ml)] in Eq. (9), Section “Methods”). The earthquakes of interest occurred within the 
corresponding forecasting interval, [Tstart, Tend], are illustrated as colored dots (distinguished by their magni-
tudes) with the main event of  Mw7.3 (red star) illustrated on all plots. We also report the forecasted probabilities 
of having earthquakes with magnitude equal to or larger than m = [Ml, 4, 5, 6, 7], denoted as P(M ≥ m), in the 
whole aftershock zone and in the corresponding forecasting interval (see Eq. 12). Inside Fig. 5a, the observed 
(shown as a green star) vs. forecasted number of events (shown in an error-bar format) is illustrated for events 
with M > Ml for the entire aftershock zone. The forecasted number of events on the error-bar chart features: the 
median value (the 50th percentile, equivalent to the exponential of the logarithmic mean) marked with a gray-
filled square; the (logarithmic) mean ± one (logarithmic) standard deviation indicating the interval between 16 
and 84th percentiles (marked with blue horizontal lines and numbered in blue); the (logarithmic) mean ± two 
(logarithmic) standard deviations indicating the interval between 2nd and 98th percentiles (marked with black 
horizontal lines and numbered in red). Obviously, we have rounded the forecast statistics to the nearest integers. 
This bar chart helps in locating the observed number of events (marked and numbered in green) within plus or 
minus certain number of standard deviations from the median estimate.

The N-test (see “N-test based on the simulation-based Bayesian framework” section in “Methods”) is used 
to validate the total number of events forecasted by the proposed method. Figure 5b shows the N-test associ-
ated with each forecasting interval. The robust estimate for the number of events within the forecasting interval 
using Eq. (9) will lead to the distribution of events with M ≥ Ml , denoted as N

(
M ≥ Ml|θ, seq,Ml

)
 in Eq. (12), 

as shown with the histogram in these figures. This distribution is shown also with error-bar chart in Fig. 5a. The 
observed number of events within the forecasting interval, Nobs , is shown as a green star (as also shown on the 
bar chart). For the N-test, we use the same colors as the bar chart to represent the forecasted number of events: 
the median value (the 50th percentile) is marked with a grey-filled square; the 16th and 84th percentiles (marked 
with blue circles and numbered in blue); the 2nd and 98th percentiles (marked with red circles and numbered 
in red). The classical N-test based on a Poisson distribution with the mean value equal to the forecasted number 
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Figure 5.  (a) The map showing forecasted vs. observed seismicity distribution in the aftershock zone for the 1st 
forecasting time window [Tstart = 12/11/2017–21:00UTC, Tend = 13/11/2017–06:00UTC] including: the expected 
value for the number of events in each cell unit with M ≥ 3.40; the reported P(M ≥ m); the earthquakes that 
occurred during the corresponding forecasting time window; the mainshock of  Mw7.3; and bar chart showing 
the observed vs. the percentiles of the forecasted number of events. (b) N-test based on the simulation-based 
Bayesian workflow and the Poisson distribution; consistent with the error-bar on the left-side of (a), the green 
star shows the observed number of events within the forecasting interval (= 19), the grey-filled square is the 
median value or the 50th percentile (= 18); blue circles are the 16th and 84th percentiles (= 11 & 28); red circles 
show the 2nd and 98th percentiles (= 6 & 37); Nfore = 19 is the expected number of events N(M ≥ 3.40). (c) 
S-test based on the simulation-based Bayesian framework and the standard method.
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of events Nfore = E
[
N
(
M ≥ Ml|θ, seq,Ml

)]
(see “Methods” “N-test based on the simulation-based Bayesian 

framework” section and Eq. 12) is also shown on the same figure. It can be noticed that the distribution of 
N
(
M ≥ Ml|θ, seq,Ml

)
 according to the histogram shows a larger spread with respect to the equivalent Poisson 

distribution. The terms δ1,Poiss and δ2,Poiss (based on the Poisson distribution), and δ1,Bayes and δ2,Bayes (based on 
the Bayesian simulation-based workflow) represent the probabilities that the number of events n ≤ Nobs and 
n ≥ Nobs given Nfore as described in “N-test based on the simulation-based Bayesian framework” section (“Meth-
ods”). They are used as an indicator for validating the forecasts within different time intervals.

The S-test (see “S-test based on the simulation-based Bayesian framework” section in “Methods”) is used 
to validate the spatial distribution of the forecasts provided by the proposed method. Figure 5c illustrates the 
S-test results regarding each forecasting interval based on the two methods described, namely, the standard and 
the Bayesian methods. It shows the distribution of the vector of the simulated log-likelihood values Ssim (see 
Eq. 34) based on standard (in dark blue) and Bayesian (in light grey) histograms. The observed likelihood (Sobs; 
see Eq. 33) is marked with red circle and numbered in red. The probability P(S ≤ Sobs) based on both methods are 
reported on each figure. In the Supplementary Information (Section SI-6-Results), the forecasted seismicity maps, 
N-test and S-test results for M ≥ Ml are illustrated for the subsequent forecasting time windows (b-e) in Phase 
1 (as shown in Table 1). Moreover, Fig. 9 (in “Daily forecasts of seismicity after the event Mw6.3 of 25/11/2018 
(Phase 3)” section) shows the evolution of the N-test and S-test in the five forecasting intervals in Phase 1.

For this first and early forecasting interval (2 h and 42 min after the main event), seq includes 16 events with 
M ≥ 3.4. It is noted that the observed number of events (= 19) is equal to the Nfore = E

[
N
(
M ≥ Ml|θ, seq,Ml

)]
 

reported in Fig. 5b. The probabilities δ1 and δ2 (based on Bayesian method or Poisson distribution) are around 
50% which indicate that the forecast matches observed number of events. Both methods for S-test indicate that 
the spatial distribution of forecasts reasonably matches the observed one.

Daily forecasts of seismicity after the event Mw6.3 of 25/11/2018 (Phase 3). Phase 3 of the 
complex Kermanshah seismic sequence 2017–2019 (described in Section “Introduction”) initiates by the Sarpol-
e Zahab event of  Mw6.3, which took place in November 25, 2018, at 16:37 (UTC), around one year after the 
Azgeleh MS of  Mw7.3 in Phase 1. Given the time elapsed from the occurrence of the Azgeleh MS, it is compu-
tationally unjustifiable and tedious to consider entire seq consisted of the events of interest starting from the 
time origin To (i.e., 01/11/2017–6:00UTC used for Phase 1). To this end, we have shifted the time origin To from 
old To = 01/11/2017–06:00 UTC to new To = 20/11/2018–00:00 UTC (where new To is more than 5 days before 
the occurrence of  Mw6.3 earthquake), as shown in Fig. 6. With this shift in the time origin To, the spatial rate 
of background seismicity, µ

(
x, y|Ml

)
 (see “Robust estimation for the number of aftershock events” section), is 

updated with respect to the long-term seismicity used for Phase 1 of the sequence. All the seismicity data from 
the old To up to the new To, in addition to the long-term background seismicity is used to calculate the updated 
µ
(
x, y|Ml

)
 that is added as a constant term to the contribution of the triggering events (see “Robust estima-

tion for the number of aftershock events” section). Herein, we use this background seismicity to conservatively 
approximate the triggering effect of the events that occurred in the first part of the sequence in the time interval 
[old To – new To] (see the following “Estimating the updated background seismicity” section for the calculation 
of the updated µ

(
x, y|Ml

)
 in detail).

The reference-time shift has been  shown28 to work well in providing operational seismicity forecasts and 
avoids considering all the observed data within the seq (this claim will be supported by further studies in 
“6-h forecasting for the time interval [25/11/2018–18:00 UTC-26/11/2018–00:00 UTC]” section). We set 
Ml = Mc = 2.70 (see Supplementary Information Section SI-7-Results, Figure SI-14a and its discussion). Figure 7 
(top) shows the evolution of the events within Phase 3, and Fig. 7 (bottom) shows the evolution of the number 
of events in phase 3 starting from new To in the AS zone and with M ≥ 2.7 (orange circles) within a 24-h interval 
starting from 0:00 UTC each day (also reported at 0:00 UTC each day). The seismicity after the occurrence of 
 Mw6.3 increases considerably on 25 November and decreases very quickly the day after (around 20 events with 
M ≥ 2.70 occurred). Note also the two triggered events with very close epicenters of  Mw5.3 and  Mw5.0 occurred 
on 25/11/2018 and 26/11/2018, respectively. In the following, we describe the forecasting for the period from 
25 to 26th of November 2018.

Azgeleh MS (Mw7.3)

12/11/2017–18:18UTC

seq
Tstart Tend

Forecasting interval

Old To=01/11/2017

06:00 UTC

seq
Sarpol-e Zahab event (Mw6.3)

25/11/2018–16:37UTC

New To=20/11/2018

00:00 UTC

Figure 6.  Sketch showing the shift in the time of origin To.
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Estimating the updated background seismicity. The rate of seismicity is estimated based on seq consisting of 
1337 events with M ≥ Ml = 2.7 (Supplementary Information Section SI-7-Results, Figure SI-14a) in the inter-
val [old To – new To] (Fig. 6). The ETAS model parameter θ is estimated with the same priors described in 
“Bayesian Inference for θ” section (the last row in Table 1). The background seismicity is drawn from the long-
term seismicity of the site that is the same used in Phase 1. The histograms of marginal posterior PDFs for the 
model parameters θ together with their statistics are shown in first row of Table SI-2 (Supplementary Informa‑
tion Section SI-8-Results, labeled a). It is noted that parameter p is estimated almost close to 1.0 with a very 
small CI = [1.04, 1.12]. The median of these model parameters will be used as the new priors for the upcoming 
forecasting intervals. The correlations between ETAS parameters are also reported and discussed in Section SI-
9-Results (first correlation matrix). The forecasted seismicity within the 24-h interval, [20/11/2018–00:00 UTC 
– 21/11/2018–00:00 UTC], is estimated in terms of the expected number of events in the spatial cell unit with 
M ≥ Ml = 2.7 denoted as E[N(x, y,M ≥ Ml|seq,Ml)] (see Eq. 9); thus, the updated background seismicity rate 
is µ

(
x, y|Ml

)
=E[N(x, y,M ≥ Ml|seq,Ml)] (“Robust estimation for the number of aftershock events” section in 

“Methods”), which includes the rate of background events due to the long-term seismicity plus the triggering 
effect of the events in seq. The updated µ

(
x, y|Ml

)
 is used as a constant background rate in Eq. (7) to Eq. (9), 

and it conservatively does not represent the expected decay with time after the new To. µ
(
x, y|Ml

)
 is plotted in 

Figure SI-18a (Section SI-10-Results). It is observed that the updated background seismicity has increased more 
than 300 times and that the probability of occurrence of M ≥ 6 is more than 12 times higher the same probabil-
ity estimated based on the long-term background seismicity, which reveals an alarming level (this was verified 
by Sarpol-e Zahab event of  Mw6.3).

6‑h forecasting for the time interval [25/11/2018–18:00 UTC‑26/11/2018–00:00 UTC]. After the occurrence 
of Sarpol-e Sahab event with  Mw6.3 at 16:37 UTC of 25/11/2018, we provide a 6-h prediction of seismicity 
for the forecasting interval starting from Tstart set to 18:00 UTC (i.e., 1 h and 23 min after the occurrence of 
 Mw6.3 event). Considering new To (Fig. 6), the data within the time interval [new To = 20/11/2018–00:00 UTC, 
Tstart = 25/11/2018–18:00 UTC] forms the seq, which includes 27 events with M ≥ Ml = 2.7 ( Ml = Mc ; see Sec-
tion SI-7-Results, Figure SI-14b and its discussion). The histograms of marginal posterior PDFs for the model 
parameters θ together with their statistics are shown in second row of Table SI-2 (Section SI-8-Results, labeled b). 
The spatial distribution of the forecasted seismicity with M ≥ 2.7 is shown in Figure SI-19a (Section SI-10-Re-
sults). Observed events with M ≥ 2.7 are also shown on the map. The Sarpol-e Zahab  Mw6.3 is shown with red-
colored hexagram to show the epicenter of the main event –although this event is not within the observed events 
in the forecasting time interval. According to the error-bar plot in the same figure, the total number of registered 
events within the 6-h forecasting interval (green star; = 38) is higher than the forecasted values (median; = 18). 
This can be attributed (1) to the small number of observed input data in seq; (2) the presence of the triggered 
event with  Mw5.3 at 17:09. The N-test result in Figure SI-19b shows the histogram for the distribution of the num-
ber of events based on the Bayesian workflow with Nfore = E

[
N
(
M ≥ 2.70|θ, seq,Ml = 2.70

)]
= 18 and other 

related statistics (similar to the error-bar chart in Figure SI-19a). The probabilities δ1 and δ2 (based on Bayesian 
method or Poisson distribution) show that the real number of events falls in the upper tail of the distributions 
(i.e., underestimation in the forecasted seismicity). However, the distribution of the forecasted seismicity is vali-
dated through the standard/Bayesian S-test method (Figure SI-19c) that shows a 30% value for the probability 
P(S ≤ Sobs). Although less successful in predicting the number of events, Figure SI-19a reports exceedance prob-
abilities P(M ≥ 5) more than 30 times and P(M ≥ 6) around 90 times compared to their corresponding initial esti-
mates based on the updated background seismicity in Figure SI-18a. In order to validate the reference-time shift 
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consideration, we perform the same forecast done here considering the whole events with M ≥ Ml = 2.7 in the 
sequence (= 1364) starting from [old To = 01/11/2017–06:00 UTC, Tstart = 25/11/2018–18:00 UTC], which form 
the seq. The marginal distributions of the ETAS model parameters have smaller confidence interval compared 
to those reported in Table SI-2 (row b) as the Bayesian updating of model parameters is done based on higher 
data points in the observation history. Figure SI-19d shows the spatial distribution of the forecasted seismicity, 
where the Azgeleh  Mw7.3 mainshock is indicated by a red-colored hexagram (while the Sarpol-e Zahab  Mw6.3 
is illustrated with magenta-colored triangle). The error-bar plot in the same figure shows the distribution of the 
forecasted number of events with median = 15 (event) and a smaller confidence interval (as noted previously) 
with respect to the similar error-bar in Figure SI-19a. The N-test result in Figure SI-19e shows the histogram for 
the distribution of the number of events with smaller dispersion (compared to Figure SI-19b) with Nfore = 15 
being close to the previous estimate in Figure SI-19b (= 18) that is obtained based on the shift in the time origin. 
With reference to the S-test (Figure SI-19f.), the distribution of the forecasted seismicity is even better predicted 
with P(S ≤ Sobs) more than 70%. As a result, the shift in the time of origin (herein, more than one year) of the 
sequence, by introducing a non-uniformly distributed background seismicity, does not affect the results of our 
forecast overall while it relieves the computational cost of summing up the triggering properties of all the events 
that took place in an ongoing sequence in the time interval of more than one year. Neglecting the time-decay in 
the triggering of the events before “new To” can even furnish more conservative estimates.

5‑h forecasting for the time interval [25/11/2018–19:00 UTC‑26/11/2018–00:00 UTC] and two subsequent fore‑
casts. To get more reliable early forecasts, we set Tstart = 25/11/2018–19:00 UTC (i.e., 2 h and 23 min after the 
occurrence of  Mw6.3 event) and keep the same Tend. For this forecasting interval, Mc = 2.70 (Section SI-7-Re-
sults). Thus, seq includes 43 events occurred from new To up to Tstart with M ≥ Ml = 2.7 (where Ml = Mc ). The 
marginal distribution of the updated ETAS model parameters θ is shown in Table SI-2, (Section SI-8-Results, 
labeled c). The spatial distribution of the forecasted seismicity (the expected value for the number of events with 
M ≥ 2.7 ), the N-test, and S-test results are shown in Figure SI-20 (Section SI-10-Results) for this 5-h forecast-
ing interval. The total number of registered events (green star; = 22) is within + 1 standard deviation confidence 
interval (also verified by the probabilities δ1 and δ2 ). The S-test also shows that the forecasted spatial distribution 
of seismicity matches quite well the observed spatial pattern.

Seismicity forecasts are also provided for two subsequent back-to-back intervals; namely, a 6-h time interval 
with Tstart = 26/11/2018–00:00UTC and a 18-h forecast with Tstart = 6:00UTC of the same day with Mc = 2.70 
(Section SI-7-Results). The last two rows of Table Table SI-2 (d, e) illustrate the statistics of updated model 
parameters θ. The evolution of ETAS model parameters for Phase 3 of the seismic sequence is shown in Fig. 8. 
It can be seen that all parameters start to stabilize after the early forecasts. As expected, parameter β stabilizes to 
a slightly larger value in Phase 3 (1.95); in both phases it is estimated to be larger than background β (1.67). In 
both phases, α is smaller than β (sub-critical process). As expected, α for Phase 3 is smaller than that of Phase 1, 
which is also expected given the lower productivity of this phase. Note that the value of K shows discontinuity 
between the two phases, this is due to the shift in the time of origin. The larger p value in Phase 3 indicates a 
steeper time decay. The same is through for parameter q which indicates a stronger spatial attenuation in Phase 3. 
Parameter γ indicates a stronger magnitude dependence of the spatial kernel in Phase 1 compared with Phase 3.

The predicted seismicity distribution maps and the corresponding error-bar plots, together with the N-test 
and S-test results are shown in Figures SI-21 and SI-22 (Section SI-10-Results). For the 6-h forecasting interval 
(Figure SI-21a), the  Mw5.0 event occurred 38 min after Tstart (see also Fig. 7). The forecasts for these two latter 
time intervals manage to properly predict the observed seismicity in terms of the number of events with M ≥ 2.7 , 
as well as its spatial content through the seismicity tests. The correlations between ETAS parameters for the four 
forecasting intervals in Phase 3 are reported and discussed in detail in Section SI-9-Results. Figure 9 summarizes 
the evolution of the N-test and S-test in the four forecasting intervals in Phase 3.

Sensitivity analyses. In this section, the sensitivity of the resulting robust forecasts to some possible vari-
ations to the proposed method are investigated.

Using the simple spatial kernel density compared to the magnitude‑dependent kernel density. An alternative ker-
nel density, denoted herein as the simple spatial kernel density with two spatial term parameters (d, q), can be 
used instead of the magnitude-dependent kernel with the three related parameters (d, q, γ). Table SI-3 (Sec-
tion SI-11-Results) shows the histograms of marginal posterior PDFs for the six ETAS model parameters θ = [β, 
α, c, p, d, q] where the simple spatial kernel density term is used. The distribution of parameter β and its statistics 
matches very well those reported in Table 1. The mean values of Parameter α ∼= 0.70− 0.80 are around 2/3 of 
those reported in Table 1. The distribution of temporal parameters (c, p) are more-or-less invariant. The poste-
rior distributions of spatial parameters (d, q) are different (see Table 1) in the sense that parameter d has a higher 
mean and dispersion, while parameter q behaves in an opposite manner. Parameter K has a higher estimate in 
case of simple spatial kernel density (to be expected since it has to fulfill Eq. (13) for each realization of θ). The 
correlation matrices of 7 model parameters are illustrated in Section SI-11-Results for different forecasting inter-
vals. Comparing the correlation structure with those obtained based on the magnitude-dependent spatial kernel 
density (Fig. 4 and Section SI-5), it is revealed that β has no correlation and K reveals a sort of small correla-
tions with other ETAS parameters (similar behavior for both kernels). Parameter α has smaller correlation with 
temporal parameters (c and p), and spatial parameters (d, q) in case of simple kernel density. This is the reason 
for having different estimates for this parameter between the two spatial models. In the magnitude-dependent 
kernel density model, α reveals more correlation with the magnitude-related parameter γ compared to the other 
parameters (see Fig. 4 and Section SI-5). The correlations between temporal parameters (c, p) and spatial param-
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eters (d, q) increases as the sequence evolves. It is to note that in the magnitude-dependent spatial kernel density 
model, there is no dependence between the spatial parameters (d, q).

Table 2 compares the results of seismicity forecasting test, N-test and S-test, based on alternative spatial ker-
nel density terms, for the five forecasting intervals indicated in Table 1. Both models for spatial kernel density 
are similarly evaluated through the N-test and S-test. It is interesting to highlight that S-test results in terms 
of P(S ≤ Sobs) becomes higher as the forecast evolves showing that the simple kernel density provides a better 
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Figure 8.  Summary and timeline of the evolution of ETAS model parameters for Phase 1 (left column) and 
Phase 3 (right column).
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spatial forecast of seismicity compared to the more complex magnitude-dependent model (although this might 
not be a general conclusion).

Considering background seismicity. Since the background seismicity is low compared to the big jump in seis-
micity due to the  Mw7.3 mainshock for Phase 1 (i.e., the first term Nb compared to the second term in Eq. (7), 
“Methods”), it is expected that the effect of not considering the background seismicity (BGS) spatial data 
µ
(
x, y|Ml

)
 within the short term operational forecasting may not be significant. Table 2 compares the results of 

observations vs. forecasts in terms of N-test and S-test for the cases with BGS (Proposed method) with the case 
without BGS (BGS = 0) for all forecasting intervals indicated in Table 1. It can be observed from Table 2 that 
assuming BGS = 0 leads to no apparent difference with respect to considering BGS based on both N-test and 
S-test results. That is, neglecting the effect of long-term BGS within the proposed robust seismicity forecasting 
framework will not significantly affect the forecasted number of events. This appears to be useful while opera-
tional forecasting is undertaken within an ongoing seismic sequence with limited time and input data.

Effect of some simplifications within the robust seismicity forecasting framework. The proposed framework can 
be simplified/approximated by considering the following assumptions (see “Robust estimation for the number 
of aftershock events” section in “Methods”):

1. Characterizing parameter K: this parameter can be calculated through the closed-form expression in Eq. (17) 
(“Calculating K” section, Calculate K), or can be learnt through the Bayesian updating framework (“Calculat-
ing K” section, Learn K). It is to note that the parameter K learned through the Bayesian inference does not 
necessarily satisfy Eq. (13) for each sample θ.

2. The integral over the whole aftershock zone A: the term Ir (see Section “Methods”, Eq. (16)), can be solved 
analytically. However, by assuming an infinite spatial domain, Ir can be approximated with Ĩr , over the infinite 
space.

Figure 10 shows a general overview of schemes to provide seismicity forecasts based on different levels of 
approximation that encompass: (a) Proposed method is the suggested method; (b) Semi‑Fast method approximates 
the integral over the aftershock zone with Ĩr ; (c) Fast method learns K though Bayesian inference (i.e., θ = [β, K, 
α, c, p, d, q, γ]) and approximates the integral over the aftershock zone with Ĩr.

Discussion on the effect of considering the integration over the whole aftershock zone (using Semi‑Fast 
method). Table SI-4 (Section SI-12-Results) shows the histograms of marginal posterior PDFs for the model 
parameters θ together with their prior PDFs using Semi‑Fast method as opposed to results shown in Table 1 for 
the Proposed method. Comparing these two Tables, apart from the spatial kernel density parameters of distance 
d and q, the statistics (mean and CI) of the other parameters are very close (as the parameter estimation evolves, 
they become even closer). Parameters d and q have higher estimates (consequently higher mean, 2%, and 98% 
statistics) in case of Semi‑Fast method compared to the Proposed method. In terms of the correlation structure 
among the parameters, we have reported the correlation matrix between the ETAS model parameters θ = [β, K, 
α, c, p, d, q, γ] in Section SI-12-Results for Semi‑Fast method which shows the same trends as those observed for 
the Proposed method.

Table 2 summarizes the N-test and S-test results of the Semi‑Fast method to be contrasted with the first 
column of Table 2 associated with the Proposed method. There are some differences between the two: (1) The 
first forecasting interval for Semi‑Fast has lower expected value (Nfore) with respect to Proposed method; (2) the 
Proposed method outperforms the Semi‑Fast based on S-test results. In terms of N-test, as the sequence evolves, 
the differences between the test results becomes negligible. This observation has been also made  in71, where 
the assumption of an infinite spatial domain was shown to have negligible effect on likelihood. (3) Overall, the 
computational time for the Semi‑Fast method is observed to be around 75% of that of the Proposed method.
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Figure 9.  Summary and timeline of the evolution of N-Test and S-test results for Phase 1 (left column) and 
Phase 3 (right column).
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Table 2.  N-test and S-test results in different forecasting intervals considering different hypotheses.

Measure of forecast
Proposed 

method*

Using simple 

spatial kernel 

density

No 

background 

seismicity, 

BGS=0

Semi-Fast 
method

Fast method

fore, obs 19, 19 21, 19 19, 19 17, 19 25, 19

2nd percentile 6 6 5 6 8

16th percentile 11 11 11 10 14

Median 18 19 18 16 24

84th percentile 28 30 28 26 35

D
is

tr
ib

u
ti

o
n
 o

f 
N

98th percentile 37 41 38 36 50

1, Poiss, 2,Poiss 0.56, 0.53 0.38, 0.70 0.56, 0.53 0.74, 0.34 0.13, 0.91
N-test

1, Bayes, 2,Bayes 0.55, 0.45 0.47, 0.53 0.54, 0.46 0.63, 0.37 0.28, 0.72

Standard ( ≤ obs) 0.85 0.62 0.83 0.49 0.64

(a
) 

[1
2
/1

1
-2

1
:0

0
, 
1
3
/1

1
-0

6
:0

0
];

=
3

.4
0

S-test
Bayesian ( ≤ obs) 0.70 0.56 0.75 0.44 0.54

fore, obs 11, 16 12, 16 11, 16 11, 16 13, 16

2nd percentile 5 5 5 5 7

16th percentile 8 7 8 8 9

Median 11 11 11 11 12

84th percentile 15 16 15 14 17

D
is

tr
ib

u
ti

o
n
 o

f 
N

98th percentile 20 20 19 19 22

1, Poiss, 2,Poiss 0.94, 0.09 0.90, 0.16 0.94, 0.09 0.94, 0.09 0.83, 0.24
N-test

1, Bayes, 2,Bayes 0.90, 0.10 0.86, 0.14 0.89, 0.11 0.90, 0.10 0.77, 0.23

Standard ( ≤ obs) 0.59 0.77 0.74 0.33 0.42

(b
) 

[1
3
/1

1
-0

0
:0

0
, 
1
3
/1

1
-0

6
:0

0
];

=
3

.3
0

S-test
Bayesian ( ≤ obs) 0.62 0.76 0.62 0.35 0.40

fore, obs 30, 21 31, 21 30, 21 29, 21 34, 21

2nd percentile 15 14 15 14 19

16th percentile 21 21 21 20 24

Median 30 30 29 29 34

84th percentile 39 41 39 38 43

D
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u
ti

o
n
 o

f 
N

98th percentile 52 52 50 50 53

1, Poiss, 2,Poiss 0.05, 0.96 0.04, 0.98 0.05, 0.96 0.08, 0.95 0.01, 0.99
N-test

1, Bayes, 2,Bayes 0.16, 0.84 0.17, 0.83 0.14, 0.86 0.22, 0.78 0.05, 0.95

Standard ( ≤ obs) 0.99 1.00 0.99 0.95 0.93
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Bayesian ( ≤ obs) 0.94 0.99 0.96 0.96 0.89

fore, obs 19, 19 19, 19 19, 19 19, 19 23, 19

2nd percentile 11 10 12 12 15

16th percentile 14 14 15 15 19

Median 19 18 19 19 23

84th percentile 23 24 23 23 27

D
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u
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o
n
 o

f 
N

98th percentile 30 27 29 29 33

1, Poiss, 2,Poiss 0.56, 0.53 0.56, 0.53 0.56, 0.53 0.56, 0.53 0.24, 0.82
N-test

1, Bayes, 2,Bayes 0.52, 0.48 0.53, 0.47 0.49, 0.51 0.50, 0.50 0.19, 0.81

Standard ( ≤ obs) 0.72 0.91 0.72 0.51 0.53
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16th percentile 8 8 8 9 11

Median 11 10 10 11 13

84th percentile 13 13 13 14 16

D
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u
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o
n
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f 
N

98th percentile 18 16 18 17 18

1, Poiss, 2,Poiss 0.99, 0.02 0.99, 0.02 0.99, 0.02 0.99, 0.02 0.96, 0.07
N-test

1, Bayes, 2,Bayes 0.99, 0.01 1.00, 0.00 0.99, 0.01 0.99, 0.01 0.99, 0.01

Standard ( ≤ obs) 0.56 0.82 0.58 0.33 0.32

(e
) 

[1
5
/1

1
-0

6
:0

0
, 
1
6
/1

1
-0

6
:0

0
];

=
3

.0
0

S-test
Bayesian ( ≤ obs) 0.51 0.76 0.52 0.37 0.33

* The “Proposed Method” employs magnitude-dependent spatial kernel and considers the background seismicity.
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Discussion on the effect of calculating K. Table SI-5 in Section SI-13-Results illustrates the histograms of mar-
ginal posterior PDFs for the model parameters θ using Fast method. It can be compared with Table SI-4 based on 
Semi‑Fast method. The parameter K is learnt through the MCMC procedure assuming that the model parameter 
θ has a multivariate lognormal prior (see “Bayesian Inference for θ” section), for which we set a high COV = 1.0 
for parameter K compared to other model parameters with COV = 0.5 (“Bayesian Inference for θ” section). In 
the ballpark, the mean estimates for parameter K are quite the same between Fast and Semi‑Fast methods with 
the CI for Semi‑Fast method being wider. Although low number of observed data is available for learning K 
through the Bayesian framework at the very beginning of Phase 1, K does not show sensitivity to the choice of 
the prior in the Fast method (see Table SI-5). Parameter α has lower estimates based on the Fast method. How-
ever, as the sequence evolves, it gets closer to Semi‑Fast estimates. The most critical parameter in the Fast method 
seems to be the temporal decay random variable p, which has a mean estimate very close to its lower threshold 
(= 1.0) and a very low variability. The temporal parameter c as well as the spatial parameters (d, q, γ) are quite 
close to those from the Semi‑Fast method.

We have reported the correlation matrix between the ETAS model parameters in Supplementary Information 
(Section SI-13-Results) for Fast method. Compared to previous discussions on the correlation of the ETAS param-
eters by employing the Proposed and Semi‑Fast methods, parameter β shows higher correlations with other model 
parameters while using Fast method (although the absolute value of the correlation is small). Parameter K shows 
a very high correlation with the temporal parameter p, and as the sequence evolves, this negative correlation 
increases (changing from around -55% to -80%). The negative correlations also appear in the Proposed/Semi‑
Fast methods but with lower intensities. This high correlation between (K, p) affects the correlation between 
(c, p) so that the amount of correlation between the latter two parameters are smaller than those appear in the 
Proposed/Semi‑Fast. Parameter α shows the same order of correlation with temporal/spatial parameters in the 
Fast method compared to the other two methods. Higher correlations appear between p and the parameters of 
the spatial kernel density (compared to the Semi‑Fast method). Like the previous two methods, there is a high 
negative correlation between (d, γ), and as the sequence evolves, the positive correlation between (q, γ) decreases.

Table 2 summarizes the N-test and S-test results of the Fast method. Comparing Fast/Semi‑Fast (see the 
last two columns of Table 2): (1) For the first forecasting interval, Fast method slightly overestimated the mean 
number of forecasted events (Nfore = 25 vs 19 registered events with M ≥ 3.4 took place) and the distribution of 
the forecasted number of events shows higher dispersion with respect to Semi‑Fast method; (2) As the sequence 
evolves, the forecasts issued by the Fast method gets closer to those of Semi‑Fast method (and consequently 
the Proposed method). This shows that Fast method is more reliable as the sequence evolves. However, like the 
Semi‑Fast method, S-test shows that this method cannot predict the spatial pattern of seismicity as perfect as 
the Proposed method (it stills passes the test). (3) Overall, the time of conducting the Fast method is less than 
50% of that for Semi‑Fast method and 37% of that for Proposed method, making the procedure appealing for 
operational earthquake forecasting.

Based on the above discussions, it is recommended to do the Proposed method at least for very early forecasts. 
As the sequence evolves, the computationally less time-consuming Fast (or even the Semi‑Fast) methods can 
be used.

Discussion and conclusions
We have improved and tested a Bayesian and fully simulation-based workflow for spatio-temporal early seismicity 
forecasting based on ETAS model. This workflow encompasses new/modified features of the Bayesian and fully 
probabilistic seismicity forecasting framework proposed previously by the first two  authors28. Regarding the 
Bayesian updating of the ETAS model parameters, the improvements concern (a) modification of the likelihood 
function and its calculation; (b) adoption of an adaptive MCMC simulation technique by using multi-dimen-
sional kernel sampling density functions; (c) derivation of a close-form expression for productivity parameter 
K as a function of other ETAS parameters; (d) incorporation of seismicity tests such as N-test and S-test in the 
proposed workflow to see how well the forecasted number of events and the forecasted spatial distribution of 
seismicity match the observed ones. Additionally, the improved workflow is capable of (a) analytically solving 
the integral of the spatial kernel density over the whole aftershock zone instead of assuming it to be equal to 
unity; (b) incorporate the background seismicity within the robust seismicity forecasting framework; (c) consider 
magnitude-dependent spatial kernel density in the ETAS model.
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Figure 10.  A schematic view of different approximations in the procedure to provide seismicity forecasts.
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As a demonstration of this procedure, we have applied the fully simulation-based workflow for providing 
retrospective early forecasts of seismicity in two distinct phases of the recent Kermanshah 2017–2019 seismic 
sequence in western Iran starting with the events of  Mw7.3 and  Mw6.3, respectively. Here are some observations:

• After an initial transition time in the order of few hours (2 h and 42 min after the main event of  Mw7.3 in 
Phase 1, and 2 h and 23 min after the occurrence of  Mw6.3 in Phase 3), the model tunes into the sequence 
and provides very reliable forecasts.

• The workflow traces the time evolution of the ETAS model parameters as the sequence goes on. Overall, the 
parameters tend to stabilize after the first early forecast intervals. Evolution of seismicity parameter β matches 
the expectations (a slight increase with respect to background seismicity). Parameter α is always smaller than 
β ensuring sub-critical behavior in the point process. Comparing Phase 1 and Phase 3, the ETAS parameters 
in Phase 3 reveal a seismic sequence with weaker productivity and stronger spatio-temporal decay, as matched 
by the observations.

• The productivity coefficient K is derived based on the constraint that the observed number of events previous 
to the time of starting the forecast is equal to the forecast provided based on each realization of the vector 
of model parameters (Proposed method). Alternatively, one can choose to learn K together with other ETAS 
model parameters (called herein Fast method) through the Bayesian inference. This is going to reduce the 
computational time by around 37% at the cost of losing accuracy in the early forecasting intervals.

• Neglecting the long-term background seismicity does not significantly affect the forecasted number of events 
in this study (Phase 1 forecasts).

• For providing early forecast of seismicity for  Mw6.3 event in Phase 3, we performed a shift in the time of origin 
(more than one year) of the sequence by introducing a non-uniformly distributed background seismicity 
(which is calculated by exploiting the proposed method). This shift relieves the computational burden of 
summing up the triggering properties of all the events that took place in an ongoing sequence at the cost of 
neglecting the (negligible) time-decay (beyond the first day of Phase 3) in their triggering contribution.

• Adoption of a magnitude-dependent spatial kernel (compared to a simpler functional form) shows no signifi-
cant differences in the seismicity forecasting estimates. However, S-test results reveal that the simple kernel 
performs better in forecasting the spatial distribution of seismicity.

• The integral of the spatial kernel density over the whole aftershock zone can be solved analytically (Proposed 
method) or can be approximated by assuming that the integral is over an infinite spatial domain (Semi‑Fast 
method). In the early stage of forecasting, the Proposed method outperforms the Semi‑Fast method based on 
both N-test and S-test results. As the sequence evolves, the differences between the test results becomes neg-
ligible. However, the computational time of conducting the Semi‑Fast method is around 75% of the required 
time for performing Proposed method. Therefore, the use of Semi‑Fast method is only recommended for 
providing forecasts as the sequence evolves.

Methods
The epidemic‑type aftershock sequence (ETAS) model for space–time clustering of after‑
shocks. The ETAS  model11,12 is a marked stochastic point process model widely used to describe the tempo-
ral and spatial clustering of seismicity (see  also13–16,57). In this model, every earthquake (being spontaneous or 
triggered) is a potential triggering event for its own subsequent earthquakes (aftershocks). Let λETAS(t, x, y, m|θ, 
seqt, Ml) denote the conditional rate of occurrence of events with magnitude M greater than or equal to m (the 
seismicity rate) based on the ETAS model at time t in the cell unit centered at the Cartesian coordinate (x, y)∈ 
A where A is the aftershock zone. The Cartesian area can be discretized into mutually exclusive and collectively 
exhaustive, MECE, subsets or spatial cell units centered at x and y. The rate λETAS is conditioned on: the vector 
of ETAS model parameters θ (defined subsequently); observation history up to the time t denoted as seqt = {(tj, 
xj , yj, mj), tj < t, mj ≥ Ml} where tj is the occurrence time of the jth event (with tj < t) with magnitude mj and loca-
tion (xj, yj)∈ A; the lower magnitude Ml (should be greater than or equal to the completeness magnitude Mc of the 
catalog of events up to the time t; i.e. Ml ≥ Mc; see the note on the calculation of Mc at the end of this section). 
λETAS(.) can be shown as follows:

where P(M ≥ m|θ, Ml) or the “marker” is the conditional probability that M ≥ m given θ and Ml and λETAS(t, x, 
y|θ, seqt, Ml) is the conditional seismicity rate based on ETAS model given θ seqt and Ml. The spatio-temporal 
triggering effect of a given sequence on the seismicity rate can be seen through λETAS(t, x, y|θ, seqt, Ml). Using a 
truncated exponential (Gutenberg-Richter) model, it is easy to show that P(M ≥ m|θ, Ml) = exp(−β(m−Ml)) , 
which is the CCDF (complementary cumulative density function) of an exponential distribution, and β is related 
to Gutenberg-Richter relation. Equation (1) can be written according to the general ETAS model as follows:

The conditional (triggering) rate λETAS(t, x, y|θ, seqt, Ml) in Eq. (2) is a summation taken over every jth event 
occurred before time t. It is comprised of three terms as follows:

(1)�ETAS

(
t, x, y,m

∣∣θ, seqt ,Ml

)
= P(M ≥ m|θ,Ml) · �ETAS

(
t, x, y

∣∣θ, seqt ,Ml

)

(2)
�ETAS

(
t, x, y,m

∣∣θ, seqt ,Ml

)
= e−β (m−Ml)︸ ︷︷ ︸

P(M≥m|θ,Ml)

·
∑

tj<t

Keα(mj−Ml) ·
Kt(

t − tj + c
)p ·

Kr(
r2j + d∗2

)q

︸ ︷︷ ︸
�ETAS( t,x,y|θ,seqt ,Ml)
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(a) The productivity function Keα(mj−Ml) represents the number of events with magnitudes equal to or greater 
than Ml (productivity of event mj ;  see11), where α  (magnitude−1) determines the exponential increase due to 
events with magnitudes larger than Ml and K (shocks or events) is the productivity coefficient and measures 
the intensity of the exponential function in generating triggered aftershocks.
(b) The typical normalized aftershock time decay law with the functional from Kt/

(
t − tj + c

)p is a temporal 
distribution based on modified Omori (MO)  model17,72.  Utsu17 showed that the occurrence rate of after-
shocks has a functional form being inversely proportional to the time to the power of p, for which the p value 
affects the decay rate of aftershocks in time. The parameter c (time, e.g. day) eliminates the singularity issue 
at t = tj, and partially reflects the effect of incomplete detection of small aftershocks taken place shortly after 
the  mainshock72. The parameter Kt is a normalizing coefficient that satisfies the achievement of asymptotic 
compatibility between ETAS prediction and the long-term seismicity, i.e., integrating the time-dependent 
term over infinite time will in limit be equal to unity (see  also11,72,73):

It is to note that when p > 1, the integral converges at t →  + ∞ , while for p < 1, it goes to infinity as t →  + ∞ . 
Thus, the condition p > 1 is an important constraint in the ETAS parameter estimation. Detailed discussions 
on other decay models have been furnished  in74.
(c) The term Kr/

(
rj
2 + d�

2
)q

 is the joint (two-dimensional) probability density function of coordinates 
(x,y)∈ A around the epicenter of the jth event (xj, yj), with rj the distance between the location (x, y) and the 
epicenter (xj, yj); i.e., rj2 =

(
x − xj

)2 +
(
y − yj

)2 . Herein, the following two functions are used as d�:

• d� = d : the so-called simple spatial kernel density herein is characterized by two parameters d (distance, 
e.g. km) and q defining the spatial distribution (decay) of the direct offspring triggered by the jth event 
with epicenter at (xj, yj). This spatial decay footprint model is a function of only (x-xj, y-yj) with a circular 
symmetry around (xj, yj). It has been used by many researchers before (see e.g.,12,21,75). The normalizing 
coefficient Kr is defined such that integrating the spatial term over infinite space will in limit be equal to 
unity (see  also75):

when q > 1, the integral converges at r →  + ∞ . Thus, the condition q > 1 is another key constraint the 
ETAS model parameter estimation. It is shown in different studies (see e.g.,12,75) that this spatial model 
fits the data better than the normal distribution model (being also proposed as a spatial model) expressed 
by 1

2πd2
e−rj

2/2d2 . The latter is characterized by one parameter while the model used herein has two 
parameters.

• d� = deγmj : the so-called magnitude‑dependent spatial kernel density herein is a widely used  model15,76, 
has three parameters (d, q, and γ), and is characterized by introducing a decay model that takes into 
account also the magnitude of the triggered events mj. The kernel density, that accounts for the observed 
exponential increase of the rupture dimensions with earthquake  magnitude77, is expressed as follows:

These two spatial kernels are both isotropic. Recent  study78 shows the superiority of anisotropic spatial ker-
nel especially in the presence of earthquake doublets. With reference to Eq. (2), the ETAS model parameters θ 
can have seven parameters θ = [β, K, α, c, p, d, q] using the simple spatial kernel density with d� = d , or eight 
parameters θ = [β, K, α, c, p, d, q, γ] employing the magnitude-dependent spatial kernel density with d� = deγmj . 
Strictly speaking, the derived parameters Kt (see Eq. (3), function of c and p), and Kr = q−1

π
d�

2(q−1) (see Eq. (4) 
as function of d and q, or Eq. (5) as a function of d, q and γ) satisfy the achievement of asymptotic compatibility 
between ETAS predictions and the long-term seismicity. Parameter K, which has a direct relation with the num-
ber of events taken place before time t, will be discussed later (see “Calculating K” section). The rate of events 
with magnitude (exactly) equal to m, denoted as λETAS(t, x, y, M = m|θ, seqt, Ml) herein, is calculated by taking 
the derivative of Eq. (1) with respect to magnitude m:

(3)Kt

+∞∫
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(
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(4)
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where p(M = m|θ, Ml) is the probability density function, PDF, of magnitude at m.
Note on the estimation of the completeness magnitude Mc: It is known that aftershocks catalogs compiled 

immediately following a strong, shallow mainshock are not completely  registered72,79–82. Therefore, for provid-
ing early forecasts, proper estimation of Mc is a significant component for defining the observed aftershock 
sequence (observation history) to estimate the rate λETAS (see Eq. (2)). It is noted that having a high estimate for 
Mc would deprive the data of potentially valuable information that are crucial for Bayesian updating of ETAS 
model parameters (see “Sampling θ from the distribution p(θ|seq, Ml)” section). Herein, we have employed 
three different strategies for estimation of Mc (see Supplementary Information Section SI-3-Results for a detailed 
discussion): (1) Plotting the frequency-magnitude distribution of events in the observation history (available 
data at the time of forecasting) in a semi-logarithmic scale and visually detecting Mc as the point where the curve 
becomes approximately linear after the flat lower magnitude ranges. (2) Employing Bayesian inference for plot-
ting the maximum likelihood of the posterior probability distribution of β versus various magnitude thresholds; 
Mc can be detected as the magnitude threshold, where the plot of maximum likelihood estimates of β becomes 
quasi-invariant or reaches its peak value. (3) The semi-logarithmic plot, showing the observed earthquake mag-
nitudes as a function of the time elapsed after the mainshock, is a visual check for the value of Mc estimated by 
the previous two approaches. This is to ensure that the observed catalog of data at the time of issuing a forecast 
or the time of interest is complete for magnitudes ≥ Mc and does not include small magnitude ranges missed in 
an early time interval right after the occurrence of the main event.

In principle, Mc can be defined as a function of the mainshock magnitude and the elapsed time since the 
mainshock  (see76). Parameter estimation of this time-dependent detection probability function could be incorpo-
rated directly into our Bayesian approach. Methods to fit the corresponding parameters of the detection function 
along with the ETAS parameters are proposed  in5,83. However, this would be computationally too expensive in 
our Bayesian approach at this time and is deferred for future work.

Robust estimation for the number of aftershock events. The conditional number of events, denoted 
as N(x, y, m|θ,seq, Ml), in the spatial cell unit centered at (x, y) with magnitude greater than or equal to m in the 
forecasting interval [Tstart, Tend] can be calculated as:

where seq = {(ti, xi, yi, mi), To ≤ ti < Tstart, mi ≥ Ml, i = 1:No}; ti is the arrival time for the ith event with magni-
tude mi and location (xi, yi)∈ A; µ(x, y, m|θ, Ml) is the time-invariant spatial rate representing the background 
seismicity of the area showing events with magnitude greater than or equal to m (M ≥ m) in the cell unit cen-
tered at (x, y)∈ A. Moreover, µ(x, y, m|θ, Ml) can be expressed as the product of the “marker” P(M ≥ m|θ, Ml) 
and the spatial (inhomogeneous) seismicity term µ(x, y|Ml): µ

(
x, y,m|θ,Ml

)
= e−β(m−Ml) · µ

(
x, y|Ml

)
 . The 

time scale of µ(x, y|Ml) is the same as λETAS (e.g., daily or weekly). Nb represents the average number of events 
occurred due to the background seismicity with M ≥ m in the forecasting interval [Tstart, Tend], and estimated as 
Nb

(
x, y,m|θ,Ml

)
= e−β(m−Ml) · µ

(
x, y|Ml

)
· (Tend − Tstart) . The term �(·) = µ(·)+ �ETAS(·) defines the total 

spatio-temporal conditional intensity function as the sum of time-invariant (spatial) background seismicity 
plus the ETAS seismicity rate. A robust  estimate26,28,53,54,84 of the average number of events in the spatial cell unit 
centered at (x, y) with magnitude greater than or equal to m in the forecasting interval [Tstart, Tend], denoted as 
E[N(x, y,m|seq,Ml)] , can be calculated over the domain of the model parameters Ωθ as follows:

where E[·] denotes the expectation, and p(θ|seq, Ml) is the posterior conditional PDF for θ given the seq and 
Ml. As mentioned above, seq denotes the sequence of events taking place before the beginning of the forecasting 
interval, i.e. [To, Tstart). Nonetheless, the triggering effect of the events taking place during the forecasting interval 
[Tstart, Tend] is expected to play a major  role28. We denote this sequence as seqg, which is unknown at the time of 
forecasts and is simulated/generated herein. Let us assume that a plausible seqg is defined as the events within the 
forecasting interval so that seqg = {(IATi, xi, yi, mi), Tstart ≤ ti≤Tend, mi≥Ml}, where IATi=ti–ti-1 stands for the inter-
arrival time. The robust estimate for the average number of aftershock events in Eq. (8) should also consider all the 
plausible sequences of events seqg (i.e., the domain Ωseqg) that can happen during the forecasting time interval:
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where λETAS(t, x, y, m|seqg, θ, seq, Ml) is the space–time clustering ETAS model considering also the sequence 
of events taking place within the forecasting interval denoted as seqg; p(seqg|θ, seq, Ml) is the PDF for the gen-
erated sequence seqg given that θ and seq are known. The integral with respect to time in Eq. (9) is calculated 
piece-wise by summing over the [ti-1, ti] sub-intervals to span the entire interval [Tstart, Tend]:

where seqgi-1 is the generated sequence up to the (i-1)th event, and the sequence of events that precede the ith 
generated event is {seq,seqgi-1}. The integral over time  It is calculated as:

The term “robust” herein implies that the set of all possible model parameters is used to estimate the condi-
tional number of events N(x, y, m|seq, Ml) rather than a single nominal model parameter. Equation (9) can be 
solved via a fully simulation-based framework. First, vector of model parameters θ are sampled from p(θ|seq, 
Ml); then those samples are used to generate plausible sequences seqg taking place within the forecasting interval 
[Tstart, Tend]. The sequence of events that precede Tend is {seq, seqg}, where seq remains unchanged (observed 
data) among plausible samples. In the next two sections, we are going to discuss how samples are drawn from 
the probability distributions p(θ|seq, Ml) (“Sampling θ from the distribution p(θ|seq, Ml)” section) and p(seqg|θ, 
seq, Ml) (“Generating sequences according to p(seqg|θ, seq, Ml)” section) through a simulation-based workflow.

The probability that an event exceeding a given magnitude level m occurs within the aftershock zone in the 
forecasting interval can be calculated as follows (see  also28,48):

 where E
[
N
(
x, y,m|θ, seq,Ml

)]
 is calculated from Eq. (9).

Calculating K. The coefficient K in calculating λETAS (see Eq. 2) is calibrated so that the number of events with 
magnitude greater than or equal to Ml taking place in time interval [To , Tstart) over the whole aftershock zone A 
is equal to observed number No based on seq (see  also28):

where the term λ(t,x,y|θ,seqt,Ml) is the conditional rate, and according to Eq. (7), we have:

where Nbo is the number of events due to the background rate µ(x, y|Ml) with magnitude greater than or equal to 
Ml taking place in time interval [To , Tstart) over the whole aftershock zone A. The second (triple) integral term in 
Eq. (14) is calculated piece-wise by summing over the sub-intervals [ti-1, ti] (where i = 2:No) and the last interval 
[ tNo , Tstart] (where tNo is the arrival time of the event No) as follows (see also Eq. (10) and Eq. (11); λETAS = 0 in 
the interval [To , t1]):

where,
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Therefore, using Eq. (14) and Eq. (15), K can be derived as follows:

The integral over the whole aftershock zone A, denoted as Ir in Eq. (16), should be solved numerically. 
However, Ir can be approximated with integration over infinite space (denoted as Ĩr ); thus, it can be shown (see 
Eq. 4) that Kr Ĩr = 1 .  Schoenberg71 has shown that the assumption of an infinite spatial domain has negligible 
effect and so this approximation can be used to reduce the computational cost of evaluating the triple integral 
(double integral on spatial domain and another integral on time domain). This formal assumption was employed 
in many research efforts (e.g.,28,50). However, this approximation may cause significant errors when the consid-
ered aftershock zone A is not large enough to satisfy Eq. (4). Parameter K can be inferred based on two different 
approaches:

• Calculate K: The parameter K has a derived distribution based on Eq. (17) as a function of other ETAS model 
parameters. That is, the vector of model parameters θ = [β, α, c, p, d, q] has six parameters considering simple 
spatial kernel density, and the vector θ = [β, α, c, p, d, q, γ] has seven parameters employing the magnitude-
dependent spatial kernel density.

• Learn K: Parameter K is learned within the Bayesian updating framework. In this approach, θ = [β, K, α, c, 
p, d, q] using the simple spatial kernel density, θ = [β, K, α, c, p, d, q, γ] employing the magnitude-dependent 
spatial kernel density.

Both methods for characterizing K are examined and compared herein for the case-study (see Sect. Sensitiv-
ity analyses, Results).

Sampling θ from the distribution p(θ|seq, Ml). The probability distribution p(θ|seq, Ml) is calculated 
using Bayesian parameter estimation (for more detail  see28):

where C−1 is a normalizing constant; p(seq|θ, Ml) is the likelihood of the observed sequence given the vector of 
model parameters θ and lower cut-off magnitude Ml, p(θ|Ml) is the prior distribution for the vector θ. The prior 
joint distribution p(θ|Ml) can be estimated as the product of marginal lognormal PDFs for each model parameter 
(i.e., a multivariate lognormal distribution with zero correlation between the pairs of model parameters θ) whose 
central statistics (median) can be assigned based on the regional models; thus,

where n is the number of uncertain parameters in the vector θ ={θk, k = 1:n}; µlnθ is the vector of the mean value of 
lnθ (= logarithm of the vector of median values) associated with the prior distribution; S is the covariance matrix. 
In order to sample from the posterior distribution p(θ|seq, Ml) in Eq. (18), Markov Chain Monte Carlo (MCMC) 
simulation routine is employed. MCMC is particularly useful for drawing samples from the target posterior PDF 
p(θ|seq, Ml), while it is known up to a scaling constant C−1  (see54). Although Eq. (18) looks daunting, we only 
need un-normalized PDFs in MCMC, as discussed in Supplementary Information (Section SI-1-Method). The 
MCMC routine here employs the Metropolis–Hastings (MH)  algorithm85,86 in order to generate samples from 
the target probability distribution p(θ|seq, Ml), and later to estimate the robust estimation based on Eq. (9). 
The MH algorithm generates a Markov chain that produces a sequence of samples [θ1 → θ2 → · · · → θi → · · · ], 
where θi represents the state of Markov chain at ith iteration (the first few samples are often discarded to reduce 
the initial transient effect). It can be shown that the samples from the chain after the initial transient ones reflect 
samples from the target posterior distribution p(θ|seq, Ml). To improve the rate of convergence of the simulation 
process, we used an adaptive MH algorithm (as proposed  in54) herein that introduces a sequence of intermediate 
candidate evolutionary PDF’s that resemble more and more the target PDF. The Metropolis–Hastings routine 
and its adaptive version are described in detail in Section SI-1-Method.

Calculating the likelihood of the observed sequence p(seq|θ, Ml). Figure  11 shows the observed sequence, 
seq = {(ti, xi, yi, mi), To ≤ ti < Tstart, mi ≥ Ml, i = 1:No}, with No events where i = 1 is assigned to the first event (the 
schematic plot in Fig. 11 shows only the time scale). The likelihood of observing the sequence can be calculated 
as follows:
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where p(IATi, xi, yi, mi|θ, seq, Ml) is the conditional probability of observing event i within the seq with inter-arrival 
time IATi=ti–ti-1, magnitude equal to mi and epicenter location (xi, yi)∈ A. The CCDF P(IATNo+1 ≥ Tstart − tNo

|θ, seq, Ml) is the conditional probability that the (No + 1)th event takes place out of the time window [ tNo , Tstart), 
where tNo is the arrival time of the Noth event (see Fig. 11). As shown in Eq. (6), the probability of observing an 
event with magnitude mi, denoted as p(mi|θ, Ml), is history-independent. Thus, we can de-couple the probability 
of observing the magnitude mi, p(mi|θ, Ml) and the conditional probability p(IATi, xi, yi|θ, seq, Ml ) as shown 
in Eq. (20). In Fig. 11, the total conditional time- and history-dependent intensity function λ(·), as derived in 
Eq. (6), is shown with gray colored curves. Visibly, the value of λ(·) shows a spike right after the occurrence of an 
event and decays within the inter-arrival time to the next event. In the time interval IAT1 (= t1-To), the seismic-
ity rate is constant and equal to the time-invariant spatial background seismicity µ(x, y|Ml) as shown in Fig. 11 
(before To, we consider only background seismicity; see also “Robust estimation for the number of aftershock 
events” section). We assume an exponential distribution for probability distribution of IATi consistent with a 
non-homogeneous Poisson point process. Thus, Eq. (20) can be written as:

Equation (21) is derived considering that λ(t1, x1, y1|θ, seq, Ml) = µ(x1, y1|Ml) in the time interval [To, t1], and 
that P(IATNo+1 ≥ Tstart − tNo|θ, seq, Ml) is the CCDF of the exponential distribution of IATNo+1 . The likelihood 
function can be expressed as follows by combining the exponential terms in Eq. (21):

where,

where rji indicates the distance of the ith event with respect to the previously occurred jth event (tj < ti). With 
reference to the Bayes formula in Eq. (18), the term µ(x1, y1|Ml) is independent of any realization of the vector 
of model parameters θ; hence, this value can be eliminated from both nominator and denominator. Moreover, 
the MH algorithm employs the ratio of the likelihoods (see Section SI-1-Method), and constant terms can easily 
be disregarded. Thus, an estimator for the likelihood can be defined as follows (within the context of Bayesian 
inference):
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Figure 11.  The main parameters required for constructing the likelihood function; the seismicity rate as a 
function of time showing how each event provokes a jump and is followed by a decay; and the illustration of seq.
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With reference to “Calculating K” section, we have two approaches to follow:

• In case that we want to calculate parameter K, as noted in “Calculating K” section (Calculate K), the power of 
the exponential term in Eq. (24) becomes No (see Eq. 13); thus, the constant term e−No can also be eliminated 
while employing the Bayesian updating framework in Eq. (18) (see also Section SI-1-Method). In this way, 
the likelihood estimator in Eq. (24) can be simplified as the product of the probabilities of observing mi, for 
i = 1:No, and those of the total rate λ(ti, xi, yi|θ, seqt, Ml) for i = 2:No.

• If we learn parameter K within the MH algorithm (see Calculating K” section, Learn K), the triple integral 
(the power of the exponential term) in Eq. (24) can be solved based on Eq. (14) and Eq. (15). Even in this case, 
we can exclude the constant term e−Nbo from the likelihood estimator (as it is independent of any realization 
of θ). Thus, Eq. (15) is employed to estimate the triple integral of λETAS over the time interval [To , Tstart]. As 
shown in Eq. (15), it is solved piece-wise by summing over the sub-intervals [ti-1, ti] (where i = 2:No), and [tNo, 
Tstart].

Generating sequences according to p(seqg|θ, seq, Ml). This section describes how the catalogue of 
stochastic events seqg, which will occur during the forecasting interval, is simulated. The event i in the gener-
ated catalogue is identified by the arrival time ti = ti-1 + IATi, the Cartesian coordinates (xi, yi) of the epicenter, and 
the magnitude mi. The sequence of events in the generated catalogue up to event i is denoted by seqgi-1. Thus, 
seqgi={seqgi-1, (IATi, xi, yi, mi)}. Catalogue simulation continues until the arrival time of the simulated events do 
not fall outside the forecasting interval (i.e., ti ≤ Tend). The likelihood p(seqg|θ, seq, Ml) for the generated cata-
logue seqg can be calculated using the rule of product in probability; that is conditioning the occurrence of ith 
event on the previous i‑1 events:

where p(IATi, xi, yi, mi|seqgi-1, θ, seq, Ml) is the conditional probability of observing event i. It is noted 
that the sequence of events that precede the ith generated event is {seq, seqgi-1}. For event i = 1 in Eq. (25), 
seqgi-1 = seqg0 = ∅ . The probability distribution p(IATi, xi, yi, mi|seqgi-1, θ, seq, Ml) can be further expanded (again 
using the probability product rule) as follows:

where p(mi|θ, Ml) is the conditional marginal PDF for the magnitude mi given the model parameters θ, and Ml; 
p(IATi|mi, seqgi-1, θ, seq, Ml) is the conditional marginal PDF for inter-arrival time IATi given the history of past 
events {seq, seqgi-1} and given that the value of magnitude is equal to mi; finally, p(xi, yi|IATi, mi, seqgi-1, θ, seq, 
Ml) is the conditional joint PDF for the spatial position (xi, yi)∈ A given that IATi and mi are known. The break-
down into the product of several conditional PDFs is necessary as we need to sample mi, IATi, and (xi, yi) directly 
from the three consecutive probability terms, respectively. To generate a plausible sequence of events during the 
forecasting interval [Tstart, Tend], the procedure, illustrated originally  in28, is adopted with some modifications 
herein and described in the following sections.

Sampling magnitude, m. The magnitude mi of the ith event within seqg is simulated according to a truncated 
Exponential PDF with rate β, denoted as p(M = mi|θ, Ml) in Eq. (6). The Exponential cumulative density function 
(CDF) used to generate m has the upper bound magnitude threshold Mmax:

To sample from this CDF, generate a uniform random number u ∼ Uniform (0, 1):

If the upper bound threshold Mmax is not considered ( Mmax → +∞ ), Eq. (28) can be modified by eliminat-
ing the term 1− exp(−β(Mmax −Ml)) in the parenthesis. It is to note that we have considered the upper-bound 
threshold Mmax just for generating the sequences within seqg. The ETAS rate (see Eqs. 2 and 6) has no magnitude 
upper threshold.

Sampling the inter‑arrival time, IAT. To generate the inter-arrival time of the ith event, IATi, within seqg (given 
that its magnitude mi is already known), the Thinning  algorithm87 (see  also57) is employed herein. The thinning 
algorithm is based on simulating inter-arrival times from a homogeneous Poisson process with sufficiently large 
intensity, denoted here as λmax, and then thinning out (filtering) the points according to the conditional intensity 
function denoted as λgen. The Thinning algorithm is as follows:
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Step (1): Calculate the temporal Poisson rate λmax over the entire aftershock zone at time ti-1 having integrated 
out the spatial term, as follows (see Eq. 7):

where µb is the background rate over the whole area A. It is noted that the ETAS rate is estimated by summing 
up the rate of events taken place before ti-1. For generating the first event, ti-1 is set to Tstart.

Step (2): Generate the inter-arrival time IATgen from a homogeneous Exponential CDF with the rate λmax 
expressed as F(IAT) = 1-exp(-λmax·IAT). Since the inverse function F(IAT)−1 has a closed-from expression, we use 
the inverse transform sampling technique. To sample from this CDF, first generate a uniform random number 
u ~ Uniform (0, 1); the generated IATgen can analytically be drawn as IATgen = -ln(1-u)/ λmax.

Step (3): Calculate the Poisson rate at time tgen = ti-1 + IATgen, denoted by λgen, from Eq. (29) by substituting ti-1 
with tgen. It is noted that the generated magnitude mi in the previous section has no effect on the rate λgen, as this 
rate is calculated based on events taking place before tgen. The rate λgen should always be equal to or smaller than 
λmax; i.e., λgen ≤ λmax. If this condition does not hold, go to Step (5).

Step (4): Accept tgen with the probability pr = λgen/λmax by first generating a uniform random number u ~ Uni-
form (0, 1); if u ≤ pr, then the time tgen is accepted, and thus ti = tgen. The procedure continues by generating the 
next inter-arrival time until ti > Tend. λmax is going to change while generating each new ti.

Step (5): Reject tgen if u > pr or λgen > λmax (i.e., pr = λgen/λmax > 1). Let us denote the rejected tgen as tgen
(-) (in order 

to keep track of it for the next simulation). In the case of rejection, the procedure continues by sampling a new 
inter-arrival time IATgen from the homogeneous Exponential PDF with rate λgen. The new generated arrival time 
is calculated as tgen = tgen

(-) + IATgen, tgen ≤ Tend. The quantities λgen and pr are calculated again to test whether the 
newly generated inter-arrival time is accepted or rejected.

Based on the above discussion, it is noted that p(IATi|mi, seqgi-1, θ, seq, Ml) = p(IATi|seqgi-1, θ, seq, Ml); i.e., 
mi is independent of IATi.

Generating the epicentral coordinate, (x, y). The spatial coordinates are simulated from a spatial kernel p(x, 
y|IATi, mi, seqgi-1, θ, seq, Ml) that is obtained based on the epicenters of the previous events (i.e., {seq, seqgi-1}), 
and conditioned on the generated mi and IATi. This spatial kernel is a joint PDF of the epicentral (Cartesian) 
coordinates, from which (xi, yi) for the ith event can be generated given that the magnitude mi, the time of occur-
rence ti, and the previous (i-1) events within the generated sequence seqgi-1 are known (see  also28):

In other words, the joint PDF p(x, y|·) in Eq. (30) is estimated for all Cartesian coordinates (x, y)∈ A and is 
normalized to obtain the kernel. The likelihood in the nominator p(IATi, x, y, mi|seqgi-1, θ, seq, Ml) of Eq. (30) 
can be calculated as (see also Eq. 20):

where λ(ti, x, y|seqgi-1, θ, seq, Ml) is obtained for each Cartesian coordinate (x, y)∈ A and for all t < ti (see Eq. 7 
and Eq. 29) and the exponential power is derived as (see also Eq. (10) and Eq. (11)):

The denominator in Eq. (30) is the sum over all the Cartesian coordinate (x, y)∈ A. Moreover, the PDF of 
observing mi, i.e. βexp(−β(mi −Ml)) , can be dropped from both nominator and denominator of Eq. (30) since 
it is not location-dependent. Thus, it is interesting to mention that p(x, y|·) in Eq. (30) is independent of mi.
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N‑test based on the simulation‑based Bayesian framework. The N-test is intended to measure 
(in a probabilistic manner) how well the forecasted number of earthquakes matches the observed number of 
 events59. According to this test, we fit a Poisson distribution to the forecasted number of events Nfore with magni-
tude greater than or equal to Ml . Nfore is the expected number of events in the forecasting interval integrated over 
the aftershock zone A, as in Eq. (12), Nfore = E

[
N
(
M ≥ Ml|θ, seq,Ml

)]
 . The objective of the N-test is to verify 

if the observed number of events Nobs (with M ≥ Ml taking place within the forecasting interval) are not outliers. 
To this end, one needs to estimate the two probabilities that the number of events n ≤ Nobs and n ≥ Nobs given 
Nfore , which are denoted as δ1,Poiss = P(n ≤ Nobs|Nfore) and δ2,Poiss = P(n ≥ Nobs|Nfore) , respectively. These 
two probabilities should be greater than a threshold (say 0.025 to reflect 95% confidence interval) to guarantee 
that Nobs will not lie within the tails of our forecast.

The proposed simulation-based workflow provides as output the posterior probability distribution for the 
forecasted number of events N

(
M ≥ Ml|θ, seq,Ml

)
 according to Eq. (9) that is integrated over the aftershock 

zone A. Therefore, it is quite straightforward to compute the percentiles of this distribution (i.e., 50th, 16th, 84th, 
2nd and 98th percentiles) to realize how well the forecasted number of earthquakes matches Nobs. It is possible 
to estimate empirically the probabilities δ1,Bayes = P(n ≤ Nobs|Nfore) and δ2,Bayes = P(n ≥ Nobs|Nfore) as the 
number of data that are (≤ Nobs) and (≥ Nobs) divided by the number of samples simulated for θ (the number of 
samples N

(
M ≥ Ml|θ, seq,Ml

)
 is equal to the number of generated samples of θ).

S‑test based on the simulation‑based Bayesian framework. The spatial distribution of forecast 
and observation can be compared based on the S-test58,59, which provides an overall measure of how well the 
forecast in single cell units (associated with the mesh grid of the space A of the aftershock zone centered at x 
and y) matches the observations in single cell units. According to this test, we calculate the log-likelihood of 
observations Nobs,n given the forecasts Nfore,n in each grid, where n = 1:Ngrid, assuming that the total number 
of cell units centered at the Cartesian coordinate (x, y)∈A is equal to Ngrid. Consider that Nfore =

∑Ngrid

n=1 Nfore,n 
and Nobs =

∑Ngrid

n=1 Nobs,n , where Nfore,n = E[N(x, y,Ml |θ, seq,Ml)] (see Eq.  9) is the (expected) number of 
forecasted events with M ≥ Ml at the Cartesian coordinate (x, y)∈ A, and Nobs,n is the number of observed 
events (with M ≥ Ml ) in the same cell unit within the forecasting interval [Tstart, Tend]. We isolate the spatial 
forecasts so that sum of the number of events over the whole grid cells matches the observation; thus, we set 
Nfore,n = Nfore,n · Nobs

Nfore
 . We estimate the likelihood Sobs as:

The S-test is done herein based on the standard S-test59 and the Bayesian S-test. The two methods are described 
as follows:

1. The standard S-test accounts for the forecast uncertainty by simulating catalogues that are consistent with 
the forecast. For simulating each catalogue: (a) the number of events in each simulated catalog is normal-
ized to match Nobs ; (b) For each event in the previous step, generate a uniform random number ∼ Uniform 
(0, 1) in order to locate the event in the corresponding spatial cell according to the proportion of Nfore,n in 
the cell units (i.e., using the inverse cumulative distribution function). Stage (b) will lead to construction of 
Nsim,n to be the number of simulated events (with M ≥ Ml ) in the cell unit (x, y)∈ A, where n = 1:Ngrid con-
sidering that Nobs =

∑Ngrid

n=1 Nsim,n . Repeating stage (b) many times (say e.g. 500 to 1000 iterations) leads to 
the construction of forecast-consistent simulated catalogues of events. Finally, for each simulated catalogue, 
the log-likelihood Ssim of Nsim,n simulations given the forecasts Nfore,n , in all cell units can be calculated as 
follows:

  Repeating the calculation of Eq. (34) for each simulated catalog, we obtain the vector of log-likelihood 
Ssim.

2. The presented simulation-based workflow furnishes, as a side-product, the Bayesian S-test and forecast-
consistent catalogues. Stage (b) in method (1) described above can be accomplished by directly using the 
normalized spatial seismicity forecasts 

[
N(x, y,M ≥ Ml|θ, seq,Ml) · Nobs

Nfore

]
 for the cell units based on differ-

ent realizations of the vector of uncertain parameters θ . Thus, the number of simulated catalogs is equal to 
the number of generated samples of θ . The log-likelihood Ssim can be estimated according to Eq. (34).

This probability P(S ≤ Sobs) can be estimated as follows:

where N(Ssim ≤ Sobs) indicates the number of the components in the vector Ssim that are ≤ Sobs, and the denomi-
nator N(Ssim) is the total number of elements in Ssim which is equal to the number of simulated catalogs. If Sobs 
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falls in the lower tail of the distribution P(S ≤ Sobs), this indicates that the observation is not consistent with the 
forecast in each cell; thus, the forecast is not accurate.

Data availability
The earthquake catalog of Kermanshah seismic sequence used in this study and the MATLAB code developed 
for this workflow is available on a Git repository hosting service GitHub https:// github. com/ HossE bi/ Bayes ian_ 
spati otemp oral_ ETAS_ model_ ver2. The data is also available upon request from the corresponding author.
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