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a b s t r a c t

Computational Saturation Mutagenesis is an in-silico approach that employs systematic mutagenesis of
each amino acid residue in the protein to all other amino acid types, and predicts changes in thermody-
namic stability and affinity to the other subunits/protein counterparts, ligands and nucleic acid mole-
cules. The data thus generated are useful in understanding the functional consequences of mutations
in antimicrobial resistance phenotypes. In this study, we applied computational saturation mutagenesis
to three important drug-targets in Mycobacterium leprae (M. leprae) for the drugs dapsone, rifampin and
ofloxacin namely Dihydropteroate Synthase (DHPS), RNA Polymerase (RNAP) and DNA Gyrase (GYR),
respectively. M. leprae causes leprosy and is an obligate intracellular bacillus with limited protein struc-
tural information associating mutations with phenotypic resistance outcomes in leprosy. Experimentally
solved structures of DHPS, RNAP and GYR of M. leprae are not available in the Protein Data Bank, there-
fore, we modelled the structures of these proteins using template-based comparative modelling and
introduced systematic mutations in each model generating 80,902 mutations and mutant structures
for all the three proteins. Impacts of mutations on stability and protein-subunit, protein-ligand and
protein-nucleic acid affinities were computed using various in-house developed and other published pro-
tein stability and affinity prediction software. A consensus impact was estimated for each mutation using
qualitative scoring metrics for physicochemical properties and by a categorical grouping of stability and
affinity predictions. We developed a web database named HARP (a database of Hansen’s Disease
Antimicrobial Resistance Profiles), which is accessible at the URL - https://harp-leprosy.org and provides
the details to each of these predictions.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Mycobacterium leprae (M. leprae) is a pathogenic species of
mycobacterium that causes leprosy (also known as Hansen’s dis-
ease) in tropical countries. Approximately 210,000 new cases of
leprosy are reported each year globally [1]. Leprosy causes slowly
progressive sensorimotor polyneuropathy [2] in the peripheral
nerves leading to permanent nerve damage and deformities. The
disease is currently treated by multidrug therapy that includes
dapsone, rifampin and clofazimine. Earlier monotherapies with
dapsone and rifampin have led to the emergence of resistant
strains of M. leprae for dapsone in the year 1964 and for rifampin
in 1976 [3]. This has led to the introduction of multidrug therapy
(MDT) by the World Health Organisation (WHO) in 1983. In the
absence of a microbiological propagation media for M. leprae, clin-
ical insensitivity to drugs is regarded as a sign of drug-resistance/
relapse. Resistance can be noted either during MDT (primary resis-
tance) or after the completion of standard WHO-recommended
regimen of MDT (secondary resistance) [4]. In-vivo propagation
of M. leprae in the hind footpads of experimental mice adminis-
tered with individual drugs of MDT is regarded as a gold-
standard method for determining drug resistance [5]; however,
this approach is time and labour intensive and is limited to labora-
tories specialised in animal experiments. As in Mycobacterium
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tuberculosis (M. tb), substitution mutations within the drug resis-
tance determining regions (DRDR) of genes that encode drug-
targets demonstrate an association with phenotypic resistance
outcomes in leprosy [6].

Antimycobacterial drugs interact with specific proteins (drug-
targets) in mycobacteria and inhibit/attenuate their function. This
interaction is governed by interatomic bonds between the drug
molecule and amino acid residues in the active site/drug binding
site of the target protein. The occurrence of missense mutations
in the bacterial genomes result in amino acid substitutions which
disturb these interactions, alter the thermodynamic stability of
the protein and affect protein-ligand affinity leading to phenotypic
drug resistance, a state in which the bacteria turns insensitive to
the drug [7–11]. Missense mutations are known to alter thermody-
namic stability of the proteins [12] leading to either loss or gain in
the function of the target protein. They also confer changes in affin-
ity to ligands, nucleic acids, other proteins and small molecules.
The methods developed in our group were focused either on using
statistical potentials to measure the difference in free energy
change between wildtype and mutant structures in folded and
unfolded states [13] or machine learning approaches that adopt
graph-based signatures derived from interatomic distance matri-
ces between the mutating residue and the residue environment,
and the pharmacophoric properties of the mutating residue [14].
Proteins being dynamic molecules, substitution mutations impact
molecular motions leading to a change in the flexible conforma-
tions and vibrational entropy. Most of the tools that predict ther-
modynamic stability changes assess the change in a static state
[15]. Employing molecular dynamics simulations and normal
mode analysis aid accurate assessment of stability changes [16].
However, molecular dynamic simulations are computation and
data-intensive and can be complemented to an extent by tools that
employ normal mode perturbations [17]. Predicting the conse-
quences of point mutations in leprosy with considerable accuracy
and identifying their association with antimicrobial resistance out-
comes are essential due to the lack of robust experimental meth-
ods of diagnosing resistance.

Computational saturation mutagenesis [18] is an approach
that aids in systematically analysing the impacts of all possible
substitution mutations at a given residue position in the protein.
We have applied this approach earlier to the beta subunit of RNA
Polymerase (RNAP) [19]. We have now extended this approach
and applied it to the three known drug-targets in M. leprae, the
Dihydropteroate Synthase (DHPS), RNA Polymerase (RNAP) and
DNA Gyrase (GYR) that are the targets of dapsone, rifampin and
ofloxacin respectively. Mutations within the DRDR of genes
encoding target proteins are known to confer antimicrobial resis-
tance in leprosy [20]. Strains of M. leprae that carry these muta-
tions exhibit various levels of resistance, as noted by their
response to different concentrations of drugs in the murine
model of drug sensitivity assessment [21]. We modelled the
structures of the three drug-targets described above using
template-based modelling and introduced systematic mutations
in each structure, generating 80,902 mutant models. Conse-
quences of mutations on protein stability and affinity to other
subunits in the oligomeric complexes, nucleic acids and ligands
were calculated using a suite of software tools [19]. A consensus
impact was estimated for each mutation and represented in a
publicly available HARP database (URL: https://harp-leprosy.org)
with features to interactively visualize the wildtype and the
mutant models. This resource can provide comprehensive struc-
tural insights into the potential implications of missense muta-
tions in antimicrobial-resistant leprosy. This database also
enables visualizing sites on the drug-target proteins that are least
impacted by any mutations, and these can be explored for
structure-guided drug discovery.
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2. Materials and methods

2.1. Comparative modelling of DHPS, RNAP and GYR

We performed comparative 3D modelling of DHPS, RNAP and
GYR using Modeller 9.24 [22]. The models of DHPS and RNAP were
built as reported by us earlier [12,23]. The model of DNA-gyrase
(GYR) was built using PDB id: 5BS8 (Crystal structure of a topoiso-
merase II complex of M tb at 2.40 Å resolution [24]) as a template.
This heterotetrameric protein (GyrA2, GyrB2) is comprised of four
chains (A, B, C, D), which are encoded by gyrA (ML0006) (homod-
imer of chains A and C) and gyrB (ML0005) (homodimer of chains
B and D). The ML0006 has an identity of 91% with its M. tb (strain
H37Rv) homologue Rv0006, and ML0005 has an identity of 88%
with Rv0005. The chain A in M. leprae has an intein region [25]
stretching from residue positions 131–500. This sequence has been
removed before modelling. The modelled region of chain A corre-
sponds to sequence numbers 16–130 and 551–921. The chain B
is modelled from residue numbers 440–678. Quality of the built
models was estimated using MolProbity [26], a structure validation
web service that provides a comprehensive evaluation of the
model quality at both global and local levels for proteins and
nucleic acids. The MolProbity score resembles the X-ray crystallo-
graphic resolution of the protein structures. Molprobity score for
DHPS is 1.34 at 98th percentile (100th percentile is the best among
structures of comparable resolution), for RNAP, it is 1.48 at 95th
percentile, and for GYR, the score is 0.86 at 100th percentile indi-
cating that these models are of optimal quality for further analysis.
The ligands, dapsone for DHPS, rifampin for RNAP and ofloxacin for
GYR, were modelled in their respective binding sites. Dapsone and
ofloxacin were docked into DHPS and GYR binding sites respec-
tively by molecular docking (using Glide XP module [27] from
Schrodinger Suite 2019-4). Rifampin was introduced by the super-
imposition of the model with the template structure (PDB id:
5UHC). The models were visualized using UCSF Chimera [28].

2.2. Residue properties and conservation scores

The residue properties, conservation score of the wildtype resi-
due, change in secondary structure, residue depth, relative solvent
accessibility and residue occluded packing density (OSP) were cal-
culated using ConSurf [29] and SDM [13]. Additionally, the dis-
tances of each residue from the closest ligand, protein interface
and nucleic acids were also calculated using inhouse written Biop-
erl scripts. We have used these properties to classify the impacts of
substitution mutations on the residue environment.

2.3. Prediction of changes in thermodynamic stability

To predict thermodynamic stability changes due to mutations
based on the structural properties, we employed mCSM [14],
SDM, MAESTRO [30], CUPSAT [31], IMutant 2.0 structure [32] and
IMutant 3.0 [33]. For the sequence-based prediction of stability
changes, we used PROVEAN [34]and IMutant 2.0 sequence [32].
To understand the impacts of mutations on the vibrational entropy
and protein motions, we employed DynaMut [35], ENCoM [36] and
FoldX4 [37]. Gibbs free energy changes (DDG in kcal/mol) -were
calculated using standalone versions of these online tools. A brief
description of each of these tools is provided in Table 1.

2.4. Prediction of protein-protein, protein-ligand and protein-nucleic
affinity changes due to mutations

Missense mutations impact not only the thermodynamic stabil-
ity of the proteins but also protein-ligand, protein-nucleic acid and
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Table 1
Tools used in predicting protein stability and affinity changes resulting rom mutations.

Tool [reference] Description Website Input

Protein Stability Changes:
mCSM [14] Predicts the effect of mutations in proteins using graph-based

signatures
http://biosig.unimelb.edu.
au/mcsm/

Drug-target model (PDB file) and list of
mutations on the web interface

SDM [13] Predicts the stability of proteins due to mutations using
residue environment-specific substitution matrices

http://marid.bioc.cam.ac.
uk/sdm2/

Drug-target model (PDB file) and list of
mutations submitted to the local version of
the SDM software

MAESTRO [30] A multiagent machine learning approach to predict free
energy changes due to mutations

https://pbwww.che.sbg.ac.
at/?page_id=416

Drug-target model (PDB file) and list of
mutations on a Linux shell interface with
the local version of the software

CUPSAT [31] This program uses structural environment-specific atom
potentials and torsion angle potentials to predict DDG

http://cupsat.tu-bs.de/ Drug-target model (PDB file) and list of
mutations on the web interface.

I Mutant 2.0 Structure
[32]

A support vector machine-based tool to conduct a regression
estimate of the DDG values using experimental
thermodynamic data

https://folding.biofold.org/
i-mutant/i-mutant2.0.html

Drug-target model (PDB file) and list of
mutations on a Linux shell interface with
the local version of the software

I Mutant 3.0 Structure
[33]

A three-state predictor of protein stability changes that
classify impacts as destabilizing, stabilizing and neutral
mutations

http://gpcr2.biocomp.
unibo.it/cgi/predictors/I-
Mutant3.0/I-Mutant3.0.cgi

Drug-target model (PDB file) and list of
mutations on a Linux shell interface with
the local version of the software

PROVEAN [34] A software tool to predict the impact of amino acid
substitution on the biological function of the protein

http://provean.jcvi.org/
index.php

Drug-target model (PDB file) and list of
mutations on the web interface.

IMutant 2.0 Sequence
[32]

A support vector machine-based tool to conduct regression
estimates of the DDG values using amino acid substitution
data

https://folding.biofold.org/
i-mutant/i-mutant2.0.html

Drug-target model (PDB file) and list of
mutations on a Linux shell interface with
the local version of the software

DynaMut [35] A tool to predict protein stability changes upon mutations
using normal mode analysis

http://biosig.unimelb.edu.
au/dynamut/

Drug-target model (PDB file) and list of
mutations on the web interface.

ENCoM [36] A coarse-grained normal mode analysis method used to
predict the effects of single point mutations on protein
dynamics and thermostability resulting from vibrational
entropy changes

https://github.com/
NRGlab/ENCoM

Drug-target model (PDB file) and list of
mutations on a Linux shell interface with
the local version of the software

FoldX [37] This program employs an empirical force field for the rapid
evaluation of the effect of mutations on the stability, folding
and dynamics of proteins and nucleic acids

http://foldxsuite.crg.
eu/command/BuildModel

Drug-target model (PDB file) and list of
mutations on a Linux shell interface with
the local version of the software

Protein-Ligand Affinity:
mCSM-lig [38] A tool to quantifying the effects of mutations on protein-

ligand affinity in genetic diseases and the emergence of drug
resistance

http://biosig.unimelb.edu.
au/mcsm_lig/

Drug-target model (PDB file) and list of
mutations on the web interface.

Prime MM/GBSA [39] A software tool that generates energy properties of the ligand,
receptor and the complex, and enable calculation of changes
in the mutants

https://www.
schrodinger.com/kb/1484

Drug-target model (PDB file) and list of
mutations on the local Maestro GUI.

Protein Nucleic Acid Affinity:
mCSM-NA [40] A program to predict the changes in protein-nucleic affinity

due to mutations
http://biosig.unimelb.edu.
au/mcsm_na/

Drug-target model (PDB file) and list of
mutations on the web interface.

Protein-protein Affinity:
mCSM-PPI [14] A program to predict the changes in protein-protein affinity

due to mutations
http://biosig.unimelb.edu.
au/mcsm/protein_protein

Drug-target model (PDB file) and list of
mutations on the web interface.

Residue Conservation:
ConSurf [29] Predict evolutionary conservation of amino/nucleic acid

positions in a protein/DNA/RNA molecule based on the
phylogenetic relations between homologous sequences

https://consurf.tau.ac.il/ Drug-target model (PDB file)

Interatomic Interactions:
Arpeggio [41] A webserver for calculating interatomic interactions in protein

structures.
http://biosig.unimelb.edu.
au/arpeggioweb/

Drug-target model (PDB file) and the
residue selection.
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protein-protein affinities. We used mCSM-lig and Prime MM/GBSA
programs to measure the impacts of the mutations on protein-
ligand affinity. For RNAP, mCSM-lig was used to predict the
impacts of systematic mutations for residues within 5 Å of rifam-
pin. For DHPS and GYR, we used Prime MM/GBSA to estimate the
change in affinity to dapsone and ofloxacin, respectively. The
changes were computed for all residues that are within 5 Å in dis-
tance to the ligand. mCSM-lig calculates the log change in affinity
for the ligand between the wildtype and mutant structures. MM/
GBSA is an approach that combines molecular mechanics energies
with generalised Born and surface area continuum solvation meth-
ods to estimate the free energy of binding of the ligands to protein
macromolecules. We calculated MM/GBSA values for the wildtype
and the mutant models. To estimate the change in protein-protein
affinity due to mutations, we employed mCSM-PPI and for change
in affinity to nucleic acids, mCSM-NA was used.
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2.5. Interatomic interactions

Further, we generated mutant structures for all 80,902 muta-
tions in DHPS, RNAP and GYR using Modeller v9.24. We then calcu-
lated interatomic interactions of the wildtype as well as the
mutant residues with the surrounding residue environment using
Arpeggio, an in-house developed tool for calculating interactions
based on interatomic and interresidue distances.
2.6. Consensus scoring of mutation impacts

We adopted a qualitative scoring approach to measuring the
consensus impact of the mutation on drug-target stability and its
affinity to ligands, nucleic acids and other protein subunits. The
changes in residue properties and the residue environment due
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to mutations, are classified to have an either high or low impact on
the protein structure as shown in Table 2.

The differences in residue solvent accessibility, residue depth
and OSP between wildtype and mutant residues are calculated
using SDM. The values for each mutation above and below zero
are split at the median, and the corresponding categorical variables
are assigned as shown in Fig. 1.

For stability and affinity predictions using mCSM, mCSM-PPI,
mCSM-lig, Prime MM/GBSA, mCSM-NA, SDM, MAESTRO, IMutant
3, FoldX4 and DynaMut, a similar approach to that described in
Fig. 1 was adopted with zero as the median value denoted as neu-
tral. The values below zero are categorised as highly destabilising
(less than the median) and destabilising (less than zero and greater
than the median) respectively. The values above zero are cate-
gorised as highly stabilising (above the median) and stabilising
(greater than zero and less than the median) respectively. For the
tools, PROVEAN (output = Neutral, Deleterious), CUPSAT
(output = Stabilising, Neutral, Destabilising), CUPSAT Torsion
(output = Unfavourable, Neutral, Favourable), IMutant-2 structure
(output = Decreased Stability, Increased stability), IMutant-2
Sequence (output = Decreased stability, Increased stability) and
EnCOM (output = Increased Molecular Flexibility, Decreased
Molecular Flexibility), the corresponding output terms in the
brackets were used as provided by the software. In total, there
are 22 estimates from which the overall score was calculated.

From all the program outputs, the destabilising terms listed are
‘‘highly destabilising”, ‘‘destabilising”, ‘‘decreased stability”, ‘‘dele-
terious”, ‘‘increased molecular flexibility”, ‘‘unfavourable”, ‘‘re-
duced Stability”, ‘‘high impact” and ‘‘moderate impact”. The
neutral and stabilising terms are ‘‘highly stabilising ”, ‘‘stabilising
”, ‘‘increased stability”, ‘‘neutral”, ‘‘decreased molecular flexibility”,
‘‘favourable”, ‘‘increased stability”, and ‘‘low impact”. These terms
are unitised, and overall impact of a mutation is scored as follows:

Overall score ¼ sum of the destabilising termsð Þ
� sum of the stabilising termsð Þ:

Scores for all mutations in each drug-target are then cate-
gorised, as shown in Fig. 1. The corresponding categorical attribute
for each mutation is considered as the overall impact of the muta-
tion on the structure of the drug-target.
Table 2
Properties of the wildtype and the mutant residues, and their impact on protein
structure

Property Outcome

Residue properties of wildtype and mutant are the same (e.g.,
aliphatic to aliphatic substitution)

Low
Impact

Change in residue property of the mutant (e.g., aliphatic to
aromatic substitution)

High
Impact

Conservation score > 0(variable residue) (as measured by
ConSurf)

Low
Impact

Conservation score < 0 (conserved residue) High
Impact

Interface Residue = No (more than 5 Å from the subunit interface) Low
Impact

If the mutating residue is an interface residue (<5 Å from the
subunit interface)

High
Impact

No change in secondary structure due to mutation (identified
using SDM2)

Low
Impact

Change in secondary structure due to mutation High
Impact

If the distance of the mutating residue from the ligand is < 5 Å High
Impact

If the distance of the mutating residue from the ligand is >5 Å Low
Impact

If the distance of the mutating residue from the nucleic acid
is < 5 Å

High
Impact

If the distance of the mutating residue from the nucleic acid is
>5 Å

Low
Impact
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2.7. Web server

After collecting and analyzing the predictions from all the tools
listed in Table 1, we developed a PostgreSQL database using Flask
SQLAlchemy framework. This web-database enables the users to
query any possible mutation in all the three drug-targets of M.
leprae, the DHPS, RNAP and GYR and obtain predictions from all
the tools stated in Table 1 and also provide options to download
wildtype and mutant models. An interactive viewer powered by
Molstar [42] enables the users to view the models interactively
and recognise the changes in interatomic interactions of the wild-
type and the mutant residues within their residue environments.
This versatile web-interface is developed with modern web stan-
dards and is made available on the web.

2.8. Data curation

Experimentally identified mutations were manually collected
and collated from the published literature using the search
terms/phrases: ‘‘mutations”, ‘‘drug-resistance”, ‘‘leprosy”,
‘‘Mycobacterium leprae”, ‘‘leprosy relapse”, ‘‘dapsone resistance”,
‘‘rifampicin resistance”, ‘‘ofloxacin resistance” and ‘‘drug resistance
determining regions” in various combinations on search engines
such as PubMed, Google Scholar and Google search. Only original
articles and case reports that detected mutations in patient sam-
ples were included in the study. Mutations noted for dapsone,
rifampin and ofloxacin from these published articles demonstrated
varying levels of association with the clinical insensitivity to corre-
sponding drugs; however, only those mutations reported by the
WHO sentinel surveillance network for drug resistance in leprosy,
are known to be experimentally validated in the mouse footpad
models [3]. As this study is aimed at deciphering the structural
impacts of missense mutations, indels and synonymous mutations
were excluded from the data.
3. Results

3.1. The HARP database

The HARP database (Hansen’s disease Antimicrobial Resistance
Profiles) is a collection of drug-target stability and affinity changes
due to mutations predicted using structure, sequence and vibra-
tional entropy features. An overview of the HARP database and
the web-interface is shown in Fig. 2.

3.2. The HARP web interface

3.2.1. Querying mutations
One of the important outcomes of this study is the development

of HARP web database. HARP embodies systematic computational
saturation mutagenesis of all the three known drug-target proteins
in M. leprae namely DHPS, RNAP and GYR with predicted impacts
resulting from mutations on thermodynamic stability and affinity
to other proteins, ligands and nucleic acids. It enables the
mycobacterial research community to harness the knowledge
related to structural impacts of any possible mutations in these
drug targets that confer antimicrobial resistance in leprosy. User
can query mutations using buttons with drug names on the home
page or from the ‘‘Mutations” link on the top navigation bar. On the
mutations page (Fig. 3), users can query mutations either by sub-
mitting the protein chain id and the mutation (single mutation)
or the chain id and the residue position (systematic mutations).
For diagnosis of drug resistance in leprosy, the DRDRs of the
drug-target coding genes are amplified and sequenced. HARP
enables users to process the AB1 chromatogram files from the



Fig. 1. Attribution of categorical variables to continuous data (value) for the differences in relative solvent accessibility, residue depth and OSP for mutations at each residue
position.

Fig. 2. An overview of the HARP database. (DHPS - Dihydropteroate Synthase, RNAP - RNA Polymerase and GYR - DNA Gyrase).
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DNA sequencer and help detect mutations by performing trans-
lated nucleotide blast (BlastX) [44] on the protein sequence. Addi-
tionally, there is a 3D viewer powered by NGL [45] to visualise the
residues that interact with the ligand in each drug-target using
interactive mouse controls. Finally, there is a protein feature
viewer [46] to visualise the protein sequence and other
sequence-derived properties.
3.2.2. Residue properties and predicted stability changes
Once the chain id and mutation are submitted, the overall

impact of the mutation, options to download wildtype and mutant
models, wildtype and mutant residue properties, structure-based
changes in protein stability, sequence-based stability and vibra-
tional entropy changes can be viewed on the results page (Fig. 4).
For the systematic mutations form, once the residue position is
submitted, predictions for all 19 possible mutations at the queried
residue position can be viewed in the form of downloadable tables.
To obtain comprehensive information about a specific mutation,
the user can copy the mutation into the ‘‘Single Mutation” form
to download wildtype and the mutant models or interactively visu-
alize the structures by clicking on the ‘‘Interatomic Interactions”
link. Under the mutant properties, there is an option to look at
the associated publication if the specific mutation is clinically iden-
tified in drug-resistant leprosy patients.
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3.2.3. Interatomic interactions and 3D visualization of the models
From the results page, the user can click on the link ‘‘Interatomic

Interactions” that redirect to the interactions page which has Mol-
star viewer to visualise themodels in 3D. In theMolstar viewer, both
thewildtype and themutantmodels are loaded by default. User can
toggle the views between both the models by clicking appropriate
icons as shown in the help notes (Fig. 5). Sequence viewer on the
top of the visualiser enables users to select the appropriate residue
and view the interatomic interactions that the residue makes with
the surrounding residue environment in the protein. Under the
‘‘Representation” menu on the right-hand panel, the user can select
thewholemodel or a part of it and change the representations, view
different types of interatomic interactions (by clicking on the set-
tingsbutton) andedit the labels. These are fewamongmany features
that this visualiser presents to the user, and the user can explore
these features using help icons in the viewer.

Additionally, we used the Arpeggio program to calculate inter-
atomic interactions of the wildtype and the mutant residues with
the residue environment. The user can recognize the differences in
interactions by viewing the tables on thewebpage or specificallywith
atomnamesbydownloading the comma-separated version (csv)files.

3.2.4. Browsing HARP database
The database also provides features for combinatorial browsing

and filtering of mutations based on the predicted impacts for each



Fig. 3. Web page for querying mutations. Users can query single mutations using chain id and mutation in the ‘‘Single Mutation” form or systematic mutations (all 19
possibilities) using residue number in the ‘‘Systematic Mutations” form. Additionally, users can upload AB1 Chromatogram files and obtain the BlastX results.
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drug-target. User can select appropriate items from the drop-down
lists on the ‘‘Browse” page and filter the mutations. As DHPS has no
nucleic acid molecules in its structure, the drop-down item for
protein-nucleic acid affinity for DHPS is ‘‘Not-Applicable” by
default. Users can change this to other options when browsing
mutations in RNAP and GYR. As both RNAP and GYR models have
nucleic acids in them, changing the default option of ‘‘Not-
Applicable” to others in the drop-down menu corresponding to
protein-nucleic acid affinity is essential to filter the mutations in
RNAP and GYR.
3.3. DHPS (Dihydropteroate synthase)

Dihydropteroate synthase catalyses the condensation reaction
of 6-hydroxymethyl-7,8-dihydropteridine pyrophosphate to para-
aminobenzoic acid to form 7,8-dihydropteroate. The final product
in this three-step reaction yields 7,8-dihydrofolate, an intermedi-
ate in the folic acid biosynthesis by M. leprae. Dapsone competes
with para-aminobenzoic acid and inhibits the function of DHPS,
leading to the interruption of folic acid biosynthesis. The homod-
imer of DHPS of M. leprae was modelled using its homologue in
M. tb as a template (PDB id: 1EYE), with the sequence identity of
77%. Dapsone was docked into the binding site as described in
[23] and the impacts of saturated mutations were analysed. The
structure is modelled from residues 5 to 278 corresponding to
the template. A total of 5206 mutations were analysed from 274
residues in chain A. Mutant models were generated using ’mutate_-
model’ script in Modeller 9.24. The predicted impacts for clinically
identified mutations were shown in Table 3.
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Of all the predictors listed in Table 1, only mCSM (change in
protein stability), mCSM-PPI (change in stability of the interfacial
residues), Prime MM/GBSA (for Ligand affinity), DynaMut (change
instability using Normal mode analysis) and FoldX (an empirical
force field to determine the change in stability in folded and
unfolded states) are shown in Table 3 as they represent diversity
and the types of tools used in calculating overall impacts. In the
column for Prime MM/GBSA, a value of NA indicates ‘not applica-
ble’ as the residue is located at a distance of more than 5 Å away
from dapsone.

From the saturation mutagenesis, the average stability changes
calculated by mCSM for all possible mutations at each residue posi-
tion are depicted on the structure of DHPS (Fig. 6A). The average
values ranged from�2.921 (highly destabilising) to 0.182 kcal/mol
(highly stabilising). The overall score of the impact of mutations
ranged from �15 (highly stabilising mutations) to 17 (highly
destabilising mutations). These scores were color-coded and
depicted on the structure of DHPS (Fig. 6B). For clinically identified
mutations reported in the literature, the mCSM predictions mostly
indicate destabilising effects (Table 3). These effects are depicted
on the structure (Fig. 6C).

3.4. RNAP (RNA Polymerase)

RNA Polymerase is an essential enzyme that mediates DNA-
depended RNA synthesis in mycobacteria as in other organisms.
The holoenzyme complex is a heterohexameric protein comprised
of six chains (A, B, C, D, E, F) that are encoded by rpoA, rpoA’, rpoB,
rpoC, rpoD, rpoZ, rpoT genes in M. leprae. The model also contains
the nucleic acid scaffold with non-template and template DNA,



Fig. 4. The results page, after submitting chain id and mutation in the ‘‘Single Mutations” form. This page provides the user with an option to download the models and also
visualize the structure by following appropriate links. It lists all the predictions for stability and affinity changes due to mutations.

Fig. 5. A: Interactive viewer on the interactions page enables the user to view models in various representations and recognize changes in interatomic interactions in the
wildtype and the mutant models. B: Residue isoleucine at position 93 was focused in the same viewer with left and right panels hidden. The viewer enables visualizing
interatomic interactions of the selected residues in both wildtype and mutant models. The grey dotted lines indicate hydrophobic bonds and blue dotted lines indicate
hydrogen bonds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and a three-nucleotide stretch of an RNA transcript. This scaffold
was borrowed from the template (PDB id: 5UHC) when modelling
the complex for M. leprae. Mutations within the rpoB and rpoC
genes are associated with resistance to rifampin, a bactericidal
drug in the multi-drug therapy for leprosy. This heterohexameric
model of RNA polymerase of M. leprae was modelled as published
by us earlier [19]. Chain A was modelled from residues 3–226,
chain B from 6 to 231, chain C from 28 to 1153, chain D from 3
to 1281, chain E from 28 to 108 and chain F from 253 to 574.
Together, for 3259 residues, we generated 61,921 mutants. The
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predicted impacts of mutations on the stability of the complex
and its affinity to rifampin, nucleic acid scaffold and subunit inter-
faces were computed for mutations in the entire structure unlike
just the chain C (the beta-subunit of RNAP) as we published earlier.
Effects of clinically identified mutations and their overall impact
on the structure is shown in Table 4. For mCSM-lig, the value of
zero indicates neutral impact and NA indicates the residue is
located at a distance of more than 5 Å from rifampin.

The average stability changes predicted by mCSM for system-
atic mutations at each residue position are computed and depicted



Table 3
Predicted stability and affinity change for clinically identified mutations in dapsone resistant M. leprae strains.

Mutations in chain A of
DHPS

mCSM (DDG in
kcal/mol)

Prime MM/GBSA* (DDG in
kcal/mol)

mCSM-ppi (DDG in
kcal/mol)

DynaMut (DDG in
kcal/mol)

Overall
Impact

Reference

V39I �0.61 NA �0.83 0.75 Moderate
Impact

[47]

V48G �2.78 NA �0.75 �10.00 High Impact [48]
V48A �2.24 NA �0.86 �6.02 High Impact [48]
V48L �0.72 NA �1.23 0.44 Moderate

Impact
[48]

V48I �0.72 NA �1.23 1.35 Moderate
Impact

[48]

V48F �1.42 NA �0.87 �1.26 Moderate
Impact

[48]

V48D �2.71 NA �0.91 �8.69 Moderate
Impact

[48]

T53A �0.59 �3.85 �0.09 0.11 High Impact [48]
T53S �0.40 �2.69 �0.24 �1.09 High Impact [48]
T53V �0.43 �3.69 �0.04 1.12 High Impact [49]
T53I �0.40 0.20 �0.01 2.58 Moderate

Impact
[48]

T53P �0.43 �1.30 �0.04 1.05 High Impact [48]
T53N �0.21 �2.89 �0.27 0.87 High Impact [48]
R54G �0.52 �9.12 �0.66 �0.11 High Impact [48]
R54W �0.26 �26.83 �0.85 �0.25 High Impact [48]
P55A �0.48 �2.78 0.03 0.14 Moderate

Impact
[48]

P55T �0.44 �1.17 0.38 �0.14 High Impact [48]
P55S �0.44 �3.51 0.34 0.14 Moderate

Impact
[48]

P55L �0.28 �2.77 0.18 1.56 Moderate
Impact

[48]

P55H �0.21 �2.74 0.88 0.50 Moderate
Impact

[48]

P55R 0.17 �4.06 0.11 �0.32 Moderate
Impact

[48]

T88P �0.35 NA �0.20 �1.84 High Impact [50]
D91H 0.04 NA 0.79 �0.01 Moderate

Impact
[50]

R94W �0.21 NA �0.83 2.18 Moderate
Impact

[50]

*NA = Not applicable. For Prime MM/GBSA, NA indicates that the residue is more than 5 Å from dapsone.

Fig. 6. Monomeric model of M. leprae DHPS. A: The average destabilizing effects for all possible mutations at each residue position as estimated by mCSM is depicted on the
model. The values are color-coded as shown in the scales. B: The average scores of the mutation impacts at each residue position (calculated as described in the methods
section) and depicted on the model. C: Average stability changes predicted by mCSM at residue positions where mutations were identified clinically in dapsone-resistant
leprosy cases. Mutations were noted at eight residue positions as shown in Table 3. These positions were color-coded based on the average stability changes for any mutation
from red (highly destabilizing) to blue (stabilizing). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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on the model (Fig. 7A). The predicted DDG values ranged from
�4.312 (highly destabilising) to 2.716 (highly stabilising) kcal/mol.
The overall scores for all the mutations ranged from �18 (highly
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stabilising) to 22 (highly destabilising) (Fig. 7B). Clinically identi-
fied mutations and stability changes that are predicted by mCSM
were depicted on the model (Fig. 7C).



Table 4
Predicted stability and affinity change for clinically identified mutations in chain C (beta subunit) of RNAP in rifampin-resistant M. leprae strains.

Mutations in beta
subunit of RNAP

mCSM (DDG in
kcal/mol)

mCSM-lig (log
change)

mCSM-NA (DDG in
kcal/mol)

mCSM-ppi (DDG in
kcal/mol)

DynaMut (DDG in
kcal/mol)

Overall
Impact

Reference

A411T �0.66 NA 3.68 �0.29 0.06 Moderate
Impact

[51]

V424G �1.48 NA 0.03 �0.50 �0.54 High Impact [52]
G432S �0.56 �0.83 3.68 0.48 1.17 Moderate

Impact
[51]

T433I �0.24 �0.57 �3.56 0.11 2.06 Moderate
Impact

[51]

L436P �1.19 �0.74 0.04 �0.70 �2.07 High Impact [51]
Q438V 0.05 �0.94 �1.61 �0.21 1.4 Moderate

Impact
[51]

D441V 1.67 �0.20 0.34 0.17 2.82 Moderate
Impact

[51]

D441Y 0.17 �0.14 5.99 �0.26 1.12 Moderate
Impact

[51]

D441N �0.06 �0.10 2.00 �0.43 0.71 High Impact [51]
Q442H 0.58 �0.12 1.77 0.36 3.44 Moderate

Impact
[53]

N443S 0.18 0.06 2.13 �0.11 0.42 Moderate
Impact

[54]

P445G �2.16 0 0.03 �0.49 0.92 High Impact [54]
P445A �1.77 0 0.03 �0.49 2.01 Moderate

Impact
[54]

L446V �1.71 0 0.04 �0.81 �5.29 Moderate
Impact

[54]

H451Y �0.10 �0.09 2.31 �0.34 2.17 Moderate
Impact

[51]

H451D �1.73 �0.75 �3.63 �0.39 �3.03 High Impact [51]
K452M �0.28 �0.08 �2.93 �0.40 1.51 Moderate

Impact
[54]

R453F �1.90 �0.18 3.36 �0.32 �1.28 High Impact [54]
S456L �0.19 �0.30 �3.55 �0.07 3.12 Moderate

Impact
[51]

S456M �0.15 �0.36 �3.56 0.068 2.36 Moderate
Impact

[51]

S456F �0.83 �0.27 2.08 �0.29 6.85 Moderate
Impact

[51]

S456W �0.81 �0.45 4.92 �0.54 4.99 Moderate
Impact

[51]

L458V �1.11 �1.26 0.04 �0.32 �1.09 High Impact [51]
G459A �0.47 �0.71 0.06 �0.44 0.68 Moderate

Impact
[54]

G461A �0.28 NA �0.04 0.39 �3.21 High Impact [54]
S464W �0.73 �0.63 4.53 �0.31 2.47 Moderate

Impact
[54]

E466Q 0.44 �0.56 1.51 �1.04 �0.77 High Impact [54]
G469L �0.43 NA �0.12 �0.91 �0.15 High Impact [54]
G469P �0.43 NA �0.13 �0.84 �0.47 Moderate

Impact
[54]

L470I �0.71 NA 0.09 �0.19 0.66 Moderate
Impact

[54]

E471K 0.31 NA 3.52 �0.15 �0.50 High Impact [54]
R473G �1.81 NA �2.20 �0.51 �1.59 High Impact [54]
V475M �0.70 NA 0.04 �3.30 0.40 High Impact [54]
H479N �2.01 NA �1.67 �1.37 �3.69 High Impact [54]
G481R �1.31 NA 2.40 �2.31 �1.44 High Impact [54]
E487K 0.61 �0.22 3.32 �0.30 0.40 High Impact [54]
P489L �0.81 �0.25 �0.28 �0.95 1.23 High Impact [54]
E490Q �0.21 �0.58 1.85 �0.75 �1.14 High Impact [54]
R505W �0.25 NA 6.20 �0.56 2.47 Moderate

Impact
[51]

*NA = Not applicable.
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3.5. GYR (DNA Gyrase)

DNA Gyrase (GYR) is an essential enzyme in mycobacteria that
catalyses ATP-dependent transient cleavage and negative super-
coiling of closed circular DNA. The heterotetrameric protein
(GyrA2, GyrB2) is comprised of four chains (A-D) that are encoded
by gyrA (ML0006) and gyrB (ML0005) genes in M. leprae. Mutations
within the gyrA gene are associated with resistance to ofloxacin, a
second-line bactericidal drug in the treatment of leprosy. The chain
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A (GyrA) was modelled from residue positions 16–922, and after
removal of a stretch of 420 amino acids (intein), the final residue
sequence of chains A is numbered from 16 to 501 (residue number
131 in the model corresponds to 551 in the amino acid sequence).
Chain B is modelled from residues 440–678. The double helical
DNA scaffold was modelled by superimposition with the template.

The model was built with at least 100 iterations using Modeller
v9.24, and the model with the lowest RMSD to the template
(0.321 Å) was selected for further analysis. The resultant model



Fig. 7. A: Average stability changes predicted by mCSM for all possible mutations in all the subunits of RNAP complex. These are depicted on the model and color-coded as
red for values less than zero (destabilizing) and blue for values greater than zero (stabilizing). B. Average impact score for all possible mutations is depicted on the model of
RNAP and color-coded as described in Fig. 7A. C. Stability changes as predicted by mCSM for mutations (stated in Table 4) in the rifampin binding site that are clinically
resistant. Red color indicates average destabilizing effects at each residue position when mutated to all other amino acids. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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has a Molprobity score of 0.86 at 100th percentile (this score is
equivalent to the atomic resolution of the crystal structure). This
model contains double-stranded DNA and a break in the strand
at the active site for fluoroquinolone binding. The template has
moxifloxacin in the active site at the interface between chain B
and the DNA strand. We excised moxifloxacin from the model
and introduced ofloxacin by molecular docking into the binding
site using Glide XP module in Schrodinger Suite 2019-4 (Fig. 8).
Fig. 8. Model of DNA Gyrase (GYR) ofM. leprae. A: Model of DNA Gyrase colored by chain
Ofloxacin binding site and interatomic interactions of ofloxacin with the surrounding res
lines indicate ionic bonds, green dotted lines indicate pi-stacking, orange dotted lines are
interpretation of the references to color in this figure legend, the reader is referred to th
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Clinically identified mutations in the quinolone resistance
determining region of the gyrA gene and corresponding amino acid
substitutions are shown in Table 5. All the mutations indicate
destabilising effects on the protein structure.

Average stability changes as predicted by mCSM at each residue
position in GYR ranged from �4.256 (highly destabilising) to
2.036 kcal/mol (highly stabilising). The overall impact score for
each mutation ranged from �11 (highly stabilising) to 21 (highly
id (chain A in green; chain B in orange; chain C in violet and chain D in magenta). B:
idue environment. The blue dotted lines indicate hydrogen bonds, the yellow dotted
for cation-pi interactions, grey dotted lines represent hydrophobic interactions. (For
e web version of this article.)



Table 5
Predicted stability and affinity change for clinically identified mutations in ofloxacin resistant M. leprae strains.

Mutations in
GYR

mCSM (DDG in
kcal/mol)

Prime MM/GBSA (DDG in
kcal/mol)

mCSM-NA (DDG in
kcal/mol)

mCSM-PPI (DDG in
kcal/mol)

DynaMut (DDG in
kcal/mol)

Overall
Impact

Reference

A91T �0.70 �8.54 1.48 �0.28 �0.66 High Impact [55]
A91V �0.32 5.43 0.44 �0.59 �0.27 High Impact [51]
S92A �0.60 �12.35 �1.09 0.20 1.55 High Impact [55]
R107L �0.50 �6.33 �1.53 0.12 �0.26 Moderate

Impact
[50]

Fig. 9. A: Average stability changes, as predicted by mCSM and depicted on the model. Regions in red indicate average destabilizing effects for all possible mutations at a
specific residue position and blue indicate stabilizing effect. B. The average impact score mapped on the structure. C: Average of mCSM stability predictions for all possible
mutations within the Ofloxacin binding site. Red color indicates that on an average, any mutation in this site induces a destabilizing effect on the protein. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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destabilising). These impacts were depicted on the model and
colour-coded blue for stabilising and red for destabilising impacts
(Fig. 9).

3.6. Clinically identified mutations

The mutations noted clinically in patient samples were largely
confined to DRDR as the WHO recommended PCR protocol
includes only the amplification and detection of mutations in
DRDR to diagnose drug resistance in leprosy. As most of the DRDRs
line the drug-binding sites of the target proteins, they have an
impact on the ligand binding as noted by destabilizing effects
(measured using mCSM-lig and Prime MM/GBSA) for most of the
mutations (Tables 3–5). From the predicted impacts, as shown in
Supplementary Table S1, mutations that are highly detrimental
to the stability of the drug target or have highly destabilizing
impacts on the ligand binding are not identified clinically. This
could be due to the fitness cost of these mutations to the bacteria
[8]. These mutations are chosen based on the top five highly desta-
bilizing effects on overall thermodynamic stability, protein-ligand,
protein interfaces and protein-nucleic acids affinities.

4. Discussion

Quantifying the effects of point mutations on thermodynamic
stability and function of the drug-targets in M. leprae provides
mechanistic insights into the association between enthalpic
changes and antimicrobial resistance phenotypes in leprosy. We
present a publicly available web resource that provides predicted
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stability and affinity changes due to mutations in the drug targets
for three major anti-leprosy drugs namely dapsone, rifampin and
ofloxacin. Resistance has been noted for all the three drugs in
leprosy endemic countries. In the absence of a rapid and confirma-
tory method to determine drug resistance in leprosy, clinicians and
researchers rely on the presence/absence of mutations in drug-
target coding genes as the proxy to diagnose drug resistance. These
mutations are confirmed either by in-vivo experiments (by propa-
gating mutant strains in the hind footpads of mice administered
with anti-leprosy drugs) or by comparing the effects of the muta-
tions in homologous genes of M. tb. A resource like HARP can help
mycobacterial researchers to have an overview of the potential
structural impacts of point mutations and the corresponding
antimicrobial resistance outcomes in leprosy. The user can explore
the structure, sequence driven and vibrational entropy-based sta-
bility changes for all possible mutations and understand their
impact on the protein-ligand, protein-nucleic acid and protein-
protein affinities.

Mutations that confer drug resistance in leprosy are usually
identified in DRDR however, there are reports stating the occur-
rence of mutations beyond this region [49,57]. Deciphering
impacts of such mutations aid in better understanding of the allos-
teric mechanisms that drive resistance phenotypes. In HARP, by
modelling mutations across the structure, we generated a resource
that presents the impacts of not only known but new and emerging
mutations associated with DHPS, RNAP and GYR in M. leprae. To
our knowledge, HARP is one of its kind resources, developed exclu-
sively for leprosy with comprehensive data related to predictions
of stability and affinity changes for all possible mutations in the
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drug-targets. Other databases that document drug resistance in
leprosy are MycoResistance [58] that provides a collection of stud-
ies reporting fluoroquinolone resistance, The Comprehensive
Antibiotic Resistance Database (CARD) [59] that presents informa-
tion on published reports related to resistant strains and their
sequences, and recently, DRAGdb [60] that used PROVEAN to esti-
mate the functional effects of reported resistance mutations in the
sequences of rpoB and gyrA genes in M. leprae.

Computational saturation mutagenesis guides experimental
approaches to study the impacts or help rationalise the conse-
quences of known or emerging mutations [61]. Such approaches
have been applied to other proteins like artificial (ba)8-barrel pro-
tein [19] or in deep mutation scans [62]. Experimental validation of
mutation impacts in M. leprae are time and labour-intensive pro-
cesses owing to the inability of bacillus to grow on an artificial cul-
ture media. A resource like HARP can facilitate prioritisation of
experiments and aid clinicians and researchers working in leprosy
to have a quick and detailed perception of the possible impacts of
the mutations in drug-resistant leprosy cases. We strongly believe
that HARP will be highly beneficial to leprosy research.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

Authors would like to thank the rest of the computational biol-
ogy team at the Department of Biochemistry, University of Cam-
bridge, United Kingdom, for their overarching support and
guidance in the data collection and analysis. SCV and MADGE were
supported by American Leprosy Missions Grant, United States of
America, (Grant No: G88726), SM was supported by the MRC
DBT Grant, United Kingdom and India (RG78439), MJS was sup-
ported by a grant from Foundation Botnar working to support chil-
dren with cystic fibrosis, Switzerland (Project 6063), DBA was
funded by an Investigator Grant from the National Health and
Medical Research Council (NHMRC) of Australia [GNT1174405]
and by the Wellcome Trust Programme Grant, United Kingdom
(200814/Z/16/Z) and supported in part by the Victorian Govern-
ment’s OIS Program, Australia. AFA is funded on a PhD Scholarship
by the Kingdom of Saudi Arabia. AM was supported by a scholar-
ship jointly funded by Pakistan Higher Education Commission
(HEC) and Cambridge Commonwealth, European and International
Trust (CCEIT) Scholarship. TLB was supported by the Wellcome
Trust Programme Grant, United Kingdom (200814/Z/16/Z).

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2020.11.013.

References

[1] Tió-Coma M, Avanzi C, Verhard EM, Pierneef L, van Hooij A, Benjak A, et al.
Genomic Characterization of Mycobacterium leprae to Explore Transmission
Patterns Identifies New Subtype in Bangladesh. Frontiers in Microbiology
2020;11. DOI:10.3389/fmicb.2020.01220.

[2] Barohn RJ, Amato AA. Pattern-recognition approach to neuropathy and
neuronopathy. Neurol Clin 2013;31:343–61. https://doi.org/10.1016/j.
ncl.2013.02.001.

[3] Cambau E, Perani E, Guillemin I, Jamet P, Ji B. Multidrug-resistance to dapsone,
rifampicin, and ofloxacin in Mycobacterium leprae. Lancet 1997;349:103–4.
https://doi.org/10.1016/s0140-6736(05)60888-4.

[4] Cambau E, Saunderson P, Matsuoka M, Cole ST, Kai M, Suffys P, et al.
Antimicrobial resistance in leprosy: results of the first prospective open survey
3703
conducted by a WHO surveillance network for the period 2009–15. Clin
Microbiol Infect 2018;24:1305–10. https://doi.org/10.1016/j.cmi.2018.02.022.

[5] Matsuoka M. Drug resistance in leprosy. Jpn J Infect Dis 2010;63:1–7.
[6] McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF.

Mutation rate and the emergence of drug resistance in Mycobacterium
tuberculosis. Journal of Antimicrobial Chemotherapy 2013;69:292–302.
DOI:10.1093/jac/dkt364.

[7] Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X, Cleland H, et al.
Evolution of carbapenem resistance in Acinetobacter baumannii during a
prolonged infection. Microbial Genomics 2018;4. DOI:10.1099/
mgen.0.000165.

[8] Portelli S, Phelan JE, Ascher DB, Clark TG, Furnham N. Understanding molecular
consequences of putative drug resistant mutations in Mycobacterium
tuberculosis. Scientific Reports 2018;8. DOI:10.1038/s41598-018-33370-6.

[9] Karmakar M, Rodrigues CHM, Holt KE, Dunstan SJ, Denholm J, Ascher DB.
Empirical ways to identify novel Bedaquiline resistance mutations in AtpE.
PLoS One 2019;14:. https://doi.org/10.1371/journal.pone.0217169e0217169.

[10] Karmakar M, Globan M, Fyfe JAM, Stinear TP, Johnson PDR, Holmes NE, et al.
Analysis of a novel pncA mutation for susceptibility to pyrazinamide therapy.
Am J Respir Crit Care Med 2018;198:541–4. https://doi.org/10.1164/
rccm.201712-2572le.

[11] Karmakar M, Rodrigues CHM, Horan K, Denholm JT, Ascher DB. Structure
guided prediction of Pyrazinamide resistance mutations in pncA. Scientific
Reports 2020;10. DOI:10.1038/s41598-020-58635-x.

[12] Vedithi SC, Malhotra S, Das M, Daniel S, Kishore N, George A, et al. Structural
Implications of Mutations Conferring Rifampin Resistance in Mycobacterium
leprae. Scientific Reports 2018;8. DOI:10.1038/s41598-018-23423-1.

[13] Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL. SDM: a server for
predicting effects of mutations on protein stability. Nucleic Acids Res 2017;45:
W229–35. https://doi.org/10.1093/nar/gkx439.

[14] Pires DEV, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations
in proteins using graph-based signatures. Bioinformatics 2013;30:335–42.
https://doi.org/10.1093/bioinformatics/btt691.

[15] Duan J, Lupyan D, Wang L. Improving the accuracy of protein thermostability
predictions for single point mutations. Biophys J 2020;119:115–27. https://
doi.org/10.1016/j.bpj.2020.05.020.

[16] Frappier V, Najmanovich RJ. A coarse-grained elastic network atom contact
model and its use in the simulation of protein dynamics and the prediction of
the effect of mutations. PLoS Comput Biol 2014;10:. https://doi.org/10.1371/
journal.pcbi.1003569e1003569.

[17] Resende-Lara PT, Perahia D, Scott AL, Braz ASK. Unveiling functional motions
based on point mutations in biased signaling systems: a normal mode study
on nerve growth factor bound to TrkA. PLoS One 2020;15:. https://doi.org/
10.1371/journal.pone.0231542e0231542.

[18] Fischer A, Seitz T, Lochner A, Sterner R, Merkl R, Bocola M. A fast and precise
approach for computational saturation mutagenesis and its experimental
validation by using an artificial (ba)8-barrel protein. ChemBioChem
2011;12:1544–50. https://doi.org/10.1002/cbic.201100051.

[19] Vedithi SC, Rodrigues CHM, Portelli S, Skwark MJ, Das M, Ascher DB, et al.
Computational saturation mutagenesis to predict structural consequences of
systematic mutations in the beta subunit of RNA polymerase in
Mycobacterium leprae. Comput Struct Biotechnol J 2020;18:271–86. https://
doi.org/10.1016/j.csbj.2020.01.002.

[20] Benjak A, Charlotte A, Singh P, Loiseau C, girma selfu, Busso P, et al.
Phylogenomics and antimicrobial resistance of the leprosy bacillus
Mycobacterium leprae. Nature Communications 2018;9. DOI:10.1038/
s41467-017-02576-z.

[21] Levy L. Studies of the Mouse Foot Pad Technique for Cultivation
ofMycobacterium leprae.3. Doubling Time During Logarithmic
Multiplication. Leprosy Review 1976;47. DOI:10.5935/0305-7518.19760019.

[22] Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial
restraints. J Mol Biol 1993;234:779–815. https://doi.org/10.1006/
jmbi.1993.1626.

[23] Chaitanya SV, Das M, Bhat P, Ebenezer M. Computational modelling of dapsone
interaction with dihydropteroate synthase in Mycobacterium leprae; insights
into molecular basis of dapsone resistance in leprosy. J Cell Biochem
2015;116:2293–303. https://doi.org/10.1002/jcb.25180.

[24] Blower TR, Williamson BH, Kerns RJ, Berger JM. Crystal structure and stability
of gyrase–fluoroquinolone cleaved complexes from Mycobacterium
tuberculosis. Proc Natl Acad Sci 2016;113:1706–13. https://doi.org/10.1073/
pnas.1525047113.

[25] Fsihi H, Vincent V, Cole ST. Homing events in the gyrA gene of some
mycobacteria. Proc Natl Acad Sci 1996;93:3410–5. https://doi.org/10.1073/
pnas.93.8.3410.

[26] Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al.
MolProbity: more and better reference data for improved all-atom structure
validation. Protein Sci 2017;27:293–315. https://doi.org/10.1002/pro.3330.

[27] Lorber DM, Shoichet BK. Flexible ligand docking using conformational
ensembles. Protein Sci 1998;7:938–50. https://doi.org/10.1002/
pro.5560070411.

[28] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.
UCSF Chimera?A visualization system for exploratory research and analysis. J
Comput Chem 2004;25:1605–12. https://doi.org/10.1002/jcc.20084.

[29] Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016:
an improved methodology to estimate and visualize evolutionary conservation

https://doi.org/10.1016/j.csbj.2020.11.013
https://doi.org/10.1016/j.ncl.2013.02.001
https://doi.org/10.1016/j.ncl.2013.02.001
https://doi.org/10.1016/s0140-6736(05)60888-4
https://doi.org/10.1016/j.cmi.2018.02.022
http://refhub.elsevier.com/S2001-0370(20)30480-3/h0025
https://doi.org/10.1371/journal.pone.0217169
https://doi.org/10.1164/rccm.201712-2572le
https://doi.org/10.1164/rccm.201712-2572le
https://doi.org/10.1093/nar/gkx439
https://doi.org/10.1093/bioinformatics/btt691
https://doi.org/10.1016/j.bpj.2020.05.020
https://doi.org/10.1016/j.bpj.2020.05.020
https://doi.org/10.1371/journal.pcbi.1003569
https://doi.org/10.1371/journal.pcbi.1003569
https://doi.org/10.1371/journal.pone.0231542
https://doi.org/10.1371/journal.pone.0231542
https://doi.org/10.1002/cbic.201100051
https://doi.org/10.1016/j.csbj.2020.01.002
https://doi.org/10.1016/j.csbj.2020.01.002
https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1002/jcb.25180
https://doi.org/10.1073/pnas.1525047113
https://doi.org/10.1073/pnas.1525047113
https://doi.org/10.1073/pnas.93.8.3410
https://doi.org/10.1073/pnas.93.8.3410
https://doi.org/10.1002/pro.3330
https://doi.org/10.1002/pro.5560070411
https://doi.org/10.1002/pro.5560070411
https://doi.org/10.1002/jcc.20084


Sundeep Chaitanya Vedithi, S. Malhotra, M.J. Skwark et al. Computational and Structural Biotechnology Journal 18 (2020) 3692–3704
in macromolecules. Nucleic Acids Res 2016;44:W344–50. https://doi.org/
10.1093/nar/gkw408.

[30] Laimer J, Hofer H, Fritz M, Wegenkittl S, Lackner P. MAESTRO - multi agent
stability prediction upon point mutations. BMC Bioinformatics 2015;16.
DOI:10.1186/s12859-015-0548-6.

[31] Parthiban V, Gromiha MM, Schomburg D. CUPSAT: prediction of protein
stability upon point mutations. Nucleic Acids Res 2006;34:W239–42. https://
doi.org/10.1093/nar/gkl190.

[32] Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes
upon mutation from the protein sequence or structure. Nucleic Acids Research
2005;33:W306–10. DOI:10.1093/nar/gki375.

[33] Capriotti E, Fariselli P, Rossi I, Casadio R. A three-state prediction of single
point mutations on protein stability changes. BMC Bioinf 2008;9:S6. https://
doi.org/10.1186/1471-2105-9-s2-s6.

[34] Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of
amino acid substitutions and indels. Bioinformatics 2015;31:2745–7. https://
doi.org/10.1093/bioinformatics/btv195.

[35] Rodrigues CH, Pires DE, Ascher DB. DynaMut: predicting the impact of
mutations on protein conformation, flexibility and stability. Nucleic Acids Res
2018;46:W350–5. https://doi.org/10.1093/nar/gky300.

[36] Frappier V, Chartier M, Najmanovich RJ. ENCoM server: exploring protein
conformational space and the effect of mutations on protein function and
stability. Nucleic Acids Res 2015;43:W395–400. https://doi.org/10.1093/nar/
gkv343.

[37] Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web
server: an online force field. Nucleic Acids Res 2005;33:W382–8. https://doi.
org/10.1093/nar/gki387.

[38] Pires DEV, Blundell TL, Ascher DB. mCSM-lig: quantifying the effects of
mutations on protein-small molecule affinity in genetic disease and
emergence of drug resistance. Scientific Reports 2016;6. DOI:10.1038/
srep29575.

[39] Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate
ligand-binding affinities. Expert Opin Drug Discov 2015;10:449–61. https://
doi.org/10.1517/17460441.2015.1032936.

[40] Pires DEV, Ascher DB. mCSM–NA: predicting the effects of mutations on
protein–nucleic acids interactions. Nucleic Acids Res 2017;45:W241–6.
https://doi.org/10.1093/nar/gkx236.

[41] Jubb HC, Higueruelo AP, Ochoa-Montaño B, Pitt WR, Ascher DB, Blundell TL.
Arpeggio: a web server for calculating and visualising interatomic interactions
in protein structures. J Mol Biol 2017;429:365–71. https://doi.org/10.1016/j.
jmb.2016.12.004.
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