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Abstract

Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing 

millions of global deaths each year. To alleviate this burden, improved prognostication 

and biomarkers of response are urgently needed. We investigated the use of whole blood 

transcriptomics for stratification of patients with severe infection by integrating data from 3,149 

samples from patients with sepsis due to community-acquired pneumonia or fecal peritonitis 

admitted to intensive care and healthy individuals into a gene expression reference map. We used 

this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune 

dysfunction and predictive of clinical outcomes, which can be estimated using a 7- or a 12-gene 

signature. Last, we built a machine learning framework, SepstratifieR, to deploy SRSq in adult 

and pediatric bacterial and viral sepsis, H1N1 influenza, and COVID-19, demonstrating clinically 

relevant stratification across diseases and revealing some of the physiological alterations linking 
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immune dysregulation to mortality. Our method enables early identification of individuals with 

dysfunctional immune profiles, bringing us closer to precision medicine in infection.

Introduction

Infectious diseases result in considerable global morbidity and mortality (1), and can put 

individuals at risk of critical illness. In extreme cases, this leads to sepsis, a dysregulated 

host response characterized by major organ dysfunction which accounts for 11 million 

yearly deaths (2, 3). Timely identification of dysfunctional patient profiles which are 

amenable to interventions is therefore fundamental.

High-throughput technologies can be used to stratify individuals by molecular characteristics 

(4). In sepsis, patient subphenotypes (subgroups) have been described using whole blood 

gene expression (5–9) or clinical variables (10) in both adult and pediatric populations 

(11–13). However, the pathophysiological mechanisms underlying these subgroups remain 

unresolved. We previously described two sepsis response signature (SRS) groups (5): 

SRS1, an immunocompromised profile showing increased risk of death, and SRS2, an 

immunocompetent profile with reduced mortality, which may be harmed by corticosteroid 

treatment (14). However, similar developments are lacking for the wider population of 

patients with infection who do not fulfill sepsis criteria. Moreover, it is unclear how such 

information can be used to stratify patients at point-of-care.

We developed SepstratifieR, a machine learning framework which addresses these 

limitations. SepstratifieR was trained on data from patients with sepsis and healthy 

individuals encompassing three technological platforms, making it a flexible framework 

which is robust to technological differences and amenable to point-of-care testing.

SepstratifieR achieves personalized risk prediction by deriving a score reflective of each 

patient’s extent of immune dysfunction. We show that this score accurately models disease 

heterogeneity and advances outcome prediction, demonstrating applicability in bacterial and 

viral sepsis, influenza, and COVID-19.

Results

A cross-platform transcriptional map of the host response in sepsis

We previously described SRS patient subgroups identified from unsupervised hierarchical 

clustering of global gene expression of peripheral blood leucocytes using microarrays (5–8). 

However, it is unclear whether they generalize to sequencing-based assays. Thus, we asked 

if SRS groups were detectable using RNA-seq by leveraging data from 134 patients from 

the UK Genomic Advances in Sepsis (GAinS) study with both microarray and RNA-seq 

measurements available for the total leukocyte population from whole blood samples. We 

used canonical correlation analysis (CCA) to create a joint representation of both assays. 

CCA identifies linear combinations of variables (canonical dimensions) that maximize the 

correlation between two data sets, represented as shared axes of variation. Using SRS 

assignment known from our previous studies (5, 6), we demonstrated that the first canonical 
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dimension (CC1) separated SRS1 from SRS2 patients (Fig. 1A), indicating that SRS groups 

are identifiable using RNA-seq.

We previously proposed a 7-gene signature predictive of SRS (5, 6). We now asked whether 

this signature performed well using RNA-seq data by assessing the contribution of these 

genes to CC1 (Fig. 1B). We observed non-zero contributions for 6 out of 7 genes (Fig. 

1C), demonstrating this signature was applicable to both microarray and RNA-seq data. 

To assess if the signature was also compatible with rapid turn-around methods, we used 

quantitative reverse transcription polymerase chain reaction (qRT-PCR) to profile these 

genes in 115 patients with either microarray or RNA-seq measurements available (Table S1). 

We observed a significant agreement between methods (P ≤ 0.001 for all tested genes, Fig. 

1D), suggesting that our signature might be used for qRT-PCR-based point-of-care testing.

A limitation of this signature is its bias towards SRS2-associated genes. Including more 

genes could make predictions more resilient. Therefore, we combined this signature with 

12 additional genes we identified as ranked amongst the top 1% with highest CC1 

contribution (Fig. 1C). This resulted in a 19-gene signature, with all additional genes 

showing comparable expression to the original gene set (Fig. S1A). We refer to the 7-gene 

set as the Davenport signature and to the 19-gene set as the Extended signature.

We next compiled data from 1,044 GAinS patients (corresponding to 1,655 whole blood 

samples) in which total leukocyte gene expression was profiled with up to three platforms, 

and integrated them based on these signatures, generating cross-technology maps of gene 

expression in sepsis. To make maps representative of a wider patient population, we also 

included healthy individuals from three cohorts (Table S1). Integration was performed using 

a method borrowed from single-cell omics that matched samples in one batch to their 

nearest neighbors in other batches (15). This resulted in two reference maps: the Davenport 

map, containing 3,264 samples (1,655 sepsis and 1,609 healthy) and seven genes; and the 

Extended map, containing 3,149 samples (1,540 sepsis and 1,609 healthy) and 19 genes. 

Samples in both reference maps clustered by SRS rather than technology, with the main axis 

of variation showing separation between the healthy volunteer, SRS1, and SRS2 groups (Fig. 

1E). Thus, our reference maps capture a wide spectrum of transcriptional variation spanning 

health and critical illness.

A classifier model for stratification of patients with sepsis

We next built models for SRS prediction by splitting our reference maps into training 

(n=909) and test (n=2,355) sets, and training random forest classifiers. Training sets were 

designed to contain all patient samples taken at ICU admission for which SRS membership 

was known (n=639), as well as 270 randomly selected healthy volunteer samples. All 

remaining samples were allocated to the test set. Healthy volunteers were used to define 

an additional SRS3 group, designed to capture individuals in the low severity/recovery 

spectrum (that is, transcriptionally closer to health). Cross-validation revealed high accuracy 

across all SRS groups (AUROCs > 0.97; Fig. 2A), which was confirmed in the test set based 

on comparisons with previously proposed SRS labels for these samples (5, 6) (accuracy 

= 0.92 and 0.95 for the Davenport and extended signatures, respectively). Both signatures 

reached a consensus for the majority of samples (97% and 84% agreement in microarray 
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and RNA-seq, respectively; Fig. S1B), with predictions being consistent across technologies 

and most samples being assigned to the same SRS group regardless of the profiling method 

used (Fig. 2B). Thus, our models enable high classification accuracy and cross-technology 

applicability.

Nonetheless, there are no gold standard SRS labels for these patients, which makes 

accuracy estimation challenging. Consequently, we further validated these results by 

testing for differences in biological pathway activity and clinical outcomes. We observed 

upregulation of neutrophil genes (MMP8, GPR84, and CD177) and downregulation of T cell 

genes (CD27, CD6, CCR3; Fig. 2C-D) in SRS1, with the top SRS1-associated pathways 

being Toll-like receptor (TLR) signaling, cytokine production, and glycolysis. In contrast, 

SRS2 was associated with T cell receptor (TCR) engagement, CD28-costimulation, and 

IFNγ signaling (Fig. S2A). This was supported by decreased lymphocyte and increased 

polymorphonuclear cell counts in SRS1 (Fig. 2E). Clinically, SRS1 patients showed higher 

Sequential Organ Failure Assessment (SOFA) scores, indicative of more severe organ 

dysfunction in both the microarray and the RNA-seq group (Fig. 2F), as well as increased 

Acute Physiology and Chronic Health Evaluation (APACHE) II scores in the RNA-seq 

cohort (Fig. S2B). Survival analysis revealed that, despite the microarray cohort being 

enriched for non-survivors, SRS1 patients were at an increased risk of death in both cohorts 

(33% vs 20% mortality, and 16% vs 9% mortality in microarray and RNA-seq, respectively) 

(Fig. 2G). This demonstrates that our models can successfully predict poor outcome risk.

A quantitative score reflective of immune dysfunction

Sepsis encompasses a spectrum of illnesses with varying severities (16, 17), raising the 

possibility of treating patients as a continuum. Therefore, we used diffusion maps to 

order the samples in our reference sets into a progression. This separated samples into 

a continuum which started at SRS3 and gradually transitioned towards SRS2 and SRS1, 

independently of the technology used for sample profiling (Fig. 3A and Fig. S3A). We 

used the first diffusion component to derive a quantitative metric reflective of the position 

of individuals along this continuum, which we refer to as the quantitative sepsis response 
signature score (SRSq). SRSq is bound between 0 and 1, with lower values indicating a 

patient is transcriptionally closer to health and higher values indicating similarity to the 

most severe form of sepsis (Fig. 3B). SRSq scores derived using both gene signatures 

were highly correlated (Pearson correlation = 0.84; P < 2.2e-16). However, the extended 

signature achieved better separation of patients from controls (Fig. S3B). This suggests that 

the transcriptomic host response to infection can be modeled as a continuum. Last, to make 

its calculation more straightforward, we built machine learning models to predict SRSq. We 

subdivided samples into training and test sets (as defined above) and trained random forest 

prediction models. Model performance was high in both cross-validation and the test set 

(RMSE = 0.028; Fig. S3C).

We next investigated the molecular and clinical changes underlying SRSq. Both gene 

expression (Fig. S3D-E) and cell counts (Fig. S3F) changed along SRSq. Although both 

SRS and SRSq captured similar gene expression programs (Fig. S3E), our analysis identified 

4,121 additional SRSq-associated genes which were not significantly different between SRS 
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groups at the significance threshold of fold-change > 1.5 and FDR < 0.05 (Fig. S3E). 

This doubled the associated gene set, demonstrating the power of modeling disease as 

a continuum. From a clinical standpoint, SRSq was significantly associated with 28-day 

mortality (Fig. 3C; log-rank test P < 0.001 and P = 0.016 for the microarray and the 

RNA-seq cohort, respectively). A 0.1-unit increase in SRSq was found to decrease patient 

survival by approximately as much as if the patient were a decade older (HR = 2 and 1.6 in 

microarray and RNA-seq, respectively). This was true even when accounting for age, source 

of sepsis, and the lymphoid-to-myeloid cell count ratios (Fig. 3D), suggesting that SRSq 

goes beyond differences in cellular composition and demographic risk factors. Additionally, 

SRSq associated with the severity of secondary ICU-acquired infections (Fig. 3E and Table 

S2). This illustrates the value of SRSq in risk estimation.

We previously reported that patients can change SRS group over time (6). Therefore, 

we leveraged SRSq to study changes in immune risk over time in 177 patients profiled 

repeatedly at up to three time points (1st, 3rd, or 5th day in ICU). Of these patients, 80% 

showed a decrease in SRSq over time, suggesting that this variable captures processes 

occurring during acute illness. When ranked by the magnitude of SRSq change, patients 

with the largest decreases in SRSq showed the lowest mortality rates. In contrast, patients 

with negligible or no SRSq decrease were at a significantly increased risk of death (Fig. 

3F). This demonstrates that SRSq is a suitable metric for monitoring illness progression over 

time.

Last, we investigated the processes linking immune dysfunction and death. Mediation 

analysis is a statistical tool which tests the compatibility of a hypothesis with existing data 

by simulating how the response variable would change if other variables were altered one at 

a time (18, 19). This is roughly equivalent to a computational randomized experiment. We 

used mediation analysis to test a model where SRSq influences organ dysfunction (SOFA), 

in turn increasing mortality (Fig. S3G). This enabled us to estimate both direct effects (the 

expected increase in mortality if SRSq were artificially increased, but SOFA were held 

constant), and mediation effects (the expected increase in mortality if SOFA were artificially 

increased, but SRSq were kept constant). This analysis confirmed that the effect of SRSq 

on mortality was mediated by organ dysfunction (Fig. S3H). We next assessed the role of 

individual organ dysfunctions by performing mediation analysis on all clinical variables that 

contribute to SOFA. The effect of SRSq on death was mediated by alterations in arterial 

pressure, coagulation, and renal function (Fig. 3H-I). In contrast, we found no evidence 

of liver or lung dysfunction mediating this effect (Fig. 3I and Fig. S3I), despite the large 

proportion of patients with pneumonia in our cohort. This suggests that, in patients with 

already severe respiratory infection, systemic consequences of maladaptive inflammation 

have a larger influence in mortality than lung dysfunction.

SepstratifieR: a machine learning framework for patient stratification

To make patient stratification accessible, we collected the models described above into 

an algorithmic framework called SepstratifieR, which extracts the expression values of 

signature genes, aligns samples to our sepsis reference maps, and predicts SRS and SRSq 

using random forest models (Fig. 4). This can be achieved using a single line of code 
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(https://github.com/jknightlab/SepstratifieR). We assessed the stability of this algorithm at 

different sample sizes by testing it in subsets of patients from an independent cohort 

(20). SepstratifieR remained accurate at sample sizes as low as 20, but became unreliable 

below this point (Fig. S4A-B). To circumvent this, we devised an alternative method for 

situations when as little as one sample is available, as is the case in clinical settings. This 

approach relies on kNN-based classification, making it possible to infer SRS/SRSq for each 

sample independently while retaining cross-technology applicability (Fig. S4C). Although 

predictive accuracy was reduced for this approach, we observed overall agreement between 

predictions derived from both methods (Fig. S4D-E). In particular, samples at the extremes 

of the SRS continuum were reliably identified by both algorithms. Therefore, we included 

this approach as a secondary function in SepstratifieR. For clarity, we use ‘SepstratfieR 

predictions’ to refer exclusively to results from random forest models throughout this study.

We applied SepstratifieR to two additional sepsis cohorts (Table S1). Analysis of data 

from (21) revealed a clear separation between patients and controls, with patients with 

sepsis segregating into survivor and non-survivor groups (Fig. S5A). These groups matched 

SepstratifieR’s predictions, with 77% of SRS2 patients surviving, compared to 42% of 

SRS1 patients. Accordingly, 82% of the SRS3 group were healthy volunteers (Fig. S5B). 

SRSq was also significantly associated with illness severity and mortality (Fig. S5C; P < 

2.2e-16), and SRSq-associated genes observed in GAinS were recapitulated in this cohort 

(Fig. S5D-F). In particular, high SRSq associated with upregulation of innate immune 

pathways and downregulation of T cell pathways (Fig. S5G), which was supported by a 

correlation between SRSq and neutrophil proportions (Fig. S5H). An important feature of 

this cohort was the availability of temporal information, which enabled us to study changes 

in SRSq. Whereas SRSq remained constant in healthy individuals, it decreased over time in 

sepsis (Fig. S5I), particularly so in survivors (p value = 0.0032). Thus, monitoring temporal 

changes in SRSq could help distinguish patient trajectories.

We then applied SepstratifieR to the Molecular Diagnosis and Risk of Sepsis (MARS) study 

(7). Four patient clusters have been previously described in this cohort, of which patients 

in the Mars1 group exhibited higher mortality (7). Mars1 patients separated along the first 

principal component, whereas SRS1 and 2 groups separated along the second component 

(Fig. S6A). We observed an overlap between SRS2 and Mars3, as well as an enrichment 

of Mars2 patients within SRS1. In contrast, 84% of the SRS3 group consisted of healthy 

volunteers (Fig. S6B). The Mars1 endotype did not correspond to any SRS group, and 

is thus likely an orthogonal axis of variation. Gene expression differences were highly 

correlated between studies (Pearson correlation = 0.83), with a similar set of differentially 

active pathways (Fig. S6C-D). At the clinical level, we did not observe any mortality 

differences between SRS groups (Fig. S6E). Although this was surprising, 28-day mortality 

is not always the most relevant outcome measure in critical illness, as it is influenced by 

factors unrelated to acute illness (for example comorbidities and healthcare settings), and 

fails to measure quality of life variables in each patient (22). The duration and severity 

of organ dysfunction are more informative in this regard, and SRS robustly separated 

MARS patients by organ dysfunction risk, with SRS1 patients characterized by elevated 

rates of shock (Fig. S6F), higher frequency of acute kidney injury (Fig. S6G) and increased 

cardiovascular instability (Fig. S6H). Moreover, SRSq also correlated with SOFA (Fig. S6I). 
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These observations suggest that SRS is associated with increased risk of organ dysfunction 

in the MARS cohort.

Last, we asked why SRS failed to predict mortality in this cohort. We identified two 

potential causes. First, this could be due to the Marsl signal, which is independent of 

SRS. We reasoned that combining both signatures could yield better outcome predictions. 

Secondly, unmeasured confounders could be disrupting the link between SRSq and death. To 

test the first possibility, we stratified patients by both MARS and SRS and estimated 28-day 

survival for cross-subphenotype combinations. We confirmed a significantly lower survival 

in the Mars1 group, and observed that Mars1 patients assigned to SRS1 showed even 

poorer outcomes (Fig. S6J). This highlights the value of combining different subphenotyping 

systems. To test the second possibility, we used mediation analysis (Fig. S6K). Although the 

overall effect of SRSq on death was not significant in this cohort, we observed significant 

mediation of SRSq on death via shock and organ failure (Fig. S6L; mediation P = 0.002 

and 0.024 for shock and SOFA, respectively). This suggests that an increase in SRSq leads 

to higher probabilities of shock and organ failure, which in turn increase mortality, but that 

unobserved variables might counterbalance this effect. Thus, SepstratifieR separates patients 

with sepsis by molecular profile and risk of organ dysfunction, although this is not invariably 

associated with early mortality.

Application of SepstratifieR in pediatric sepsis

Several subphenotypes have been described in pediatric sepsis (11, 13). However, the 

shared and specific features of pediatric vs adult sepsis pathogenesis remain to be fully 

elucidated. To assess if our models are applicable to pediatric populations, we re-analyzed a 

cohort of pediatric patients with systemic inflammatory response syndrome (SIRS) (n=23), 

sepsis (n=38), or septic shock (n=73) (11) (Table S1). Transcriptomic variation in this 

cohort correlated with clinical severity, with the second principal component separating 

patients into a progression from health to SIRS, sepsis, and septic shock (Fig. 5A). SRS 

predictions also associated with PC2, suggesting a correspondence between SRS and illness 

severity. Indeed, 94% of controls were assigned to SRS3, whereas the SRS1 group consisted 

exclusively of patients with septic shock and the SRS2 group comprised a mixture of SIRS, 

sepsis, and septic shock (Fig. 5B). Separation by severity was also apparent for SRSq (Fig. 

5C). Last, in agreement with adult sepsis, we observed a decrease of SRSq over time in 

SIRS patients (Fig. 5D). This confirms that SRSq captures an acute illness signal.

We next asked whether SRSq-associated transcriptional programs were similar in adult and 

pediatric sepsis. We observed a significant correlation between SRSq-associated genes in 

both populations (Fig. 5E; Pearson correlation = 0.72, P < 2.2e-16), which was confirmed 

by pathway enrichment analysis. High SRSq was associated with lower TCR signaling 

and CD28 co-stimulation, but higher TLR signaling and innate immune pathways (Fig. 

5F). This suggests that, although etiologies and immune responses might differ in pediatric 

patients, most cellular and molecular alterations are shared with adult sepsis, representing 

mechanisms conserved throughout the lifespan.
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Application of SepstratifieR in influenza and COVID-19

To test whether SepstratifieR is applicable even when patients who do not fulfill sepsis 

criteria, we deployed it in a cohort of patients hospitalized with influenza (23). This cohort 

spanned a wide severity spectrum, including patients with and without supplemental oxygen, 

who would not fulfill the sepsis definition, as well as patients in critical care, who would 

fulfill Sepsis-3 criteria (24). Exploratory analysis revealed a gradation of illness severities, 

with patients separating by extent of oxygen supplementation, which was well captured 

by SRSq (Fig. 6A). At the molecular level, we confirmed increased expression of innate 

immunity genes proportionally to SRSq (Fig. 6B), with a significant correlation of effect 

sizes between sepsis and influenza (Pearson correlation = 0.69, P < 2.2e-16; Fig. 6B-C). 

We next tested the association between SRSq and illness severity. We found an association 

between SRSq and the extent of oxygen supplementation, with patients on mechanical 

ventilation showing a higher SRSq than patients without supplemental oxygen (Fig. 6D). In 

addition, we observed a decrease of SRSq over time, with most patients displaying SRSq 

values equivalent to healthy volunteers after 4 weeks (Fig. 6E). Whereas patients with high 

SRSq upon admission (> 0.4) showed variable rates of SRSq decrease, patients with low 

initial SRSq (< 0.4) showed no changes over time (Fig. 6F). These observations demonstrate 

that SepstratifieR is applicable to influenza, even when patients do not fulfill sepsis criteria.

We also applied SepstratifieR to two COVID-19 cohorts: the COVID-19 Multi-Omic 

Blood Atlas (COMBAT) (20) and the Deutsche COVID-19 Omics Initiative (DeCOI; 

Table S1) (25). Patients in these cohorts also spanned a wide range of severities, with a 

proportion presenting with mild disease, others requiring hospitalization, and a subset being 

admitted to intensive care, many of whom would fulfill sepsis criteria. In both cohorts, 

whole-transcriptome analysis separated patients and controls, as well as illness severities 

(Fig. 7A and Fig. S7A). SRS predictions matched with severity groups. In particular, 

90% of healthy volunteers in DeCOI were assigned to SRS3, whereas 80% of COVID-19 

patients were classified as either SRS1 or SRS2 (Fig. S7B). In COMBAT, the SRS3 group 

contained a mixture of healthy volunteers and community COVID-19 cases, who were never 

hospitalized. In contrast, SRS2 and SRS1 were enriched in patients with severe illness and in 

critical care, respectively (Fig. 7B). SRSq also increased proportionally to illness severity in 

both cohorts (Fig. 7C and Fig. S7C).

We next compared SRSq-associated pathways between sepsis and COVID-19. We observed 

a similar set of SRSq-associated genes in both conditions (COVID-19 in DeCOI (Fig. 

S7D-E), and COVID-19 and sepsis in COMBAT (Fig. S8A-B)). Higher SRSq scores 

in COVID-19 were associated with downregulation of antigen presentation and T cell 

pathways, as well as upregulation of TLR signaling, IL-1 signaling, and glycolysis (Fig. 

S7F and Fig.S8C). Furthermore, SRSq positively correlated with neutrophil counts and 

negatively correlated with lymphocyte counts (Fig. S7G and Fig. S8D). With regard 

to clinical measures, SRSq was associated with C reactive protein (CRP), respiratory 

function (P/F ratios), and SOFA, as well as with pneumonia indexes estimated by DeCOI 

investigators (Fig. 7D and Fig. S7H). To assess if this resulted in differential outcomes, we 

evaluated the relationship between SRSq and 28-day mortality in COMBAT. Whereas all 

participants with SRSq < 0.6 survived, we observed a sharp increase in mortality in patients 
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with SRSq > 0.6 (Fig. 7E). This association was significant (HR = 3.1 per 0.1-unit increase 

in SRSq, log-rank P = 0.017), even when accounting for age (Fig. 7F). We next asked which 

factors are involved in death due to COVID-19 using mediation analysis (Fig. 7G) and found 

no evidence of SOFA scores mediating the effect of SRSq on death. Instead, this effect was 

explained by respiratory function alone (Fig. 7H). This suggests marked differences between 

the mechanisms of death in sepsis and COVID-19. In particular, respiratory failure plays a 

more prominent role in SARS-CoV-2 infection, presumably because patients span a wider 

severity range and inflammatory response is concentrated in the lungs.

Last, we asked whether SRS was detectable at the protein level. We leveraged leukocyte 

mass cytometry measurements acquired within COMBAT (20) to match 41 proteins to their 

corresponding mRNA measurements (from RNA-seq). Having confirmed that both layers of 

information were correlated (Fig. S8E-G), we explored the relationship between SRS and 

protein profiles. Exploratory analysis revealed a segregation of samples by severity along 

the first protein principal component (Fig. S8H), which agreed with SRS labels derived 

from RNA-seq. The proteins associated with SRSq included CD66 (positively associated), 

as well as CD3 and CD99 (negatively associated) (Fig. S8I), among others. The direction of 

these effects agreed between mRNA and protein for 9 out of 10 genes (Fig. 7I). Therefore, 

SRS is detectable at the protein level in whole blood leukocytes from COVID-19 patients, 

indicating it might be possible to design cytometry-based assays for SRS/SRSq estimation.

In summary, SRSq is a quantitative score reflective of immune dysfunction and applicable 

across infections. Elevated SRSq indicates decreased lymphocyte function and antigen 

presentation, increased neutrophil counts and TLR signaling, more severe illness, and higher 

risk of poor outcomes. This is explained by alterations in coagulation and blood pressure in 

sepsis, but by respiratory failure in COVID-19. These factors, possibly in combination with 

differential responses to immunomodulatory therapy, influence mortality.

Discussion

We described SepstratifieR, a collection of models for stratification of patients with acute 

infection which are based on the SRS groups previously described by our group (5). 

Our study addresses long-standing challenges. First, it furthers our ability to identify 

subphenotypes and specific endotypes at point-of-care by providing a framework which 

can be used with rapid turnaround methods (qRT-PCR), as well as full-transcriptome 

technologies. Second, it models patient disease as a continuum, extending stratification 

to a range of presentations, independently of whether patients fulfill sepsis criteria. Last, 

it introduces a quantitative score reflective of immune dysregulation and illness severity, 

enabling future personalized therapeutic decision making and estimation.

Stratification of sepsis patients has been explored extensively using gene expression (5, 7, 

11), clinical variables (10), or circulating biomarkers (13). Our observations align well with 

these studies, confirming the existence of subgroups of patients with different molecular 

characteristics. Moreover, SepstratifieR allows clinically relevant stratification in both adult 

and pediatric populations, revealing overlapping biology between both groups. Previous 

work has reported pediatric sepsis patient groups associated with pathogen burden (13). 
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These show some correlation but are distinct from SRS (26). Here we show that our 

signature successfully segregates pediatric patients by illness severity, identifying similar 

biological pathways to those in adult sepsis, indicating relevance in this population. 

SepstratifieR also performed well across patients who had different illness severities 

following viral infection. This indicates that, although both shared and specific disease 

mechanisms are recognized for influenza and COVID-19 compared with all-cause sepsis 

(20, 27), these patients are amenable to stratification using SRSq.

By modeling disease as a continuum, we have further supported the concept that patients 

with sepsis are at the extreme part of a spectrum of variable immune dysregulation, and 

that our approach enables estimation of immune state and risk regardless of whether patients 

fulfill the Sepsis-3 definition. Modeling immune risk quantitatively also enabled us to 

measure immune changes over time. We previously reported that SRS are dynamic, with 

some patients transitioning between groups during their stay in hospital (6). Here, we 

showed that SRSq decreases over time along recovery, with larger decreases associated 

with better outcomes. SRSq therefore represents an important step forward by providing a 

method to monitor patient progress throughout the course of illness.

SepstratifieR could also inform clinical trial design. Previous trials in sepsis have often 

failed due to patient heterogeneity (28), with the same treatment potentially harming 

and benefiting different subgroups of patients (10, 14, 28). SepstratifieR could enable 

“predictive enrichment” of clinical trial populations for particular immune profiles, as well 

as “prognostic enrichment” (enrolling only patients at high risk), thus increasing chances 

of success. Systems biology approaches have also shown that, given the complexity of 

interactions within the immune system, perturbing immune mediators often results in 

unpredictable effects due to the emergent properties of immunological networks. Thus, 

depending on their initial conditions patients could show opposite responses to the same 

intervention (29, 30), and some form of patient pre-selection is therefore required when 

trialing therapies. SRSq provides an ideal system for selection and monitoring of patients in 

such trial designs, as it captures substantial information in a single, quantitative variable.

Nonetheless, our study has some limitations. First, SepstratifieR relies on bulk gene 

expression, and cannot establish which cellular alterations cause immune dysfunction. 

Combining SepstratifieR with single-cell technologies is a promising research avenue, as 

evidenced by our recent study describing differences in granulopoiesis between SRS groups 

(31). Second, SRSq does not capture the full heterogeneity of sepsis, and orthogonal axes 

of variation could be lost if focusing exclusively on SRSq. More complete knowledge of 

the nature and breadth of subphenotypes informative of immune dysregulation, which would 

likely be used in combination, could circumvent this limitation. Third, our results suggest 

that SRSq is not invariably associated with early mortality. Although this may be due to 

unmeasured confounders, it is currently difficult to assess this due to the observational 

nature of our cohorts. In the future, it will be important to investigate the causes of this 

discrepancy using prospective cohorts and more comprehensive clinical trial data. Last, 

our mediation effects are difficult to interpret without further validation, as they rely 

on the assumption that immune dysfunction increases mortality via its effect on organ 

failure. Although this agrees with our understanding of sepsis pathophysiology (2, 32), 
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the transcriptional signal captured by SRSq could itself be influenced by shock and organ 

failure. Prospective studies with dense temporal sampling, in combination with disease 

models amenable to perturbation, could help address this question.

In conclusion, SepstratifieR enables stratification of patients with acute infection and 

can model their responses as a continuum. In combination with clinical biomarkers, 

SepstratifieR could improve risk estimation of immune dysfunction and clinical outcomes, 

as well as inform clinical trial design, bringing us closer to precision medicine for severe 

infection.

Materials And Methods

Study design and participants

The UK Genomics Advances in Sepsis (GAinS) cohort—The UK Genomics 

Advances in Sepsis (GAinS) study (NCT00121196) aimed to understand the basis of 

individual variation in the sepsis response for patients admitted to intensive care by 

combining detailed clinical phenotyping with molecular, genetic and functional genomic 

profiling of peripheral blood. Adult patients (≥18 yo) admitted into intensive care with 

sepsis due to community-acquired pneumonia (CAP, n=688) or fecal peritonitis (FP, n=358) 

were recruited from 34 UK intensive care units (ICUs) between 16/11/2005 and 30/05/2018. 

Diagnoses were based on ACCP/SCCM guidelines.

Ethics approval was granted nationally and locally, with informed consent obtained from 

all patients or their legal representative at the beginning of the study. This research was 

conducted under Research Ethics Committee approvals 05/MRE00/38, 08/H0505/78, and 

06/Q1605/55.

Procedures

Sample collection—Whole blood (~10 mL) was obtained from patients on the first, third, 

and/or fifth day following ICU admission. Leukocyte isolation was performed at the bedside 

using the LeukoLOCK system (Thermo Scientific), with RNA extracted using the Total 

RNA Isolation Protocol (Ambion).

Microarray profiling—Blood samples from patients within the GAinS study (Table S1) 

were processed in four batches, of which three have been previously published. The first 

batch contained the first available sample from 265 patients with sepsis due to CAP (5); 

the second batch comprised the first available sample from 106 patients with sepsis due to 

CAP (50% of whom were non-survivors), and 53 patients with sepsis due to FP (5, 6); the 

third batch comprised 127 samples from 73 patients with sepsis due to CAP and 94 samples 

from 64 patients with sepsis due to FP (6); and the fourth batch comprised 24 patients with 

sepsis due to CAP and 24 patients with sepsis due to FP who had RNA collected at three 

time points and for whom no gene expression data had previously been generated. Batch 3 

included 56 replicate samples from batch 1, which were removed prior to data combination. 

Outlying samples within each batch were identified and sample mix-ups were resolved using 

genotype information, resulting in a final set of 676 samples.
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The four data sets were combined and normalized together using variance stabilization and 

normalization with the vsn package. Probes with a detection p-value < 0.05 in fewer than 5% 

of samples were removed, and batch effects were corrected using the sva package.

RNA-sequencing—RNA-seq was performed on 864 samples (667 patients) from the 

GAinS study, including 134 samples with previous microarray data (Table S1) plus 533 

patients who were not included in the microarray cohort. cDNA libraries were prepared 

using NEB Ultra II Library Prep kits (Illumina) and sequenced in a NovaSeq 6000 

(Illumina). Reads were aligned to the reference genome (GRCh38 v99) using STAR and 

quantified using featureCounts. Counts were normalized and transformed to log-counts per 

million.

qRT-PCR profiling—Seven genes predictive of SRS and two control housekeeping genes 

(ACTB and TOP1) were profiled using qRT-PCR in 115 RNA samples (107 patients) from 

the GAinS study.

Public data collection—Publicly available transcriptomics data were collected from 

three cohorts of healthy, as well as six infectious disease cohorts comprising all-cause sepsis, 

influenza, and COVID-19 (Table S1) (7, 20, 21, 23, 25, 33–37). For microarrays, probes 

were quality filtered (detection p value < 0.01 in over 20% of samples), and measurements 

averaged across all probes uniquely mapping to each gene. For RNA-seq, counts were 

normalized and log-transformed, with genes quality filtered (>1 CPM in over 10% of 

samples).

Statistical analysis

Cross-technology data integration—Canonical correlation analysis (CCA) was 

performed using sparse CCA with the PMA package. Gene contributions to the first 

canonical dimension (CC1) were used to identify candidate genes for an Extended signature 

predictive of SRS. Genes were included in the signature if they were amongst the top 1% 

genes with highest contribution to CC1, and were reliably detected across all the healthy 

volunteer cohorts used as comparator groups throughout this study (Table S1). This resulted 

in 12 new genes, which were combined with the Davenport signature to yield an extended 

19-gene signature.

After CCA, datasets in the GAinS study were integrated with healthy volunteer data from 

three cohorts (Table S1) based on either the 7 or the 19-gene signature. Technical differences 

between studies were removed using mutual nearest neighbors (15) with the batchelor 
package. Batches were defined based on profiling technology (Illumina HumanHT-12 

arrays, RNA-seq, or qPCR). This resulted in two cross-technology data sets: the Davenport 

and the Extended reference sets.

Definition of a quantitative sepsis response score—Diffusion maps were 

constructed based on genes in the Davenport and Extended signatures using the destiny 
package. The first diffusion component (DC1) was used to derive a quantitative sepsis 

response score (SRSq), defined as the min-max scaled DC1 coordinate:
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SRSqi =
DC1i − min DC1
DC1 − min DC1

Where SRSqi and DC1i represent the quantitative sepsis response signature score and DC1 

coordinate for the i-th sample, respectively. Min-max scaling restricts SRSq to the [0,1] 

range, where values closer to one indicate more severe immune dysfunction. SRSq scores 

were independent of the technology used for gene expression profiling.

Random forest training and evaluation—Random forests were trained using the 

randomForest and caret (packages. Five hundred decision trees were built per forest, using 

either 7 or 19 genes as predictor variables. SRS or SRSq were used as response variables. 

Performance was evaluated using leave-one-out cross-validation (LOOCV) by estimating 

Cohen’s Kappa (for SRS) or root-mean-square errors (RMSE; for SRSq).

Differential expression analysis—Differential gene expression between SRS and 

along SRSq was assessed using moderated T-tests with limma (38). Genes were deemed 

differential expressed when: 1) |fold-change| > 1.5 between SRS groups at a false discovery 

rate (FDR) < 0.05; or 2) |fold-change| > 3.5 per unit increase in SRSq at an FDR of 0.05 

(equivalent to a one-fold increase in expression per 0.3 SRSq units).

Pathway enrichment analysis—Pathway enrichment was assessed using XGR and 

pathways listed in REACTOME (39). Pathways were deemed significantly enriched at FDR 

< 0.05.

Clinical data collection—GAinS clinical information was collected by local investigators 

using electronic case report forms (Table S2). Data was quality filtered and assembled into a 

database for ease of access.

Integration of clinical variables with SRS/SRSq—Associations between SRS and 

clinical variables were tested using Kruskal-Wallis one-way analysis of variance (numeric 

variables) or Mood’s median test (ordinal variables). Associations between SRSq and 

clinical variables were assessed using correlation tests (numeric variables) or proportional 

odds logistic regression (ordinal variables).

Survival analysis—Mortality and time to death were censored (or capped) at 28 days 

after ICU admission. Kaplan-Meier curves were then built, with time to event modeled as 

a function of SRS (as measured at the latest time point available per patient). Visualization 

was performed using survminer, with significance estimated by log-rank tests.

To test for associations between SRSq and survival, samples were sorted by increasing SRSq 

(at the latest time point available) and a sliding window containing 35% of samples was 

used to estimate 28-day survival. Windows were slid one sample at a time until reaching 

the sample with highest SRSq. Associations were also tested using Cox Proportional Hazard 

models, where hazard ratios (relative to 0.1-unit increases in SRSq) were modeled as 
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an exponential function of SRSq, adjusting for age and source of sepsis (CAP or FP). 

Significance was assessed by log-rank tests.

Analysis of temporal SRSq dynamics—A subset of 177 patients from the GAinS 

RNA-seq cohort, profiled at up to three time points following ICU admission (1st, 3rd, or 

5th day in ICU), were used for this analysis. Temporal changes in SRSq were defined as 

log2-fold changes (LFC) between the first and last time point. To account for time intervals 

between samples, LFCs were normalized to interval duration. This resulted in average daily 

LFCs, which represents the average change in SRSq exhibited per day. Patients were sorted 

increasingly by average daily LFC in SRSq for survival analysis.

To assess survival, patients were divided into quartiles based on their temporal change in 

SRSq and Kaplan-Meier curves were built, with significance determined using log-rank 

tests. Sorted patients were also used to define a sliding window containing 35% of samples. 

This window was used to estimate 28-day mortality, with sliding performed one sample at a 

time until reaching the patient at the top of the list.
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One Sentence Summary

Machine learning stratifies patients with infection for personalized immune response 

profiling as well as clinical severity and outcome prediction.
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Editor’s summary: Stratifying sepsis

Predictors of severe infection could help physicians manage clinical care. Cano-Gamez et 
al. present a RNAseq-based gene expression signature derived from patients with sepsis 

that generally captured patient prognosis with high sensitivity. Biologically, this signature 

corresponded to immune dysfunction. A machine learning framework based on the gene 

signature correctly stratified pediatric and adult patients with bacterial or viral sepsis, as 

well as patients with infection who did not meet sepsis criteria, including H1N1 influenza 

and COVID-19. This study may thus advance our ability to predict individual patient 

outcomes in sepsis.
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Fig. 1. Construction of a reference map of gene expression in sepsis using data from three 
different platforms.
(A) CCA analysis of GAinS samples with RNA-seq and microarray data available. 

Histograms represent marginal SRS1 (red) and SRS2 (blue) distributions. R = Pearson 

correlation; p = correlation p value. (B) Contribution of each gene to CC1, ranked 

increasingly. (C) CC1 contribution of each microarray (X axis) and RNA-seq (Y axis) 

feature. Black and red dots indicate genes in the Davenport signature and amongst the top 

1% highest CC1 contributors, respectively. (D) Correlation of microarray/RNA-seq (X axis) 

and qRT-PCR (Y axis) measurements. Best linear fits are shown. R = Pearson correlation; p 

= correlation p value. (E) A reference map of sepsis based on the Davenport signature (PCA 

visualization). Dots represent samples, with shapes indicating profiling platform and colors 

SRS group.
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Fig. 2. Stratification of patients with sepsis based on whole blood gene expression.
(A) Receiver operating characteristic (ROC) curves showing cross-validation performance. 

AUROCs = area under the ROC curve. (B) UpSet plot showing prediction agreement 

between modalities. Colors indicate SRS classes (horizontal) and cross-modality agreement 

(vertical). Gray bars indicate samples with only one modality available. The heatmap (top) 

shows the level of cross-modality agreement (Jaccard index). (C) Volcano plot showing 

SRS1/SRS2 differential gene expression. Red indicates upregulation in SRS1 and blue 

upregulation in SRS2. (D) Correlation between SRS-associated log-fold changes from 

Cano-Gamez et al. Page 26

Sci Transl Med. Author manuscript; available in PMC 2022 November 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



microarray and RNA-seq. The identity line is shown as a reference. Cor = Pearson 

correlation; p = correlation p value. (E) Cell count distribution per SRS group. p = T-test 

(top) or Kruskal-Wallis (bottom) p value. (F) SOFA score distribution per SRS group at 

the latest available time point. p = T-test (left) or Kruskal-Wallis (right) p value. (G) 

Kaplan-Meier curves of 28-day survival per SRS group, defined at the latest available time 

point. Shades indicate 95% confidence intervals. p = log-rank test p value.
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Fig. 3. A quantitative score reflective of immune dysfunction severity.
(A) Diffusion map estimated using the Extended gene signature. Colors indicate SRS 

group; shapes indicate profiling platforms. (B) Distribution of SRSq across cohorts. p = 

Kruskal-Wallis test p value. (C) Association between SRSq and mortality in GAinS, as 

determined using a sliding window approach. Shades represent 95% confidence intervals. 

(D) Estimated hazard ratios and 95% confidence intervals. (E) SRSq values stratified 

by ICU-acquired infection score (ICU-AI). β = regression coefficient; p = regression p 

value. (F) Kaplan-Meier curves of 28-day survival in patients sampled at multiple time 
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points. Patients were stratified into quartiles based on their rate of SRSq reduction over 

time. Shades indicate 95% confidence intervals. p = log-rank test p value. (G) Association 

between rate of SRSq reduction and mortality, as determined using a sliding window. Shades 

represent 95% confidence intervals. (H) Causal model assumed for mediation analysis. 

Arrows represent causal directions. (I) Mediation effects. Lines indicate 95% confidence 

intervals, with solid and dotted lines corresponding to the treatment (high SRSq) and control 

(low SRSq) conditions. ACME = Average Causal Mediation Effect; ADE = Average Direct 

Effect; p = mediation p value.
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Fig. 4. SepstratifieR’s construction and application to new data.
Schematic representation of how SepstratifieR was built (top panel) and how it is applied 

to new data (bottom panel). Publicly available data (5, 6) were used to construct sepsis 

reference maps based on small gene signatures. Next, random forest models were trained 

to predict SRS and SRSq. When applying SepstratifieR to new samples, genes in the 

signature of interest are extracted and used to align new samples to the reference map. After 

alignment, SRS and SRSq were predicted using pre-trained models.
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Fig. 5. Stratification of patients with pediatric sepsis by SRSq.
(A) PCA plots based on whole blood transcriptomes. Samples are colored by illness severity 

(top), SRS (middle), and SRSq (bottom). (B) UpSet plot showing the agreement between 

SRS predictions and disease severity. Bar colors indicate SRS groups (top) and clinical 

phenotypes (bottom). The heatmap (top) quantifies the extent of this agreement (Jaccard 

indices). (C) SRSq distribution by clinical phenotype; p = Wilcoxon test p value. (D) SRSq 

distribution by time point and clinical phenotype. p = Wilcoxon test p value. (E) Correlation 

between SRSq-associated gene expression changes in adult (GAinS) and pediatric sepsis. 
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Cor = Pearson correlation; p = correlation p value. (F) Immune-relevant pathways positively 

(left) or negatively (right) enriched in SRSq-associated genes.
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Fig. 6. SRSq predicts oxygen requirement and reveals temporal immune dynamics in influenza.
(A) PCA plots based on whole blood transcriptomes. Samples are colored by oxygen 

requirement (top), SRS (middle), and SRSq (bottom). (B) Volcano plot showing genes 

differentially expressed along SRSq. Red indicates positive and blue negative associations 

with SRSq. The scatter plot (right) compares log-fold changes in sepsis (GAinS) and 

Influenza. Cor = Pearson correlation; p = correlation p value. (C) Top genes positively 

(top) and negatively (bottom) associated with SRSq. Samples are colored by SRS group. (D) 

SRSq stratified by supplemental oxygen requirement; p = Kruskal-Wallis test p value, *** 
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= adjusted Dunn’s post-hoc test p < 0.01. (E) SRSq stratified by time since admission and 

oxygen requirement. Samples are colored by SRS group. p = Kruskal-Wallis test p value. (F) 

Line plot showing changes of SRSq over time. Line colors indicate SRS group assignment at 

recruitment.
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Fig. 7. SRSq predicts severity of illness and pinpoints mediators of COVID-19 mortality.
(A) PCA based on whole blood transcriptomes. Samples are colored by clinical severity. 

(B) Heatmap showing the overlap (as indicated by Jaccard index) between SRS and clinical 

severity groups. (C) SRSq stratified by clinical severity. p = Kruskal-Wallis test p value. (D) 

Association between SRSq and clinical variables. Samples are colored by SRS group. Lines 

indicate best linear fits. Cor = Pearson correlation; p = correlation p value. (E) Association 

between SRSq and mortality. (F) Estimated hazard ratios and 95% confidence intervals. (G) 

Causal model used for mediation analysis. Arrows represent causal directions. (H) Results 
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from mediation analysis, with SOFA (left) and P/F ratios (right) as mediators. Lines indicate 

95% confidence intervals. Solid and dotted lines represent estimates for the treatment (high 

SRSq) and control (low SRSq) conditions. ACME = Average Causal Mediation Effect; ADE 

= Average Direct Effect; p = mediation p value. (I) Correlation between SRSq-associated 

mRNA (x axis) and protein (y axis) changes. Dark red indicates the protein is significantly 

associated with SRSq. Cor = Pearson correlation; p = correlation p value.
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