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Abstract. This paper introduces a novel Satellite Precipitation-based Extreme Event Detection (SPEED) model to effectively 

support parametric or index insurance products specifically designed to cover flood risk. Such financial instruments are 

intended to promote fast payouts in the aftermath of a disastrous event. They leverage on measured hazard parameters, gathered 

immediately after the event and defined as the trigger(s), which are used to identify such hazardous events and estimate their 10 

resulting consequences in terms of physical damage and losses.  

This paper addresses the first step of such a modeling approach, the detection of a flood event, which plays an important role 

in the overall methodology, determining its performance in terms of false and missed detections. Different types of triggers 

for identifying flood events, based on satellite precipitation estimates, are investigated, and the overall model performance is 

assessed for a case-study country (the Philippines). A statistical procedure for selecting the optimal configuration of model 15 

parameters is presented. Such an optimal configuration minimizes the so-called basis risk, here defined in terms of the 

mismatch between modeled and actual events. Finally, the accuracy of the proposed approach in terms of event localization is 

investigated by subdividing the case-study country into three main areas, corresponding to the coarsest administrative levels, 

and assessing the model’s capability to capture events in each considered area.  

The results from this study confirm that the proposed SPEED model can be effectively used as an input for parametric insurance 20 

products, given its ability to identify hazardous events correctly. 

Keywords: flood risk; parametric insurance; rapid loss estimation models; satellite precipitation estimates. 

1 Introduction  

The 2018 World Disasters Report by the International Federation of Red Cross (Fisher et al., 2018) reported 3751 natural-

hazard events affecting more than 2Bn people and causing $1.658Tr worth (physical) damage in the last decade. Population 25 

increase (and consequently of exposure), as well as climate-change effects, will most likely exacerbate these figures in the 

near future. More effective and dynamic financial tools are required to improve rapid response and recovery in the aftermath 

of a disaster and to sustain preparedness further in such a context. Specifically, ex-ante funding mechanisms are needed to 

both effectively meet post-disaster needs and support disaster risk management (DRM) initiatives (Cummins & Mahul, 2009). 
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Recently, new insurance and/or financial strategies have been proposed to ensure pre-determined funds are available before 30 

losses are actually incurred. In this context, parametric or index insurance is playing a relevant role with respect to conventional 

insurance products aimed at indemnifying suffered losses. This is mainly due to parametric products’ inherent ability to provide 

fast payouts and their cost efficiency, making them appealing to all parties involved. Payments associated with parametric 

coverages generally depend upon environmental variables, which are also defined as triggers, such as cumulated precipitation, 

earthquake magnitude, or wind speed, typically measured at the closest recording stations to a given target site (Ibarra, 2012). 35 

The payout can be based on the occurrence of a specific event with certain characteristics (e.g., earthquake exceeding a given 

magnitude within a pre-defined geographical area) or computed through an index defined as a function of the trigger observed 

values. Parametric insurance products are intended to provide cash flow to supplement foregone revenue and finance 

emergency response and disaster recovery. An automatic trigger can also reduce administrative costs for the insurer by 

eliminating the need for time-consuming/expensive field-based damage surveys. Because of the reduction in administrative 40 

costs, premiums may also be lowered, and, in turn, products made more affordable to end users. Additionally, the use of 

objective, measurable and accurate triggers can prevent moral hazards, i.e., when behaviors of insurance policyholders can 

influence the extent of damage that qualifies for insurance payouts. Nevertheless, parametric insurance is intrinsically 

subjected to the so-called basis risk, defined as the risk that the payments do not correspond to the occurrence of an actual 

event or, alternatively, that the actual losses do not match the pre-determined payout (Albertini & Barrieu, 2009).  45 

In the last decade, parametric or index insurance received increasing attention in the context of climate risk mitigation, 

especially in countries with low financial capacity, which are often disproportionately affected by natural hazards. In such 

areas of the world, the introduction of this type of insurance can contribute to sustainable development, and its potential has 

been investigated in several projects worldwide. Index insurance can be used to cover a variety of hazards. However, the 

present study focuses on flood risk and, more specifically, on identifying events that can trigger the payout of the associated 50 

parametric coverage. 

Several examples of index-based insurance to provide weather insurance for local farmers can be found in Africa, such as the 

National Drought Insurance for Malawi (Syroka & Nucifora, 2010) and the ‘Using Satellites to Make Index Insurance Scalable’ 

project in Ethiopia (Stanimirova et al., 2013). A similar index-insurance program has been developed in Mexico by 

Agroasemex (Hazell et al., 2010), the state reinsurance company, to cover crops both from excess and lack of rainfall. Two 55 

notable examples of index-based insurance products are the Caribbean Catastrophe Risk Insurance Facility (CCRIF) (CCRIF 

SPC, 2018), which is the first multinational index-insurance scheme to cover a series of countries within the Caribbean region 

against earthquakes, hurricanes, and excess of rainfall; and the index-based livestock insurance program in Mongolia, which 

represented one of the first examples of agriculture insurance program implemented through a country-wide agricultural risk 

management approach (Mahul & Skees, 2007). Parametric coverages are also gaining increasing attention both for individuals 60 

and private companies, ranging from Small and Medium Enterprises (SME) to Corporates, to cover a protection gap, as well 

as replacing inefficient products or introducing new products in very diverse business sectors ranging from energy to travel 

and leisure, but also event organization, transportation and retail (Foucart, 2013).  
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The “core” component of a parametric insurance scheme is an underlying methodology able to (1) detect an event causing 

losses (a loss event, hereinafter) based on objective criteria (i.e., the exceedance of a pre-defined threshold on a given 65 

environmental or modeled variable, that is the trigger defined above); and (2) estimate the resulting loss by means, usually, of 

a simplified loss model relying on an index that is a proxy of the actual loss (ASEAN, GFDRR, & UNISDR, 2012). Such a 

loss index is the input variable of a payout function conventionally agreed within the policy contract together with other 

coefficients determining the payout rule. As time is a critical variable in parametric insurance, these products’ underlying 

methodology/models need to identify a disaster event and, possibly, estimate the associated losses promptly. Hence, they are 70 

also referred to as near real-time loss estimation models. As mentioned above, this study addresses the first component of near 

real-time loss estimation models (i.e., event identification – point (1) above); it proposes a modeling approach relying on 

satellite-based precipitation estimates as the environmental variable (trigger) to identify flood events for the purposes of 

parametric insurance products. Such products, also known as weather-index insurance for this specific case, aim to compensate 

for the related losses right after a flood event. Point (2) above is not necessarily present within near real-time loss estimation 75 

models, and, in such circumstances, a pre-determined payout is paid by the insurance regardless of the actual loss.  

It is worth noting that the methodology presented in this study could also be adapted for early warning purposes (e.g., different 

alert levels could be pre-defined based on the modeled event size). However, it is specifically designed in this study to serve 

as a basis for parametric insurance products.  

This paper represents an extension of a previous study of the authors (Vecere, Martina, Monteiro, & Galasso, 2019), where 80 

the proposed methodology was broadly presented. However, the present paper includes additional sensitivity analyses on the 

model parameter optimal configuration and a location accuracy analysis, given its relevance in the context of parametric 

insurance, for which the proposed SPEED model is designed. 

1.1  Satellite Precipitation-based Extreme Event Detection (SPEED) 

The trigger employed in the proposed SPEED model should satisfy the following criteria: (1) accessibility in near real-time; 85 

(2) adequate temporal coverage to compute meaningful statistics on it (i.e., typically 20 years); (3) accuracy and consistency 

over time of the methodology underlying the estimation of the environmental variable (i.e., precipitation); (4) marked 

correlation between the selected trigger and the associated losses (Figueiredo, Martina, Stephenson, & Youngman, 2018). 

Additional advantages of using satellite data are their global coverage (i.e., no need for local recording stations), the free data 

accessibility, and the use of a tamper-proof trigger. The latter aspect, in particular, represents an added value with respect to 90 

traditional parametric coverages whose payout is based on data retrieved from measurement networks/recording stations (i.e., 

rain gauges) around a target site. Furthermore, a considerable premium reduction could be obtained by spreading the risk over 

large regions. 

Based on these preliminary remarks, this paper proposes a methodology to identify loss-triggering events through satellite 

precipitation data. Event detection is a crucial aspect in any near real-time loss estimation model to ensure accuracy and 95 

precision. One of the advantages of using a model to identify a loss event is the statistical consistency of the loss occurrence 
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both in the pricing phase (i.e., premium computation) and during the model operation (i.e., payout settlement). Indeed, under 

the assumption of stationarity conditions, if the data source used in the calibration/validation phase (historical observation) is 

the same as the one employed for the operational phase of the model (i.e., homogeneous dataset), the probability distribution 

of the loss computed for the pricing phase is consistent with the frequency of occurrence of the actual loss, upon which the 100 

payout settlement depends. This feature is particularly convenient when the model is used within a parametric insurance 

program because the estimated annual average payout of the operational period is the same as the historical period. Therefore, 

the price for the insurance (premium) is consistent with the payouts. Conversely, traditional insurance uses catastrophe models 

to estimate the annual average payout (and price the contract), but uses other procedures (e.g., loss adjustment) to compensate 

for the actual loss. Hence, the proposed SPEED model differs from traditional risk assessment models and, particularly, from 105 

different available post-disaster impact methodologies, such as the Prompt Assessment of Global Earthquakes for Response 

(PAGER) or the Global Disaster and Alert Coordination System (GDACS) web‐based disaster information systems (Mehta, 

2017; Wald, Jaiswal, Marano, Bausch, & Hearne, 2010).  

Specifically, the proposed SPEED model belongs to the category of the so-called early or rapid loss estimation models, which 

aim at providing an estimate of the impact/loss in a given area, following a natural-hazard event (such as floods or storms), 110 

within a few hours or days. These models can be classified into two main categories depending on the data used to assess the 

loss of the event: 

i) Models using observations of effects or impacts of the event on the territory; 

ii) Models employing environmental variables related to the hazard intensity. 

The first category includes, for instance, flood-mapping methodologies that leverage optical imagery, such as the Moderate 115 

Resolution Imaging Spectroradiometer (MODIS) products from Terra and Acqua satellites (G R Brakenridge, Andersona, 

Nghiemb, Caquard, & Shabaneh, 2003; R. Brakenridge & Anderson, 2006), or radar sensors such as Sentinel, which offer the 

advantage to penetrate clouds, differently from the former. Two notable examples of flood mapping through MODIS data are 

represented by the near real-time Global Flood Mapping Project (GFMP) (Slayback, Brakenridge, & Policelli, 2012) and the 

Dartmouth Flood Observatory (DFO) (G. Robert Brakenridge, 1993). Optical imagery is also used to compute vegetation 120 

indices like the Normalized Difference Water Index (NDWI), as in the ‘Using Satellites to Make Index Insurance Scalable’ 

project mentioned above, among others. Land-surface and hydrologic models are also employed to estimate flood impact, as 

in the Global Flood Monitoring System (GFMS) (Wu et al., 2014). Finally, in recent years, several studies investigated the 

potential behind social media - which falls in the category of the so-called volunteered geographic information - for DRM 

purposes and particularly in the emergency response phase (Poser & Dransch, 2010), for instance in (Fohringer, Dransch, 125 

Kreibich, & Schröter, 2015). 

The second category of early or rapid loss estimation models includes those leveraging environmental variables related to the 

hazard intensity by defining specific thresholds to then identify extreme events (and, possibly, provide an estimate of their 

impact). For example, peak discharge or rainfall are generally (and widely) used as a trigger for flood events.  



5 

 

One model using rainfall as a trigger is the one provided by the Excess Rainfall (XSR) risk model, developed for CCRIF 130 

(introduced above) over the Caribbean region (CCRIF SPC, 2018). CCRIF launched the first excess rainfall parametric 

insurance product in 2013, later updated in 2016, when a new model was released, namely CCRIF Excess Rainfall Model 2.0. 

This model simulates the amount of precipitation over the Caribbean area in near real-time based on a combination of climatic-

meteorological models and a low-orbiter satellite-based precipitation model to produce a rapid estimate of the potential losses 

(CCRIF SPC, 2016). If the rainfall policy is triggered for one of the countries that have purchased XSR coverage, a payout 135 

based on the CCRIF insurance policy conditions is issued to the affected nation. The key novelty introduced by this model is 

the estimation of rainfall-induced losses to the modeled exposure rather than only using event parameters (as in traditional 

parametric insurance contracts). Excess of rainfall coverage - in addition to drought - is also provided by the Pacific Rapid-

Response Financing program initiated by the World Bank on behalf of Pacific Island Countries (PICs). Drought and rainfall 

indices were developed using satellite data from the National Aeronautics and Space Administration (NASA). To this end, a 140 

prototype web-based monitoring system was designed to automate rainfall data processing in near-real-time (GFDRR, 2018). 

Another interesting example of rapid loss estimation models is the one adopted by the meso-level index-based flood insurance 

for the Sirajganj district in Bangladesh (Oxfam, 2013). The product uses model-generated flood data for payout calculation. 

In this way, the product is scalable and free from tampering and human errors, as in the case of a water level gauge network. 

The Institute of Water Modeling (IWM) based in Bangladesh developed a dedicated 1-D hydrodynamic model to generate 145 

both historical water levels in the river channels and flood plains as well as post-event data used for payout computation. Once 

discharge and water levels in correspondence of rivers and channels have been computed, the model uses a 1D-2D coupled 

model (MIKE flood model) and a digital elevation model (DEM) to produce flood maps and water level data over the flood 

plain. The compensation payment schedule is based on the number of continuous days of flood at a single household level.  

The SPEED model proposed in this study belongs to the second category of rapid loss estimation models. They are intended 150 

to overcome the limitations posed by models of both typologies described above, namely:  

 dependence upon atmospheric conditions, such as clouds in the case of optical imagery; 

 long revisit time and limited area coverage provided by radar sensors; 

 use of complex hydraulic or hydrological models that are computationally expensive and time-consuming; 

 combination of forecast and satellite-based precipitation models. 155 

SPEED models are specifically designed to fill such gaps in existing rapid loss estimation modeling through the following 

features: 

 the use of satellite precipitation estimates only to streamline the process of event identification, thus providing timely 

inputs for parametric coverages;  

 a reliable and intuitive framework composed of sequential steps – as discussed later – where a combination of different 160 

thresholds based on satellite precipitation estimates is employed;  

 global coverage and high spatial and temporal resolution due to the intrinsic characteristics of the selected trigger; 
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 high flexibility with possible integration of new satellite precipitation datasets or inclusion of additional 

environmental variables/satellite products. 

In the remainder of this paper, the proposed SPEED-based framework is applied to identify flood events over the Philippines. 165 

After describing the selected reference database for historical hydrometeorological events in the country, the designated trigger 

is investigated with particular reference to its suitability to the SPEED-based methodology introduced in the paper. Then, 

model construction (i.e., the definition of its methodological steps) and calibration are thoroughly presented. Model 

performance is finally evaluated, and its optimal configuration is defined based on those model parameters (i.e., thresholds) 

that minimize basis risk over the designated study area. To further demonstrate the proposed methodology’s added value, event 170 

localization accuracy within specific macro-areas is also investigated. 
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2 Methodology 

The methodology developed to detect hydrometeorological events here applied to the Philippines and conceptually depicted 

in Figure 1 is detailed in the following. Firstly, the model event definition procedure and the computation of the optimal 175 

thresholds for identifying flood events according to the proposed methodology are described. Then, the model skills are 

investigated in terms of both extreme events detection and the accuracy of their location with respect to historical information.  

 

 

Figure 1: Conceptual framework of the proposed model. The main phases of model development are highlighted in red. 180 

2.1 Event identification procedure 

The methodology developed to identify extreme meteorological events over the Philippines’ territory, which employs daily 

precipitation as a primary trigger, consists of four sequential phases: 

1. Identification of active cells over the investigated region; 

2. Computation of active days within the selected timeframe; 185 

3. Definition of event duration (i.e., start and end event days); 
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4. Event detection within a pre-defined control period. 

A single cell is considered active when its daily precipitation value exceeds a specific threshold, which is hereafter referred to 

as Threshold 1 (Thr.1), as illustrated in Figure 2.  

 190 

 

Figure 2: Identification of active cells. 

 

In the second step, another threshold, Threshold 2 (Thr.2), is defined on the total number of active cells (or cell percentage) 

within each day, and it is used to determine if an event occurred in a given day (Figure 3). Both thresholds are selected from a 195 

range of possible values through the procedure presented in the following section. 

 

 

Figure 3: Identification of active days. 
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 200 

The third step aims to define event duration due to the active days specified in the previous phases. The event starts on the first 

active day and ends on the day in which the active cells count is lower than Threshold 2 (Th.2) with the inclusion of tolerance 

(a single day in this case). Figure 4 illustrates the event start and end dates definition.  

 

 205 

Figure 4: Event definition with the highlighted period of tolerance. 

 

The fourth and last step of the procedure corresponds to the definition of a control period to assess if an event has occurred. 

Two main reasons justify the adoption of a period longer than one day to check estimated events with respect to the historical 

(real) ones. Firstly, considering the islands’ size, the duration of a flood event is approximately three days. Secondly, in the 210 

insurance policy, the so-called “72-hour clause” (Chartered Insurance Institute, 2017; Clarke, 2018) considers all the losses 

that occurred within 72 hours from the first event as a single claim. Any event duration exceeding three days is represented as 

a multiple of this aggregation period. 



10 

 

 

Figure 5: Event definition with the highlighted period of tolerance. 215 

 

This type of constraint is often imposed on weather-related perils, such as storms or floods, and to other catastrophes, such as 

earthquakes, to conventionally define a claim’s time duration. Therefore, a three-day aggregation was adopted in this study 

(Figure 5). Subsequently, an event’s occurrence is established based on the presence of at least one active day within the 

control period, which is then translated into a binary array of simulated events. 220 

2.2 Model calibration and performance metrics 

The model is calibrated to determine the optimal combination of Thr.1 and Thr.2 values introduced above. Two sets of values 

were defined to include the broadest range of reasonable entries for both thresholds. In particular, Thr. 1 varies between 1 and 

100mm with 5mm interval, whereas Thr. 2 can assume values from 1% to 15% with 0.5% interval. The combinations of the 

two sets of values for both thresholds produced a total of approximately 640 runs. A bootstrapping method, which will be 225 

thoroughly described in Section 4.1, is used to identify the best model configuration among all the above-mentioned runs. 

 

Table 1: Contingency table. 

 Real events 

Modeled events Yes No 

Yes Hits False Alarms 

No Misses Correct Negatives 
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The combination of the two thresholds aims to create the binary vector of simulated events described above, which needs to 230 

be checked against the same binary array produced for the real events with the same assumption of a three-day control period 

for consistency with model simulation. These two arrays are the basis for generating the so-called contingency table (Table 1), 

following a procedure traditionally used in the weather forecast verification field (Stanski, Wilson, & Burrows, 1989). The 

‘hits’ is defined as the number of events captured by the model which actually took place. ‘Misses’ represents the number of 

real events the model was not able to identify. The ‘False alarms’ refers to the number of events wrongly detected by the model 235 

since they did not actually occur. ‘Correct negatives’ entry is the number of events that were correctly identified by the model 

as non-events. Model performance skills were assessed by using two metrics, namely the Probability of detection (POD) and 

the Probability of false detection (POFD), which are defined, respectively, by Eq. (1) and (2): 

POD = 
Hits

Hits+Misses
 (1) 

POFD =
False alarms

False alarms+Correct Negatives
 (2) 

The POD computes the portion of the observed “yes” events correctly captured by the model, whereas the POFD returns the 

fraction of the observed “no” events the model wrongly classifies as “yes” events. 240 

A Skill Score (SS) coefficient can also be defined to provide a synthetic metric to evaluate the model. It is defined as the 

difference between the statistical quantities previously defined, according to Eq. (3). 

 SS = POD-POFD (3) 

Therefore, from a probabilistic point of view, the skill score represents the difference between the probability of detection and 

the probability of false detection. Ultimately, it is a measure of the model’s accuracy, providing an estimate of the model’s 

ability to discriminate between events and non-events. 245 

3 Case-study area and input data 

3.1 The Philippines’ risk profile 

The Philippines is an archipelago of more than 7000 islands covering an area of approximately 300,000 Km2. The country is 

one of the most disaster-prone countries worldwide, being exposed to different types of natural hazards (Figure 6a). The 2020 

Germanwatch Climate Risk Index confirmed this by ranking the Philippines 2nd worldwide among the most affected countries 250 

by events in 2018 and 4th in the period 1999-2018 (Eckstein, Künzel, Schäfer, & Winges, 2019). Due to its geographical 

location, it is exposed to various geological hazards (earthquakes, landslides, volcanic Eruptions, etc.), especially to 

hydrometeorological risk, namely floods, typhoons, and seasonal rains. For this reason, the national government has primarily 
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invested in developing ex-ante financial mechanisms aimed at mitigating the impact of those events and increasing the 

country’s resilience to natural hazards (e.g. (D’Ayala et al., 2020; Sevieri et al., 2020)).  255 

 
 

 

 

 

  

(a) (b) (c) 

Figure 6: Hydrometeorological events in The Philippines according to EM-DAT in terms of (a) frequency, (b) damage, and (c) event 

location by island group (Luzon = 1, Visayas = 2, Mindanao = 3) between 1998 and July 2017. 

3.2 Historical events data: the EM-DAT database 

Historical events information was obtained from the Emergency Events Database (EM-DAT) (D. Guha-Sapir, 2020), a data 260 

collection for over 22000 disasters globally from 1900 to the present. In addition to the date and location of each event, the 

database defines the event typology (e.g., flood - fluvial flood, storm - tropical cyclone - convective storm), and, where this 

detail is available, it provides additional disaster information such as the event footprint area, hazard magnitude (e.g., maximum 

wind speed) or location coordinates (e.g., earthquake epicenter’s latitude and longitude). EM-DAT collects several types of 

information to measure event impacts such as the number of dead people (i.e., total deaths), total affected people (defined as 265 

the sum of affected, injured, and homeless people), and total damage, which includes direct and indirect economic losses as 

well as damage to property, crops, and livestock (Figure 6a).  

For the present study, a reference dataset for model calibration and validation was created by collecting historical 

hydrometeorological events in the Philippines. The original 493 events were filtered to select only events from January 1998 

to July 2017, to match the period covered by the reference precipitation dataset used in this study. This resulted in a final 270 

database of 222 events. Those events were finally reclassified according to the island group where they occurred. Following 

the country’s coarsest administrative subdivision, indeed, three different regions were defined: Luzon, Visayas, Mindanao. 

(Figure 6b/c). 
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3.3 Trigger: CMORPH precipitation estimates 

The trigger used within the proposed SPEED model is represented by the CMORPH (CPC MORPHing technique) daily 275 

precipitation estimates. CMORPH precipitation estimates are provided from 1998 onwards and cover the area between 60°S 

– 60°N latitude. It combines 30 minutes temporal with 8 km spatial resolution. CMORPH precipitation estimates are also 

available with a short latency of just 18 hours after acquisition.  

This precipitation dataset is named after the so-called “morphing” technique used to produce precipitation estimates by relying 

exclusively on low-orbiter satellite microwave observations whose spatial propagation information is derived from 280 

geostationary satellite InfraRed (IR) data (Joyce, Janowiak, Arkin, & Xie, 2004). This dataset was selected because of its 

combination of high spatial resolution and low latency (i.e., data availability after the acquisition). Indeed, even if other 

precipitation datasets featuring longer temporal coverage are available, such as the Climate Hazards Group InfraRed 

Precipitation with Station data - CHIRPS (Funk et al., 2015), NASA’s MERRA-2 (Gelaro et al., 2017) or ECMWF’s ERA5(T) 

(Hersbach et al., 2020) covering a period from 1981, 1980 and 1979 to present respectively, they have a longer latency ranging 285 

from five days to two-three weeks after the month of acquisition, making these products inappropriate for near-real-time 

applications. 

 

   

(a) (b) (c) 

     

Figure 7: CMORPH precipitation on 2009-10-03 over the Philippines (a) and on the country’s land only (b). Daily mean precipitation 290 
values between 1998-01 and 2017-07 (c). 
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A specific code was developed in the R programming language (R version 3.5.1 and RStudio 1.1.453) to process the original 

half-hourly data and produce the final daily precipitation values. CMORPH data was firstly cropped over a rectangular area 

around the country (Figure 7a), where daily precipitation values were computed. Consequently, a filter was applied to extract 295 

precipitation estimates on land (Figure 7b). As a result, a grid featuring 4630 cells for each day within the covered period was 

produced. A map featuring the mean daily rainfall within the investigated period is also included to highlight areas most 

impacted by intense precipitation (Figure 7c). 

4 Assessment of model performance  

4.1 Extreme events detection 300 

Model calibration (training) and testing is performed using a bootstrapping method applied over the whole investigated period 

(January 1998 – July 2017). In particular, model training is performed by selecting recursively 18 years and testing the model 

on the additional two years. Table 2 summarizes the different training and testing periods that were investigated. 

 

Table 2: Training and testing periods. 305 

Bootstrapping run Training period Test period 

1 2000-2017 1998-1999 

2 1998-1999, 2002-2017 2000-2001 

3 1998-2001, 2004-2017 2002-2003 

4 1998-2003, 2006-2017 2004-2005 

5 1998-2005, 2008-2017 2006-2007 

6 1998-2007, 2010-2017 2008-2009 

7 1998-2009, 2011-2017 2010-2011 

8 1998-2011, 2014-2017 2012-2013 

9 1998-2013, 2016-2017 2014-2015 

10 1998-2015 2016-2017 

 

For each training period, all the different model configurations resulting from the various combinations of Thr.1 (from 1 to 

100mm with 5mm increments) and Thr.2 possible entries (from 1% to 15% with 0.5% steps) were run. Then the results are 

ranked based on the skill score (SS), and the configurations with the highest SS value are derived (Table 3). Based on the 

results reported in Table 3, the best model configuration for almost all investigated training periods (except the period 1998-310 

2015, for which it is the second-best model configuration) is Thr. 1 = 65mm/day and Thr. 2 = 2%.  
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 315 

Table 3: Best model configurations on training periods (bootstrapping). 

Bootstrapping run Thr. 1 [mm/day] Thr. 2 [%] SS Training periods 

1 65 0.02 0.603 2000-2017 

2 65 0.02 0.611 1998-1999, 2002-2017 

3 65 0.02 0.598 1998-2001, 2004-2017 

4 65 0.02 0.581 1998-2003, 2006-2017 

5 65 0.02 0.584 1998-2005, 2008-2017 

6 65 0.02 0.619 1998-2007, 2010-2017 

7 65 0.02 0.625 1998-2009, 2011-2017 

8 65 0.02 0.610 1998-2011, 2014-2017 

9 65 0.02 0.593 1998-2013, 2016-2017 

10 40 0.05 0.606 1998-2015 

 

Therefore, these threshold values (Thr. 1 = 65mm/day, Thr. 2 = 2%) were then used to assess the model performance over all 

the testing periods. Table 4 contains the results of these analyses: the highest skill score was obtained for the years 2004-2005, 

whereas the lowest skill score resulted from testing over the period 2008-2009. These results are possibly due, among other 320 

factors, to the different number of reported real events in those periods: 15 events in 2004-2005 and 41 events in 2008-2009. 

 

Table 4: SS results over all test periods with Thr. 1 = 65mm/day and Thr. 2 = 2% (bootstrapping). 

Bootstrapping run POD POFD SS Test periods 

1 0.900 0.254 0.645 1998-1999 

2 0.815 0.278 0.537 2000-2001 

3 0.840 0.187 0.652 2002-2003 

4 0.999 0.136 0.863 2004-2005 

5 0.892 0.126 0.766 2006-2007 

6 0.741 0.243 0.498 2008-2009 

7 0.703 0.200 0.503 2010-2011 

8 0.762 0.214 0.548 2012-2013 

9 0.857 0.167 0.689 2014-2015 

10 0.619 0.304 0.551 2016-2017 

 

Finally, model skills are assessed over the entire analysis period (1998-2017) by considering all combinations of Thr. 1 and 325 

Thr. 2. The top ten model configurations, i.e., the ones producing the highest SS values, are reported in Table 5. 
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Table 5: Top 10 model configurations over the entire investigated period (no bootstrapping). 330 

 POD POFD Thr. 1 [mm/day] Thr. 2 [%] SS 

1 0.804 0.201 65 0.02 0.603 

2 0.797 0.197 60 0.03 0.600 

3 0.798 0.209 55 0.03 0.589 

4 0.838 0.250 40 0.05 0.588 

5 0.737 0.151 50 0.05 0.586 

6 0.732 0.148 45 0.06 0.584 

7 0.761 0.178 45 0.05 0.583 

8 0.735 0.152 60 0.03 0.583 

9 0.836 0.253 55 0.03 0.582 

10 0.821 0.240 35 0.07 0.581 

 

This analysis confirms the best model configuration obtained for the threshold values presented above (Thr. 1 = 65mm/day 

and Thr. 2 = 2%). Higher skill scores are obtained in correspondence of high daily precipitation values (Thr. 1 between 55 and 

65 mm/day for the three best configurations) and a low number of active cells (Thr. 2 between 2% and 3% in the same cases). 

The SS values higher than 0.6 reported above for the best model configurations are deemed satisfactory since they indicate 335 

that the model is capable of correctly detecting more than 80% of observed real events (i.e., POD), while it wrongly classifies 

as flood events only about 20% of the observed non-events (i.e., POFD). However, it has to be noticed that the whole model 

performance - that is, the results associated with all tested combinations - must be analyzed to fully assess model skills in flood 

event identification. This will be discussed later through specific forecast verification measures (i.e., ROC curve). 

 340 
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Figure 8: Conditional distribution of CMORPH precipitation in event and non-event days (the continuous black line represents the 

distribution ratio; the red dashed line indicates where the ratio is equal to 1). 

 

Kernel frequency density estimates are used to represent the daily cumulated precipitation occurred in non-event days (i.e., 345 

non-events precipitation) and the one that caused a flood (i.e., events precipitation) with the addition of a polyline depicting 

the ratio between non-event and event precipitation density values (see Figure 8). The ratio between the two distributions 

indicates that the floods are typically associated with high precipitation and specifically to daily values above 72 mm/day, 

where the above-mentioned measure is lower than 1. This proves that, as expected, there is a strong correlation between flood 

events and elevated daily precipitation values.  350 

The accuracy of the binary outcome predictions was also assessed through the relative operating characteristic (ROC) curve. 

It provides a graphical representation of POD and POFD when considering different values for Thr.1 and Thr.2. Specifically, 

the model performance can be assessed considering the area underneath the ROC curve - Area Under Curve (AUC). A perfect 

model exhibits a ROC curve that goes from the bottom left (0,0) to the top left (0,1) of the diagram and then across to the top 

right (1,1). In this case, AUC is equal to 1. AUC can assume values between 0 and 1, with 0.5 indicating a random model, for 355 

which the ROC curve is a diagonal line from bottom left (0,0) to top right (1,1). The proposed SPEED model exhibits a very 

good predictive capability, given that the ROC curve is remarkably far from the diagonal line (that refers to a perfectly random 

model). This is also reflected in the high value for the AUC parameter (0.86), thus confirming the very good model 

performance. In this case, the ROC curve is presented as a cloud of points (Figure 9), with each of them representing a different 

model configuration. The highest variability is found around the optimum model configuration, which typically is defined as 360 
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the model configuration associated with the point featuring the highest distance from the diagonal line. Indeed, this point 

represents the model with the best performance with respect to a completely random model (diagonal line). It is also worth 

noting that model configurations with the highest Thr. 1 and Thr. 2 are located in the bottom-left part of the plot, where both 

POD and POFD are lower. Conversely, model configurations obtained for lower precipitation (Thr. 1) and active cells 

threshold (Thr. 2) values lie in the top right corner, given that, as expected, for such a configuration, the number of hits and 365 

false alarms is maximized. 

 

Figure 9: ROC curve and AUC (each point represents a different model configuration). 

4.2 Location accuracy  

The model’s capability to correctly identify where a specific event has occurred is also tested, in addition to the model 370 

performance in accurately detecting the occurrence of a flood event. This aspect is crucial to correctly determine where a flood 

event has actually taken place and timely direct resources to the affected area. Indeed, in some cases, the payout associated 

with parametric insurance programs is managed by a central national authority, which oversees the assigned budget for 

emergency operations to the smaller administrative units that suffered the most extreme event consequences. The accurate 

identification of the affected area (or macro-area, here defined as island groups) can thus be important, firstly, to address the 375 

funds directly to the affected zones (where this is consistent with the country’s emergency management legislation) and, 

secondly, to speed up the actual availability of resources for the interested administrations.  

As such, a procedure aimed at determining the island group, as defined earlier, hit by each detected event, is developed and 

presented here. The starting point for the event localization is the daily precipitation, similar to what is described above for its 
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identification. For each day of a modeled event, the portion of rainfall above the precipitation threshold of the optimal 380 

configuration (65mm/day) is extracted, which previously have been defined as active cells, as illustrated in Figure 10. 

 

 

Figure 10: Event localization procedure for a generic event day. 

 385 

Given that an event typically lasts more than a single day, the sum of the active cells over all the event days is computed to 

produce the total number of active cells per event. Then, the share of the active cells per event over each of the three above-

defined island groups (Luzon, Visayas, and Mindanao) is computed. The criterion adopted here to assign an event to a specific 

island group is that at least 30% of the event active cells are located on a single island group (Figure 10). This percentage was 

chosen based on the country’s selected number of macro-areas (i.e., three, hence 1/3 ≈ 30%) where the localization check was 390 

conducted. 

As mentioned earlier, the original EM-DAT hydrometeorological events for the investigated period have been manually 

reclassified to conduct a verification of the model accuracy on event localization. The optimal model configuration, featuring 

Thr. 1 = 65mm/day and Thr. 2 = 2%, correctly detected 169 events out of the initial 222. 

  395 
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Table 6: Localization results for modeled and real events (L = Luzon, V = Visayas, M= Mindanao). 

 Modeled events 

Real 

events 
L V M L,V L,M V,M L,V,M Tot. Acc. [%] 

L 54 1 0 5 2 0 0 62 87% 

V 1 3 1 1 0 1 0 7 43% 

M 7 1 9 4 1 6 0 28 32% 

L,V, 16 1 0 12 1 0 1 31 39% 

L,M 7 1 1 0 1 0 0 10 10% 

V,M 1 3 1 3 1 5 0 14 36% 

L,V,M 2 2 2 4 2 5 0 17 0% 

Tot. 88 12 14 29 8 17 1   

 

The comparison between the location of modeled events (in the optimal configuration) and the corresponding real (historical) 

events is reported in Table 6. For each of the two types of events, the single island groups, as well as their combinations, are 

considered. The highlighted diagonal reports the direct matching results between model and observations. Column and row 400 

totals have also been included, with an additional column reporting the percentage of real events correctly detected by the 

model for each island group or their combinations (i.e., localization accuracy). Figure 11 depicts a Venn diagram representation 

of localization results for modeled and real events, including the share of modeled/real events for all individual and combined 

island groups. 

 405 

 

Figure 11: Venn diagram representation of localization results for modeled and real events. 
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The island group that reports more events is Luzon, with a total of 62 real events. The model correctly detected 54 of them, 

corresponding to a remarkable accuracy of 87% in this area. The first row of Table 6 also reports five events that the model 410 

attributed to Luzon and Visayas groups and two events on both Luzon and Mindanao groups. The number of events that the 

model located in the Luzon group is also in agreement with both the high number of registered events there and the map of 

daily average precipitation presented before (Figure 7c). 

The total number of detected real events of the Visayas group is lower than the one for the previous group with just seven real 

and 12 modeled events. In this case, the accuracy is lower, with only 43% of correctly detected events over the Visayas group. 415 

This percentage decreases further to 32% in the Mindanao group (corresponding to nine events). This is a consequence of the 

lower absolute number of events (particularly for Visayas events) in these island groups, which makes the associated accuracy 

measurement less statistically significant. Furthermore, because of their low absolute number, events that occurred on Visayas 

and Mindanao are also affected by greater uncertainties in terms of the association to specific island groups. In this sense, for 

example, it must be noted that the model assigned seven events to pairs of island groups including Mindanao (i.e., L,M and 420 

V,M), which according to EM-DAT took place on that specific island group. If those events were added to the nine correctly 

detected on the Mindanao island group, this would substantially increase the overall model accuracy in that area. 

When analyzing the results of the events that occurred on multiple island groups, the best performance is obtained for the 

Luzon-Visayas with 12 events correctly identified (39% of total real detected events in that area), but with additional 16 events 

on the Luzon island group, which can be seen as an additional partially corrected events location. In the Luzon-Mindanao 425 

group, the total number of real events that occurred there and correctly captured by the model decreases. The same decreasing 

trend is observed in the share of events the model assigned to this group combination, but, again, with many events located on 

the Luzon group (seven out of 10 total real events). The model performance improves for the Visayas-Mindanao group 

combination with 36% accuracy (five events over a total of 14 historical ones occurred here, with additional four events located 

by the model in at least one of the Visayas or Mindanao groups). 430 

The last group combination considers events affecting all the three investigated island groups. This is a very particular situation, 

which the model seemed to be less capable of capturing since no historical events affecting the whole country were correctly 

detected. Moreover, the model identified only one event on all three island groups, which, according to EM-DAT, affected 

only the Luzon and Visayas group. The high uncertainty on the identification of events on multiple island groups and 

particularly on events covering the whole country (all island groups) underlines the need for further investigation on the EM-435 

DAT events location definition and the analysis of additional sources of information on the area affected when multiple island 

groups are considered. For instance, the proposed model does not consider the effect of wind, which could affect areas different 

from those subjected to extreme precipitation. This circumstance cannot be captured by the proposed model, which relies 

exclusively on precipitation measures. 
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5 Conclusions 440 

This study introduced a Satellite Precipitation-based Extreme Event Detection (SPEED) model for managing flood risk, here 

applied to the Philippines as a case study country. This type of model can be readily employed in parametric insurance 

programs or weather-index insurance, whose ultimate goal is to quickly provide financial liquidity to affected countries for 

immediate emergency assistance such as shelters, food, and medical supplies.  

Models, such as the proposed SPEED one, usually rely on one or more triggers to identify an event. For the considered case 445 

study, the selected trigger for SPEED consist of CMORPH satellite precipitation estimates, which met the requirements that 

are typically set for this type of models: availability in near real-time (18 hours latency), long temporal coverage (20 years 

from 1998 to July 2017), low temporal (30 minutes) and spatial (approximately 8 km) resolution. Considering the availability 

of a large number of hydrometeorological events for the Philippines, the EM-DAT database was used as a source of reported 

loss events for model calibration and validation. The proposed methodology, specifically intended to identify flood events, 450 

started from the definition of active cells - by setting a precipitation threshold (Thr. 1) on daily computed precipitation for each 

grid cell - which were then used as a basis for the identification of the so-called active days. To this end, a second threshold 

on the number of active cells - Thr. 2 - was used. The event start and end dates were then defined, with the inclusion of a 

tolerance period. Finally, a control period of three days was defined to determine whether or not an event had occurred for 

consistency with standard insurance coverage practice related to this kind of extreme events.  455 

The proposed model’s performance was assessed using forecast precipitation verification methodologies available in the 

literature, such as the Probability of detection (POD), the Probability of false detection (POFD), and the Receiver operating 

characteristic (ROC) curve. Furthermore, the model was calibrated and validated using a bootstrapping method over 20 years 

of precipitation data. Training and testing were performed recursively over 18- and 2-year intervals, respectively. A total of 

10 best pairs of values for both thresholds (model configurations) were selected and evaluated. In almost all the investigated 460 

periods (except for the test period 2016-2017, most probably also because the period of testing was lower than the other 

periods, as it was limited to July 2017), the model configuration best performing was the one featuring Thr. 1 = 65mm/day 

(threshold on precipitation of a single cell) and Thr. 2 = 2% (limit posed on the number of active cells over the whole country). 

A skill score was also quantified as the difference between POD and POFD to measure the model capability to detect flood 

events in the Philippines, featuring a remarkable average value above 0.6 among all investigated test periods. The precipitation 465 

conditional distribution analysis in event and non-event days showed that it could be employed as a reliable predictor for flood 

events. The ROC curve, which resulted from a total of approximately 640 different model combinations (of Thr. 1 and Thr. 2) 

over the entire investigated timeframe, indicated an adequate capacity of the model to detect flood events in the Philippines 

with an area under curve (AUC) equal to 0.86. It also confirmed the results of the calibration phase in terms of optimal threshold 

combinations. 470 

Moreover, the model was also assessed in terms of localization accuracy. In this sense, the results indicate an excellent model 

performance in detecting events on single island groups, especially on the Luzon island group, the one that is most subjected 
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to extreme hydrometeorological events, as denoted by the observation of the mean daily precipitation maps. Lower accuracy 

in detecting events assigned to the Visayas and Mindanao island groups was observed instead. Conversely, the identification 

of events on two or three island groups proved to be more challenging, specifically when all three island groups were interested 475 

as well as in the case of events affecting the northern and southern island groups, that is, respectively, Luzon and Mindanao.  

Considering the above, the detection of events occurring on several island groups would certainly require additional research. 

Further investigation of the areas historically affected by flood events is needed to countercheck the EM-DAT event location, 

when multiple island groups are of interest, to understand better the typically higher uncertainty affecting situations of this 

sort. This is particularly evident in the case of events that, according to EM-DAT, hit three island groups or affected the Luzon 480 

and Mindanao groups (located at the North and South far ends of the country, respectively). Model localization accuracy at a 

finer level/resolution was not assessed for a twofold reason. Firstly, the model presented here aims to support nationwide 

parametric programs. The investigated accuracy at island group levels can be deemed appropriate for mobilizing resources 

towards the affected area faster and overcoming potential bureaucratic bottlenecks associated with resources pre-allocated at 

different (i.e., finer) administrative levels. Secondly, location information at a finer resolution (city or provincial level) for the 485 

investigated historical events was not available. 

As mentioned above, the proposed methodology can serve as a basis for the computation of a specific index, upon which the 

payout of the parametric coverage is based. Such an index could be provided, for instance, as a modeled loss metric (i.e., loss 

index) computed through an ad-hoc developed vulnerability function relating the event cumulated precipitation with a loss 

ratio on each active cell. In this way, the loss index would result from the sum of the overall loss computed over a specific 490 

event’s active cells. The final payout could be directly linked to the loss index within limits defined by the policy regarding 

the attachment point - minimum loss index value below which the payout is not triggered - and policy limit - maximum payout 

issued. Alternatively, the index could be based directly on the number of event active cells and/or duration (computed as the 

number of consecutive aggregation periods where a flood is detected). A payout function can then be defined on such a hazard 

index; for example, the insured could receive a payout ranging from 20% to 100% of the policy limit as the modeled event 495 

characteristics above mentioned (used as proxies of event severity) increase. 

Possible improvements in the proposed methodology are the inclusion of a secondary trigger, such as wind, to further minimize 

basis risk. Another way to improve the model performance could be to mask the active cells with a population density layer to 

minimize false alarms. Furthermore, more recent and more refined data on satellite precipitation estimates could be used (e.g., 

the new NASA IMERG (Integrated Multi-satellite Retrievals for GPM) product (Huffman, Bolvin, & Nelkin, 2017), or the 500 

MSWEP (Multi-Source Weighted-Ensemble Precipitation) (Beck et al., 2017), which combines several products) to leverage 

on their enhanced skills and provide more reliable estimates worldwide. These updates will not affect the model structure, but 

could potentially increase its performance and reduce the basis risk. 

Finally, the increasing spread of several types of sensors and the development of satellite technologies with higher revisiting 

times and resolution will pave the road, in the new future, for new and more accurate data (e.g., rainfall/wind speed 505 
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measurements or event flood depth) to be used as a trigger(s) in SPEED-type models, as soon as their temporal coverage will 

be sufficient to compute meaningful statistics. 

6 Code/Data availability 

The code was not published in any repository/archive and therefore no DOI is included in the reference list. Data used in this 

study is: EM-DAT loss events database and CMORPH precipitation data. CMORPH precipitation data is available here: 510 

ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/. The EM-DAT website link is included in the references and access to 

detailed loss data for the Philippines was granted upon request. 

7 Author contribution 

Annibale Vecere developed the code both for CMORPH precipitation data processing and model structure definition. He also 

performed all simulations and tests summarized in the paper. Mario Martina, provided guidance in the development of the 515 

methodology and suggestions on model performance verification tests. Ricardo Monteiro and Carmine Galasso provided their 

supervision in the design of the proposed methodology and in the definition of the case study. Annibale Vecere prepared the 

manuscript with contributions from all co-authors. 
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