Cano-Gamez, E;
Burnham, KL;
Goh, C;
Allcock, A;
Malick, ZH;
Overend, L;
Kwok, A;
... Walsh, H; + view all
(2022)
An immune dysfunction score for stratification of patients with acute infection based on whole-blood gene expression.
Science Translational Medicine
, 14
(669)
, Article eabq4433. 10.1126/scitranslmed.abq4433.
Preview |
PDF
EMS156835.pdf - Accepted Version Download (3MB) | Preview |
Abstract
Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing millions of global deaths each year. To alleviate this burden, improved prognostication and biomarkers of response are urgently needed. We investigated the use of whole-blood transcriptomics for stratification of patients with severe infection by integrating data from 3149 samples from patients with sepsis due to community-acquired pneumonia or fecal peritonitis admitted to intensive care and healthy individuals into a gene expression reference map. We used this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune dysfunction and predictive of clinical outcomes, which can be estimated using a 7- or 12-gene signature. Last, we built a machine learning framework, SepstratifieR, to deploy SRSq in adult and pediatric bacterial and viral sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification across diseases and revealing some of the physiological alterations linking immune dysregulation to mortality. Our method enables early identification of individuals with dysfunctional immune profiles, bringing us closer to precision medicine in infection.
Type: | Article |
---|---|
Title: | An immune dysfunction score for stratification of patients with acute infection based on whole-blood gene expression |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1126/scitranslmed.abq4433 |
Publisher version: | https://doi.org/10.1126/scitranslmed.abq4433 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions. |
Keywords: | Adult, Humans, Child, Influenza A Virus, H1N1 Subtype, Gene Expression Profiling, COVID-19, Sepsis, Transcriptome |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Experimental and Translational Medicine |
URI: | https://discovery.ucl.ac.uk/id/eprint/10161504 |
Archive Staff Only
View Item |