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Abstract: Background: Autosomal dominant polycystic kidney disease (ADPKD) is a condition usually
caused by a single gene mutation and manifested by both renal and extrarenal features, eventually
leading to end-stage renal disease (ESRD) by the median age of 60 years worldwide. Approximately
89% of ADPKD patients had either PKD1 or PKD2 gene mutations. The majority (85%) of the
mutations are in the PKD1 gene, especially in the context of family history. Objectives: This study
investigated the genetic basis and the undiscovered genes that are involved in ADPKD development
among the Saudi population. Materials and Methods: In this study, 11 patients with chronic kidney
disease were enrolled. The diagnosis of ADPKD was based on history and diagnostic images: CT
images include enlargement of renal outlines, renal echogenicity, and presence of multiple renal cysts
with dilated collecting ducts, loss of corticomedullary differentiation, and changes in GFR and serum
creatinine levels. Next-generation whole-exome sequencing was conducted using the Ion Torrent
PGM platform. Results: Of the 11 Saudi patients diagnosed with chronic kidney disease (CKD) and
ADPKD, the most common heterozygote nonsynonymous variant in the PKD1 gene was exon15:
(c.4264G > A). Two missense mutations were identified with a PKD1 (c.1758A > C and c.9774T > G),
and one patient had a PKD2 mutation (c.1445T > G). Three detected variants were novel, identified at
PKD1 (c.1758A > C), PKD2L2 (c.1364A > T), and TSC2 (deletion of a’a at the 3’UTR, R1680C) genes.
Other variants in PKD1L1 (c.3813_381 4delinsTG) and PKD1L2 (c.404C > T) were also detected. The
median age of end-stage renal disease for ADPK patients in Saudi Arabia was 30 years. Conclusion:
This study reported a common variant in the PKD1 gene in Saudi patients with typical ADPKD. We
also reported (to our knowledge) for the first time two novel missense variants in PKD1 and PKD2L2
genes and one indel mutation at the 3’UTR of the TSC2 gene. This study establishes that the reported
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mutations in the affected genes resulted in ADPKD development in the Saudi population by a median
age of 30. Nevertheless, future protein–protein interaction studies to investigate the influence of these
mutations on PKD1 and PKD2 functions are required. Furthermore, large-scale population-based
studies to verify these findings are recommended.

Keywords: whole-exome sequencing; autosomal recessive polycystic kidney disease (ARPKD);
autosomal dominant polycystic kidney disease (ADPKD); polycystin-1-polycystin-2 PKD1; PKD2;
end-stage renal disease ESRD

1. Introduction

Monogenic cystic kidney disease is a cilia-associated disorder that is composed of two
forms: autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant
polycystic kidney disease (ADPKD) [1]. ARPKD is a rare and severe form of the disease that
mainly presents in children, while ADPKD is the most common hereditary genetic renal
disorder that occurs primarily in adulthood [2]. Clinically, the two forms of the disease
can be distinguished based on the presence of many criteria, such as kidney morphology,
location of the cyst, hepatic fibrosis, arterial hypertension, and age at the presentation
of the symptoms [3]. The majority of ADPKD patients presented with hypertension and
deterioration in the glomerular filtration rate (GFR) [4], which might require renal dialysis or
transplantation in the advanced stages [5]. Based on several clinical studies, ADPKD is the
most prevalent genetic renal disorder, with estimated cases of 1 in 500-2500 individuals [6]
anticipated to affect over 10 million individuals globally from various ethnicities; thus, it is
one of the significant clinical concerns [1].

Numerous biological and clinical studies have been conducted to delineate the genetic
mechanism of ADPKD [2,7–9]. Mutation in the genes PKD1 (78% of cases) or PKD2 (15%
of cases) accounts for the most common genetic alterations involved in the pathogenesis
of ADPKD [10]. The PKD1 gene is located on chromosome 16 and encodes polycystin-1
protein (PC1), a large transmembrane integral glycoprotein [10]. The PKD1 gene consists
of 46 exons with a large, duplicated region from exons 1-33 that shares a high degree of
sequence identity with the other six pseudogenes near PKD1 on the same chromosome
(16p) [11]. The PKD2 gene is located on chromosome 4 and encodes polycystin-2 protein
(PC2), a transmembrane protein. PKD2 is smaller than PKD1 and has only 15 exons [11].
Although mutations of PKD1 and PKD2 genes are fully penetrant, their expressivity is asso-
ciated with different cases of variable severity in members of the same family, suggesting
the presence of additional gene modifiers [12].

Clinical information combined with imaging-based strategies, preferentially ultra-
sonography, is the primary approach to diagnosing patients with ADPKD [13,14]. MRI or
CT scans with contrast provide highly specific and sensitive modalities in calculating the
number and diameter of the cysts, especially in high-risk younger people with positive
family history [15]. Aside from imaging techniques, genetic testing is required to confirm
the definitive diagnosis of ADPKD, particularly in young members with few cysts and no
family history or when the diagnosis is vague [8,16,17]. Indeed, genetic testing affords a
valuable diagnostic and prognostic tool that might further improve clinical management
and outcomes in cystic kidney disease patients [2,17,18]. Over 1500 mutations with high al-
lelic heterogeneity of PKD1 and PKD2 genes have been indicated in the ADPKD dataset [1].
Nevertheless, the detection of PKD1 mutation requires comprehensive analysis because of
its large size, complex genomic structure, and expensive technique [19].

Transmission of genetic susceptibility diseases, such as inherited renal disorders, was
found to be more frequent in areas where consanguineous marriages are common, such as
in the Kingdom of Saudi Arabia (KSA) [20]. Since the rate of consanguinity marriages in
KSA was reported to reach up to 55%, homozygous mutations in the PKD1 gene and other
genes related to cystic kidneys would be more anticipated [21]. Furthermore, allelic and
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genetic heterogeneity for many Mendelian disorders has evolved in KSA [22]. An observa-
tional study conducted in Saudi Arabia reported a high incidence of genetically inherited
kidney diseases such as polycystic kidney disease (PKD), familial juvenile nephronoph-
thisis, congenital urological anomalies, and familial nephrotic syndrome among Saudi
children [23]. Moreover, antenatal analysis using an ultrasonography test along with
Sanger sequencing of the PKD1 gene was employed among four consanguineous Saudi
families to investigate the genetic background of the early-onset PKD [24]. Additionally,
homozygous and compound heterozygous hypomorphic PKD1 missense alleles mutation
was detected in two families and resulted in the early onset of an aggressive disease yet
was compatible with life [24]. Al-Muhanna et al. performed the exome sequencing using
WES technology on 16 Saudi ADPKD patients and reported that variants related to PKD1
and PKD2 genes are the most frequently detected mutations in Saudi patients with typical
ADPKD. On the other hand, a specific form of ADPKD was associated with rare pathogenic
mutations in cytogenic genes such as PKHD1, PKD1L3, EGF, CFTR, and TSC2 [25].

ADPKD is considered a critical health issue in Saudi Arabia, and progression to
end-stage kidney disease (ESKD) is inevitable. Numerous reports have exemplified
the genetic elements involved in the development of PKD/ADPKD among the Saudi
population [20,21,23–27]. Yet the extent to which these genetic variants are involved in
the pathogenesis, erraticism in clinical scenarios, and disease severity remain poorly un-
derstood. Previously, we reported several mutations that are associated with diseases in
Saudi Arabia [27–31]. Therefore, the current study aims to examine the genetic basis and
the hitherto undiscovered genes that might be involved in developing ADPKD among the
Saudi population.

2. Methods, Materials, and Subjects
2.1. Patients and Family Recruitment

This study included 11 patients from different families, diagnosed with ADPKD and
chronic kidney disease (CKD) probands ascertained in the nephrology clinic at the King
Faisal Specialist Hospital and Research Center Jeddah (KFSH & RC); participants were
enrolled in the western province of Saudi Arabia. All subjects signed the informed consent
and documentation of family history forms. The diagnosis of ADPKD was achieved based
on different criteria, and measurements comprised (1) medical history: the patient’s clinical
manifestations; in addition to the presence of positive family history, (2) diagnostic images:
CT images include enlargement of renal outlines, renal echogenicity, presence of multiple
renal cysts with dilated collecting ducts, and loss of corticomedullary differentiation; and
(3) laboratory data: evaluation of glomerular function (GFR) and creatinine level in the
serum. Demographic data retrieved from the patients’ medical reports, including age,
gender, race, ethnicity, and previous and current medical history (hypertension status,
CKD stage, eGFR, affected family member, and presence of other medical conditions), are
presented in Table 1. Patients were classified as G1–G5 based on the eGFR and A1–A3
based on the albumin:creatinine ratio (ACR).

2.2. Ethical Approval and Participants’ Consent

This study was approved by the Institutional Review Board of King Faisal Specialist
Hospital and Research Center Jeddah (IRB number 2018-36) on 18 September 2018. In-
formed consent for the retention and use of patient data for research purposes was routinely
obtained at the time of obtaining consent for the procedures. Before blood sample collection,
all patients who met the inclusion and exclusion criteria completed the informed consent
(ICF) and case report form (CRF).
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Table 1. Demographic and clinical characteristics of the cases.

Patient
ID Age Sex Nationality Ethnicity Hypertension eGFR

(mL/min/1.73m2)
CKD
stage

Affected Family
Members

Other
Diseases

P1 46 F SA Arab Yes NA G4/A3 3 PKD

P2 37 M SA Arab No 60–89 mL/min/1.73 G2/A1 2
Hereditary
nephritis
and CKD

P3 19 M SA Arab No 15 mL/min/1.73 G5/A3 1 CKD

P4 18 M SA Arab Yes 15 G5/A3 2
Hereditary
nephritis

CKD
P5 40 F SA Arab Yes 60 G2/A3 1 CKD

P6 33 F SA Arab Yes 5 G5/A3 1 and 6 carrier CKD
ESRD

P7 30 M SA Arab Yes 60 G2/A2 1 and 6 carrier CKD
P8 30 F SA Arab Yes 60–89 G2/A3 2 CKD
P9 26 M SA Arab No 49 G3a/A2 1 CKD

P10 26 M SA Arab Yes NA G4/A3 0 CKD

P11 31 M SA Arab No NA G5/A3 2 CKD
ESRD

Patients are classified as G1-G5 based on the eGFR and A1-A3 based on the albumin:creatinine ratio (ACR).
CKD, chronic kidney disease. PKD: Polycystic kidney disease. ESRD: End-Stage Renal Disease. GFR, glomerular
filtration rate. SA, Saudi Arabia. eGFR: in males, 100–130 mL/min/1.73 m2; in females, 90–120 mL/min/1.73 m2.

2.3. DNA Extraction

Peripheral blood samples were collected from each patient (approximately 2–3 cc).
Subsequently, the genomic DNA was extracted from all blood samples using a Gentra
Puregene Blood Kit (Qiagen, Cat No: 158389, Düsseldorf, Germany) according to the
manufacturer’s instructions. Briefly, 20 µL of proteinase K was added to 200 µL of whole
blood, mixed, and incubated for 1 min at room temperature (15–25 ◦C), followed by adding
200 µL of buffer to the sample. Then, the mixture was incubated in a water bath at 56 ◦C
for 10 min and spun for 2 min at 2000× g, and 200 µL of ethanol (96–100%) was added
to the sample, followed by mixing by pulse-vertexing for 15 s. Finally, 100 µL of the
DNA Hydration Solution was added, and it was vortexed for 5 s and incubated at 65
◦C for 5 min. The quantity and quality of extracted DNA were evaluated by using the
Qubit 2.0 Fluorometer (Life Technologies, Waltham, MA, USA) with the Qubit dsDNA
High Sensitivity Assay Kit (Life Technologies, Cat No Q32851-Waltham, MA, USA) and
NanoDrop 2000 system (Thermo Scientific-Waltham, MA, USA), respectively, according to
the manufacturer’s instructions.

2.4. DNA Library Preparation

Extracted DNA (100 ng per sample) was used for library preparation using the Ion
AmpliSeq Library Kit Plus (Life Technologies, Cat # 4488990, Waltham, MA, USA) with
the Ion AmpliSeq Exome RDY Kit (Life Technology, cat # 8849838, Waltham, MA, USA)
according to the manufacturer’s instructions.

2.5. Next-Generation Sequencing (NGS) Technology

DNA was sequenced by utilizing massive parallel sequencing via Ion Torrent PGM
with the Ion PI Hi-Q Sequencing 200 Kit (Life Technologies, Cat# 4488651, Waltham, MA,
USA) and the Ion PI Chip Kit v3 (Life Technologies, Cat# A26770, Waltham, MA, USA)
according to the manufacturer’s instructions. Briefly, the prepared DNA was loaded in Ion
Torrent semiconductor chips and loaded into the Ion Torrent PGM machine.

2.6. Variant Filtration

The reads of the Ion Torrent sequencing machine (Life Technologies, Waltham, MA,
USA) were aligned to the hg19 reference genome through the tMap program. The aligned
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reads were investigated for variant calling through the Torrent Suite Variant Caller TVC
program. The variants were annotated by using public and in-house databases and the
Saudi Human Genome program

2.7. In Silico Analysis

Multiple in silico algorithm software programs were used to determine the structural
function and to evaluate the pathogenic effect and the impact of the specific mutation
on the biological processes of the protein, such as Mutation taster [32], Polyphen-2.0 [33],
SIFT [34], and PROVEAN [35].

Polymorphism Phenotyping v2 (PolyPhen-) was used as a tool to predict the possible
impact of an amino acid substitution on the structure and function of the reported protein
using straightforward physical and comparative considerations (http://genetics.bwh.
harvard.edu/pph2/ (accessed on 18 January 2022)

2.8. Bioinformatics

The mapping of the mutations to protein domains was performed manually using
the NCBI Nucleotide database and UNIPROT (https://www.uniprot.org (accessed on
18 January 2022)). The protein–protein interaction analysis was performed using the
STRING database (https://string-db.org (accessed on 18 January 2022)) and Cytoscape
(https://cytoscape.org (accessed on 18 January 2022)) for data retrieval and merging, respec-
tively. The gene ontology [36,37] and KEGG (https://www.genome.jp/kegg/pathway.html
(accessed on 18 January 2022)) pathway analyses were performed using STRING enrich-
ment. All networks retrieved from STRING in this work had a confidence score of 0.4 and
included all types of evidence available in the database.

2.9. Statistical Analysis

Statistical analysis was conducted via SPSS version 22.0 statistical package software
(SPSS, Chicago, IL, USA). All probability values (p-values) below 0.05 were considered
statistically significant. The ORs and 95% CIs were calculated using the chi-squared test to
study the comparison of genetic variations.

3. Results
3.1. Basic Clinical Characteristics and Genetic Analysis of the Studied Subjects

In this study, 11 patients clinically diagnosed with ADPKD and CKD were selected
from the King Faisal Specialist Hospital and Research Center from 2002 to 2019 to participate
in this work.

As shown in Table 1, patients’ ages were distributed among young and middle-
aged categories (18–46 years old), which included four females and seven males. All
patients presented with different stages of CKD and abnormally low eGFR values and
were diagnosed with the presence of other kidney disorders. Hypertension was detected in
63.6% (7/11) of the participants. Positive family history was detected in all participants
except one patient (90.90%). We excluded from the study all patients with syndromic causes
of multiple renal cysts, such as von Hippel–Lindau disease, tuberous sclerosis, and familial
polythelia with multiple renal cysts. Furthermore, the family history including affected
and carrier family members with ADPKD is presented in the familial pedigree for each
patient (Figure 1).

http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
https://www.uniprot.org
https://string-db.org
https://cytoscape.org
https://www.genome.jp/kegg/pathway.html
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Figure 1. Familial pedigree of the subjects. Three-generation pedigrees for 11 patients diagnosed
with ADPKD (P1–11). Affected individuals are indicated by black; index cases are characterized by a
black arrow, square (male), and circle (female). Pedigree Chart Designer was used for this figure.
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3.2. Mutations Identified in Patients with ADPKD

To characterize the genetic alteration that might be engaged in the pathogenesis of
ADPKD in the selected individuals, we used NGS technology on the extracted DNAs.
Among eleven cases, five missense mutations (45.45%) were identified in the PKD1 gene.
Three out of these five mutations were identified in exon15: c.4264G > A: p.A1422T, in-
cluding the following patients P2, P8, and P11. In the following patients, the other two
mutations were detected in exon9: c.1758A > C: p.E586D and exon29: c.9774T > G: p.F3258L,
P4 and P9, respectively. One missense mutation (9.09%) in the PKD1L2 gene was identified
in exon2: c.404C > T: p.P135L in P5, and another missense mutation (9.09%) in the PKD2L2
gene was identified in exon9: c.1364A > T: p.N455I in P6. Additionally, one missense
mutation (9.09%) in the PKD2 gene was identified in exon6: c.1445T > G: p.F482C in the
third patient (P3). The first patient showed one non-frame-shift substitution in the PKD1L1
gene in exon 24: c.3813_3814delinsTG. In the seventh patient, we detected exonic alteration
in exon 39: c.5038C > T: p.R1680C in the TSC2 gene. The last patient (P10) shows no
genetic abnormalities or positive family history (Tables 1 and 2). To further determine the
contribution of the identified mutations to the development and predisposition to ADPKD,
we used the predictable bioinformatics tools, including Mutation taster, Polyphen-2.0, SIFT,
and PROVEAN, to estimate the pathogenicity score for each detected genetic alteration.
The pathogenic effects were observed when the mutation variants happened in the PKD1
gene involving exons 9 and 29, PKD2 gene in exon3, PKD2L2 in exon9, and TSC2 gene in
exon39 (showed likely pathogenicity). To provide insight into the impact of these identified
mutations on the proteins’ stability and functions, we manually mapped each genetic
mutation to its corresponding protein using the NCBI Nucleotide database and UNIPROT
software. Our analyses revealed that two PKD1 gene mutations did not localize within
any of its known protein domains or post-translational modification (PTM) sites; these
mutations were detected in exon9: c.1758A > C: p.E586D and exon29: c.9774T > G: p.F3258L.
On the other hand, we found that the third mutation of the PDK1 gene (exon15: c.4264G
> A: p.A1422T) is located within the PKD9 domain of PC-1 protein. Furthermore, the
missense mutations of PKD1L2 and PKD2L2 genes located on exon2: c.404C > T: p.P135L
and exon9: c.1364A > T: p.N455I were found to be positioned within two different motifs of
PC-1 protein: the C-type lectin domain and the receptor for egg jelly (REJ), respectively.
The missense mutation of the PKD2 gene (exon6: c.1445T > G: p.F482C) was not placed on
any known protein domains of PTM sites of that protein. Finally, the mutation (exon39:
c.5038C > T: p.R1680C) in the TSC2 gene was localized within its Rap-GAP domain.

3.3. Bioinformatics Analysis and Data Mining Highlight Potential Proteins Interactions between
PKD1 and TSC2 via BRSK2

To investigate potential interactions between the different proteins possessing the
identified mutations that might eventually contribute to the pathogenesis of ADPKD,
the protein–protein interaction (PPI) network for each of the targets (PKD1, PKD2, TSC2,
and PKD1L2) was retrieved from the STRING database. As shown in Figure 2A, a map
composed of four different proteins (PKD1, TSC1, TSC2, and BRSK2) resulted from merging
various PPI networks. Each protein represents a common intersecting point of these
merging networks. To gain further insight into the different biological activities of these
four proteins, we expanded the PPI network of the four proteins to include 50 more
interactions with medium interaction confidence scores of 0.4. Next, we applied gene
ontology (GO) and KEGG pathway enrichment analyses for the entire network (Figure 2B).
Most top nodes were influenced by TSC1, TSC2, and PKD1, while BRSK2 was found among
significant nodes but at a lower ranking. To further elucidate the contribution of BRSK2, a
subnetwork from Figure 2B was created by selecting the first neighbors of BRSK2, including
TSC2, PKD1, TSC1, FBXW5, EIF4EBP1, STK11, and YWHAB (Figure 3) for assessment by
GO and KEGG pathway analyses. The generated map revealed similar interacting nodes
to that one obtained in the primary network (Figure 2B). Yet, the new network showed
different arrangements of the nodes based on significance, such as the PI3K and AMPK
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signaling pathways. Next, we aimed to explore the potential role of BRSK2 in ADPKD
pathogenesis. Therefore, a search process on PubMed was conducted, where BRSK2 has
searched along with different terminologies such as ADPKD, ARPKD, PKD, Cyst, and
kidney. Interestingly, searching BRSK2 against mTOR yielded several hits describing
the involvement of the BRSK2 protein and TSC2 in the regulation of mTOR signaling in
different contexts, including cancer cell survival and development [38]. Moreover, the
PI3K/AKT/mTOR pathway was reported to encourage the growth of renal cysts and
increase their size and proliferation [39].

Table 2. The mutations identified in all patients diagnosed with ADPKD. Table contains the mutated
genes, mutations on the cDNA level and protein level, type of mutation, and exome. It also provides
information about the zygosity and pathogenicity.

Patients Gene cDNA Change Protein
Change

Mutation
Type

Exome
No. Zygosity Pathogenicity SNP ID

P1 PKD1L1 c.3813_3814delinsTG Non-frameshift
substitution 24 Hetero

Uncertain
signifi-
cance

P2 PKD1 c.4264G > A p.A1422T Missense Variant 15 Hetero
Uncertain

signifi-
cance

rs140980374

P3 PKD2 c.1445T > G p.F482C Missense Variant 6 Homo Pathogenic rs75762896
P4 PKD1 c.1758A > C p.E586D Missense Variant 9 Hetero Pathogenic

P5 PKD1L2 c.404C > T p.P135L Missense Variant 2 Hetero
Uncertain

signifi-
cance

rs201455881

P6 PKD2L2 c.1364A > T p.N455I Missense Variant 9 Hetero
Uncertain

signifi-
cance

P7 TSC2 c.5038C > T p.R1680C N/A 39 Exonic Likely
pathogenic rs45517423

P8 PKD1 c.4264G > A p.A1422T Missense Variant 15 Homo
Uncertain

signifi-
cance

rs140980374

P9 PKD1 c.9774T > G p.F3258L Missense Variant 29 Hetero Pathogenic N/A
P10 None N/A N/A N/A N/A N/A N/A N/A

P11 PKD1 c.4264G > A p.A1422T Missense Variant 15 Hetero
Uncertain

signifi-
cance

rs140980374

3.4. Mutation and Allele: Frequency

For the missense SNP (rs140980374), G/A/Ancestral: G|MAF: < 0.01 (A), highest
population MAF: < 0.01. For the missense variant in SNP (rs201455881), The 1000 Genomes
Project Phase 3 allele frequencies showed allele frequencies of G: 0.9998 and A: 0.0001. The
genotype frequency is G/G: 0.9996 and A/G: 0.00039 in all populations.
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4. Discussion
4.1. Identification of Novel Variants with a Potential Contribution to the Evolution and
Pathogenesis of ADPKD in Saudi Patients

ADPKD accounts for the most common genetic kidney diseases worldwide and is
considered a significant health concern and clinical challenge [2,6]. Among the Saudi
population, ADPKD is one of the main hereditary medical conditions due to the high
level of consanguineous marriages, a suitable setting that encourages the transmission
of inherited disorders [21,22]. Furthermore, the incidence of novel mutations that might
contribute to the early onset of an aggressive form of ADPKD was also reported to be
frequent among the Saudi population [24–26,40]. We previously identified several variants
that are associated with diseases in the Saudi population [41–45]

Therefore, in the current work, we aimed to expand our knowledge and further
understand the genetic background engaged in ADPKD evolution, pathogenesis, and
progression, thus facilitating the insinuation of appropriate, timely management. To achieve
this goal, we used NGS technology to screen the whole-exome variants of 11 clinically
diagnosed ADPKD patients belonging to different Saudi families. Our analysis revealed
that most of the obtained mutations in the selected patients were detected in PKD1 or
PKD2 genes (54.54%), in agreement with the previous Saudi reports indicating that most
individuals with ADPKD (89.1%) had mutations in the PKD1 or PKD2 genes [25,26,41].
Moreover, our results also showed that patients who harbor either PKD1 or PKD2 gene
mutations showed an earlier age of diagnosis (18–37 years) with a median of 28 years,
suggesting the substantial involvement of positive family history in the occurrence of the
disease [46,47]. Additionally, 50% of the studied PKD1/PKD2 affected individuals reached
a high disease grade (G4/5) or end-stage renal disease (ESRD).
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Several reports have shown that the detection of various types of mutations in PKD1
and PKD2 genes was associated with rapidly progressive disease and early onset of renal
dialysis, eventually yielding ESRD [48–53]. Moreover, individuals with PKD1 mutation
developed ESRD at a median age of 58, while PKD2 mutation patients showed better
prognosis and delayed onset of ESRD at around 80 years [54,55]. Interestingly, our finding
documented three novel mutations in the following genes PKD1, PKD2L2, and TSC2 of the
Saudi ADPKD patients.

The first novel missense variant was detected in patient P4 at position p.E586D of the
PKD1 protein, and it was predicted by SIFT and PolyPhen programs, with pathogenic effects
on the structure and function of the protein. The second novel missense variant was located
at position p.N455I of the PKD2L2 protein in patient P6. Its pathogenic effect was estimated
to be of uncertain significance using SIFT and PolyPhen programs. It was found that protein
variants occurring at promoter regions or the 3’UTR could affect gene splicing, transcription
factor binding, or interfere with microRNA binding sites, which could produce an abnormal
amount of protein [56]. Here, we also documented a third novel variant residing at the
3’UTR of the TSC2 gene in patient P7 at the position of 2138671–2138672 on chromosome
16, which corresponds to the protein site p.R1680C, which resulted in amino acid deletion
and showed likely pathogenetic effects. TSC2, the tuberous sclerosis complex, the most
common gene for an autosomal dominant genetic disease, is featured by the formation
of benign tumors (hamartomas) in different organs [57]. Tuberous sclerosis manifests in
the presence of CNS/mental, psychological, and skin manifestations and frequent renal
cysts [58,59]. TSC2 and PKD1 genes were demonstrated to lie adjacent at chromosome
16p13.3, highlighting a shared cross-talk by both genes [58]. High-throughput genetic tools
allowed the discovery of a broad range of mutations in TSC1 or TSC2 genes [59]. A study
found that large mutational deletion of the TSC2 gene is correlated with the development
of early-onset polycystic kidney disease in which the adjacent PKD1 gene was also affected
by this deletion [60]. Likewise, Consugar et al. reported that large genomic deletions
could also cause PDK1/TSC2 contiguous gene deletion syndrome that is characterized by
the presence of various degrees of cystic kidney with early onset of ESRD, hypertension,
neurological, behavioral, facial, and skin abnormalities [57,61,62]. Additionally, individuals
with a severe and early diagnosed form of the renal cystic disease were also found to
display TSC2 gene mutation [58].

4.2. Potential Damaging Impacts of the Detected Mutations on the Protein Structure and Function

To further broaden our understanding of the detrimental influences of the identified
mutations on the protein functional efficiency, we calculated the pathogenicity score and
then elucidated the positions at which these different mutations are situated within each
protein. Five patients with PKD1 gene mutations were identified; three of them (P2, P8,
and P11) display a missense variant (exon15: c.4264G > A: p.A1422T) in which the alanine
(a very small hydrophobic) is replaced by threonine (a small neural amino acid). This
missense variant (exon15: c.4264G > A: p.A1422T) showed an uncertain pathogenic effect
and was estimated to locate within the PKD9 domain of the PC-1 protein. PKD1 gene
encodes polycystin-1 (PC-1), a large cell surface glycoprotein. A 16-PKD-repeat region
(or Ig-like domain) was identified within the extracellular region of the PC-1 protein [63].
The PKD domain showed a ligand binding motif for potential regulation of extracellular
signaling involved in protein–protein and protein–carbohydrate interactions and cellular
adhesive process [64,65]. Indeed, antibody targeting of the PKD domain in an in vitro
model interfered with cellular interactions, thus suggesting that maintaining an intact PKD
domain is an important step in preventing cystic generation in ADPKD [66].

The other two patients, P4 and P9, showed missense mutations in exon9: c.1758A > C:
p.E586D and exon29: c.9774T > G: p.F3258L, respectively. In the first mutation c.1758A > C:
p.E586D, the glutamic acid (medium, hydrophilic, and negatively charged) is replaced by
aspartic acid (small, hydrophilic, negatively charged). In the second mutation, c.9774T > G:
p.F3258L, the phenylalanine (very large, hydrophobic) is replaced by leucine (large, hy-
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drophobic). These two variants were calculated to possess a pathogenic impact on protein
function, yet they were not situated at any predetermined domain or PTM site of the protein.
Along with this, the missense mutation of the PKD2 gene (exon6: c.1445T > G: p.F482C) re-
vealed the same findings, and this mutation was also not found to be located on any known
protein domains of PTM sites. The physiological roles of ADPKD proteins, PC-1, and PC-2,
are regulated by several PTM processes, including phosphorylation, glycosylation, and
proteolytic cleavage [67].

Our results also revealed the uncertain pathogenic significance of both mutations
of PKD1L2 and PKD2L2 (exon2: c.404C > T: p.P135L and exon9: c.1364A > T: p.N455I).
In the mutation of exon2 c.404C > T: p.P135L, the proline (small neutral) is replaced by
leucine (large, hydrophobic), and in exon9: c.1364A > T: p.N455I, the asparagine (small,
hydrophilic) is replaced by isoleucine (large and hydrophobic). These variants were found
to be positioned within two distinct protein domains, the C-type lectin and REJ domains
of PC-1 protein on its ECD, respectively. Additionally, C-type lectins were found to
modulate cell–cell adhesions and various immunological responses to conduct intracellular
signaling [68,69]. The C-type lectin domain, through an auto-proteolytic process, can be
fragmented from the PC-1 protein and cell membrane to act as secreted ligand to activate
the polycystine channels in the cilia and plasma membrane [70]. Thus, the mutation of
PKD1L2 (exon2: c.404C > T: p.P135L) at the C-type lectin domain could affect this motif’s
function and consequently contribute to the disease development. Numerous mutations,
including missense mutations, have been identified in this motif, with the majority of
these variants predicted to deliver detrimental consequences [71]. Variants, including
the REJ region, disrupt the cleavage ability and block the activation of the JAK-STAT
pathway by PC-1 protein and inhibit tubular formation, a cardinal feature of PC-1. Indeed,
an in vitro model of transfected cells with the mutated REJ domain produced spherical
cyst-like structures, thus highlighting the substantial involvement of this motif in ADPKD
pathogenesis [72]. Together, these results indicate the indispensable role of PC-1 protein
in preserving functional kidneys and that its N-terminal domain (ECD) is a hotspot for
various mutations that engaged in ADPKD development.

The TSC1 C-domain interacts with the TSC2 N-domain to generate the TSC complex
with a gene product of hamartin and tuberin, respectively [73]. Interestingly, PC-1 protein
was also found through its cytoplasmic C-terminal to inhibit mTOR activity by direct inter-
action with TCS2 and altering its cellular localization, thus preventing TSC2 inactivation
by AKT phosphorylation. Additionally, PC-1/C-domain enhances the interaction of TSC2
with its partner TSC1 which further suppresses the mTOR cascade [74]. Immunohisto-
chemistry studies showed low expression of tuberin (TSC2) in angiomyolipoma, which
contains activated mTOR signals, compared to healthy kidneys, authenticating the sup-
pression role of TSC2 on mTOR activity [75]. Additionally, compelling evidence has shown
that the overactivation of mTOR signaling encourages cyst growth and proliferation in
PKD [40] and that epithelial cells of cystic kidneys in ADPKD express elevated levels of
mTOR activity [76]. Rapamycin, an mTOR inhibitor, showed promising results in reducing
kidney volume by up to 25% in ADPKD patients [77]. Likewise, dual blocking of mTOR
using NVP-BEZ235 treatment resulted in normalizing renal function and morphology in
ADPKD animal models [78]. The mutation described in the current study of the TSC2
gene (exon39: c.5038C > T: p.R1680C) was estimated to be placed within TSC2/RAP-GAP
domain and was predicted to show a potential pathogenic effect. This variant potentially
plays a significant role alongside other mutations in the pathogenesis and progression of
ADPKD disease.

4.3. Prediction of Protein–Protein Interactions Demonstrated a Common Pathogenic Pathway

Our attempts to understand the impact of the different mutations on the functions and
interactions of proteins have revealed some interesting potential targets, one of which is
the brain-specific serine/threonine-protein kinase BRSK2 of the AMPK family. This protein
is not heavily studied, and existing studies have linked BRSK2 protein to neuron devel-
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opment; insulin secretion; and other biological processes such as apoptosis, cytoskeletal
remodeling, and mTOR signaling [79–81]. The GO and KEGG pathway analysis of the first
network, as revealed in Figure 4A, highlighted several significant findings that provided
us with confidence in the notion that mTOR is a common pathway shared by PKD1, PKD2,
TSC2, and BRSK2. Indeed, overactivation of the PI3K/Akt/mTOR pathway was found to
encourage hyperproliferation in cancer and kidney cysts [40]. Furthermore, the GO and
KEGG pathway results associated with the subnetwork focused on BRSK2 displayed the
mTOR pathway as the most significant player, followed by some interesting findings such
as autophagy, PI3K pathway, and cell cycle (Figure 4B). These findings suggest that mTOR
and possibly other metabolic pathways, including PI3K and AMPK, as well as autophagy,
may play an essential role in the disease pathogenesis and progression. Therefore, the
newly recognized mutations in this work could tip the balance of these different cellular ac-
tivities. The evidence used in STRING linking BRSK2 to TSC2 and PKD1 was based on text
mining or co-expression; however, we conducted a text mining search using terminologies
that are related to our work. Indeed, physical interactions between the examined proteins
remain to be demonstrated in protein–protein interaction (PPI) studies [82]. Yet, following
a similar strategy, we were able to obtain several encouraging data indicating BRSK2 is
involved in the TOR pathway. Consequently, we hypothesized that the proteins TSC2,
PKD1, and BRSK2 could be involved in the regulation of the mTOR pathway. Nevertheless,
the extent to which this interaction is significant in the context of ADPKD pathogenesis
or progression requires further experimental validation. Limitations of this study include
the small sample size used and that protein biochemistry studies were not conducted.
This study, along with other reports, is another authentication of ADPKD severity and
incompatibility with life when both alleles of the PKD gene are affected [25]. The reported
mutations were pathogenic and considered a causative mutation for the diseases.
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5. Conclusions

Places that are known for high consanguineous marriage rates deliver unique popula-
tions for investigating genetically transmitted diseases, particularly autosomal recessive
transmission. Herein, exome sequencing of DNA obtained from Saudi patients who pre-
sented with typical ADPKD revealed that mutations in PKD1 and PKD2 are the most
common cause of typical ADPKD in this population. These patients displayed positive
family history, early onset, and aggressive form of the disease. We also demonstrated
other variants that presented with variable levels of disease severity. Patients with a
positive family history of ADPKD might eventually receive substantial benefits from the
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advances in genetic screening tools to detect early-onset disease and overcome unpleasant
consequences. Moreover, establishing early disease biomarkers that usually associate with
an aggressive course can answer unresolved questions related to disease pathogenesis,
prognosis, and therapeutic modalities. Genetic testing for ADPKD can improve diagnostic
precision and prognosis as well as support family planning and genetic counseling. Further
PPI and protein biochemistry studies to investigate the influence of these mutations on the
PKD1 and PKD2 functions are required. In addition, large-scale population-based studies
to verify these findings are recommended.
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